• No results found

Anchor Bolt Design IS Code LSD

N/A
N/A
Protected

Academic year: 2021

Share "Anchor Bolt Design IS Code LSD"

Copied!
33
0
0

Loading.... (view fulltext now)

Full text

(1)

3.4 Design of Base Plate 3.4.1 Design of Base Plate C1

CHECK FOR SIZE OF BASE PLATE C1

Node No. 964 Load Case 112

Axial Load P 1150 kN

Factored Moment about X-axis, Mpx 380 kNm

Factored Moment about Z-axis, Mpz 15 kNm

Horizontal Force along X- axis , Fx 15.6 kN

Horizontal Force along Z- axis , Fz 85 kN

1200 mm 1200 mm

Depth of column along X-axis , Dx 800 mm

Depth of column along Z-axis , Dz 800 mm

100 mm 470 295 25 14.06

No Increase in permissible stress in LSD 1

2.18 -0.58

Remarks Base Plate Size is O.K.

2 X 660MW LANCO VIDARBHA TPP LITL-008-CVE-104-R-0101 Sheet

REV B

Design of UCB PART1 #REF!

Portion Considered for

plate design

Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb

Distance betn. edge of base pl.& cl. of bolt, ed

Ultimate stress of bolt in tension stf N/mm2

Yield stress of bolt fyb N/mm2

Characteristic compressive strength of concrete,fck N/mm2 Permissible stress in conc. in bearing, scc N/mm2

Max Bearing Pressure,

s

max =P/A+6xMx/(Lbp2 x B

bp )+6xMz/(Lbp x Bbp2) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x B

bp )-6xMz/(Lbp x Bbp2) N/mm2 Z (+) M z (-) Mx ( -)X (+)

(2)

DESIGN OF BOLT

Calculation of bolt along Z- axis

Node No. 964 Load Case 112

Axial force, P 1150 kN

Moment about X-axis, Mx 380 kNm

Moment about Z-axis, Mz 15 kNm

Horizontal Force along X- axis , Fx 15.6 kN

Horizontal Force along Z- axis , Fz 85 kN

2.12 -0.52 963.64 mm 278.79 mm 778.79 mm 78.01 kN

Remarks bolt required

Dia of bolt 40mm

Gross area provided 1257

Net area provided 1006

Tensile capacity of each bolt based on tensile strength 337105 N Tensile capacity of each bolt based on concrete break out failure 10872949 N

So, Effective Tensile capacity 337105 N

No. of bolt per side 1.00nos

Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) N/mm2 Distance Y1 = smax x Bpb/ (smax + smin)

Distance betn. cl. of base pl. & cg. of comp. Force, Y2 = B / 2 - Y1 / 3

Lever arm, Y3 = Bpb - ed - Y1 / 3

Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y2) / Y3 mm2 mm2 T

Mx

Bpb Y1 t C con

P

100 mm Y1/3 A B

(3)

LENGTH OF BOLT

Length of bolt provided 2700 mm

DESIGN OF STIFFNER PLATE

Fy 325 Ts 25 mm

Gusset outstand

Outstand length 200 mm

D/Ts 8 < 11.93

Average height of the stiffner plate should be less than 298.20 mm Smaller height 250 mm

Higher height 325 mm

So average height 287.5 mm < 298.20 mm OK

The stiffner is semi compact section

distace between flange to edge of base plate 200 mm

distance between stiffner plate 288 mm

The shear on the stiffner plate 62784 N 62.78 KN

Shear capacity 1385969 N 1386.0 kN OK

0.6*Vd 831.58 > 62.78 KN

So the moment capacity will not get reduced by the effect of shear.

Bending moment 0 Nmm 0.00 KNm

Bending capacity 130030776.515152 Nmm 130.03 KNm OK

Hence the size of the stiffenr plate is satisfactory.

Weld connecting column-gusset-base plate

Load on weld 593.75 KN

Assuming an 6 mm weld Weld size 10 mm Length of the weld 5026 mm

Load per mm 0.12 kN/mm

Weld capacity 1519.59 1.52 kN/mm OK

Thickness of the base plate Three sides fixed

Thickness of the base plate 40 mm

for stiffner plate connected to flange

Plate dimension (three edge fixed)a 288 b 200 cofficient from roarks b beta 3 1.01

From Roark's chart (Table 11.4) str 55.045 a/b 1.44

Strength of the base plate 354.55 OK

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV B

Design of UCB #REF!

The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte

N/mm2

N/mm2 N/mm2

(4)

for stiffner plate connected to web

Plate dimension (three edge fixed)a 169 b 275.5 cofficient from roarks b beta 3 0.19 a/b 0.61343013 From Roark's chart (TablStress 19.64868

Strength of the base plate 354.55 OK

Shear capacity of Bolt 218386.2 N 218.39 KN

when the bolts will be in compression, they will be eefective in shear

Total capacity 218.39 KN > 85 OK

Bolt subjected to cobined shear and tension

Vsb Factored shear force acting on the 10.63 kN Vdb Design shear capacity 218.39 kN Tb Factored tensile force acting on th 19.50 kN Tdb Design tension capacity 337.10 kN

So, Interaction ratio 0.01 < 1OK

N/mm2 N/mm2

(5)

3.4 Design of Base Plate 3.4.1 Design of Base Plate C1

CHECK FOR SIZE OF BASE PLATE C1

Node No. 990 Load Case 129

Axial Load P 4503 kN

Factored Moment about X-axis, Mpx 514 kNm

Factored Moment about Z-axis, Mpz 2430 kNm

Horizontal Force along X- axis , Fx 600 kN

Horizontal Force along Z- axis , Fz 724 kN

1200 mm 1200 mm

Depth of column along X-axis , Dx 800 mm

Depth of column along Z-axis , Dz 500 mm

100 mm 470 295 25 14.06

No Increase in permissible stress in LSD 1

13.36 -7.11

Remarks Base Plate Size is O.K.

2 X 660MW LANCO VIDARBHA TPP LITL-008-CVE-104-R-0101 Sheet

REV B

Design of UCB PART1 #REF!

Portion Considered for

plate design

Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb

Distance betn. edge of base pl.& cl. of bolt, ed

Ultimate stress of bolt in tension stf N/mm2

Yield stress of bolt fyb N/mm2

Characteristic compressive strength of concrete,fck N/mm2 Permissible stress in conc. in bearing, scc N/mm2

Max Bearing Pressure,

s

max =P/A+6xMx/(Lbp2 x B

bp )+6xMz/(Lbp x Bbp2) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x B

bp )-6xMz/(Lbp x Bbp2) N/mm2 Z (+) M z (-) Mx ( -)X (+)

(6)

DESIGN OF BOLT

Calculation of bolt along Z- axis

Node No. 990 Load Case 129

Axial force, P 4503 kN

Moment about X-axis, Mx 514 kNm

Moment about Z-axis, Mz 2430 kNm

Horizontal Force along X- axis , Fx 600 kN

Horizontal Force along Z- axis , Fz 724 kN

11.54 -5.28 823.31 mm 325.57 mm 825.57 mm 1179.26 kN

Remarks bolt required

Dia of bolt 40mm

Gross area provided 1257

Net area provided 1006

Tensile capacity of each bolt based on tensile strength 337105 N Tensile capacity of each bolt based on concrete break out failure 10872949 N

So, Effective Tensile capacity 337105 N

No. of bolt per side 4.00nos

Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) N/mm2 Distance Y1 = smax x Bpb/ (smax + smin)

Distance betn. cl. of base pl. & cg. of comp. Force, Y2 = B / 2 - Y1 / 3

Lever arm, Y3 = Bpb - ed - Y1 / 3

Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y2) / Y3 mm2 mm2 T

Mz

Bpb Y1 t C con

P

100 mm Y1/3 A B

(7)

DESIGN OF STIFFNER PLATE

Fy 325 Ts 25 mm

Gusset outstand

Outstand length 200 mm

D/Ts 8 < 11.93

Average height of the stiffner plate should be less than 298.20 mm Smaller height 250 mm

Higher height 325 mm

So average height 287.5 mm < 298.20 mm OK

The stiffner is semi compact section

distace between flange to edge of base plate 200 mm

distance between stiffner plate 263 mm

The shear on the stiffner plate 613009 N 613.01 KN

Shear capacity 1385969 N 1386.0 kN OK

0.6*Vd 831.58 > 613.01 KN

So the moment capacity will not get reduced by the effect of shear. Bending moment 64291811.1111111 Nmm 64.29 KNm

Bending capacity 130030776.515152 Nmm 130.03 KNm OK

Hence the size of the stiffenr plate is satisfactory.

Weld connecting column-gusset-base plate

Load on weld 7111.50 KN

Assuming an 6 mm weld Weld size 10 mm Length of the weld 4976 mm

Load per mm 1.43 kN/mm

Weld capacity 1519.59 1.52 kN/mm OK

Thickness of the base plate Three sides fixed

Thickness of the base plate 40 mm

for stiffner plate connected to flange

Plate dimension (three edge fixed)a 263 b 200 cofficient from roarks b beta 3 0.71894

From Roark's chart (Table 11.4) str 240.126 a/b 1.315

Strength of the base plate 354.55 OK

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV B

Design of UCB #REF!

The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte

N/mm2

N/mm2 N/mm2

(8)

for stiffner plate connected to web

Plate dimension (three edge fixed)a 169 b 275.5 cofficient from roarks b beta 3 0.213 a/b 0.613 From Roark's chart (TablStress 135.2489

Strength of the base plate 354.55 OK

Shear capacity of Bolt 218386.2 N 218.39 KN

when the bolts will be in compression, they will be eefective in shear

Total capacity 873.54 KN > 724 OK

Bolt subjected to cobined shear and tension

Vsb Factored shear force acting on the 90.50 kN Vdb Design shear capacity 218.39 kN Tb Factored tensile force acting on th 294.82 kN Tdb Design tension capacity 337.10 kN

So, Interaction ratio 0.94 < 1OK

N/mm2 N/mm2

(9)

3.4 Design of Base Plate 3.4.1 Design of Base Plate C1

CHECK FOR SIZE OF BASE PLATE C1

Node No. 983 Load Case 129

Axial Load P 4076 kN

Factored Moment about X-axis, Mpx 1657 kNm

Factored Moment about Z-axis, Mpz 12 kNm

Horizontal Force along X- axis , Fx 10 kN

Horizontal Force along Z- axis , Fz 412 kN

1200 mm 1200 mm

Depth of column along X-axis , Dx 800 mm

Depth of column along Z-axis , Dz 800 mm

100 mm 470 295 25 13.125

No Increase in permissible stress in LSD 1

8.65 -2.99

Remarks Base Plate Size is O.K.

2 X 660MW LANCO VIDARBHA TPP LITL-008-CVE-104-R-0101 Sheet

REV B

Design of UCB PART1 #REF!

Portion Considered for

plate design

Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb

Distance betn. edge of base pl.& cl. of bolt, ed

Ultimate stress of bolt in tension stf N/mm2

Yield stress of bolt fyb N/mm2

Characteristic compressive strength of concrete,fck N/mm2 Permissible stress in conc. in bearing, scc N/mm2

Max Bearing Pressure,

s

max =P/A+6xMx/(Lbp2 x B

bp )+6xMz/(Lbp x Bbp2) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x B

bp )-6xMz/(Lbp x Bbp2) N/mm2 Z (+) M z (-) Mx ( -)X (+)

(10)

DESIGN OF BOLT

Calculation of bolt along X- axis

Node No. 983 Load Case 129

Axial force, P 4076 kN

Moment about X-axis, Mx 1657 kNm

Moment about Z-axis, Mz 12 kNm

Horizontal Force along X- axis , Fx 10 kN

Horizontal Force along Z- axis , Fz 412 kN

8.57 -2.91 895.82 mm 301.4 mm 801.4 mm 542.91 kN

Remarks bolt required

Dia of bolt 40mm

Gross area provided 1257

Net area provided 1006

Tensile capacity of each bolt based on tensile strength 337105 N Tensile capacity of each bolt based on concrete break out failure 3632593 N

So, Effective Tensile capacity 337105 N

No. of bolt per side 2.00nos

Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) N/mm2 Distance Y1 = smax x Bpb/ (smax + smin)

Distance betn. cl. of base pl. & cg. of comp. Force, Y2 = B / 2 - Y1 / 3

Lever arm, Y3 = Bpb - ed - Y1 / 3

Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y2) / Y3 mm2 mm2 T

Mz

Bpb Y1 t C con

P

100 mm Y1/3 A B

(11)

DESIGN OF STIFFNER PLATE

Fy 325 Ts 25 mm

Gusset outstand

Outstand length 200 mm

D/Ts 8 < 11.93

Average height of the stiffner plate should be less than 298.20 mm Smaller height 250 mm

Higher height 325 mm

So average height 287.5 mm < 298.20 mm OK

The stiffner is semi compact section

distace between flange to edge of base plate 200 mm

distance between stiffner plate 138 mm

The shear on the stiffner plate 211968 N 211.97 KN

Shear capacity 1385969 N 1386.0 kN OK

0.6*Vd 831.58 > 211.97 KN

So the moment capacity will not get reduced by the effect of shear.

Bending moment 22089200 Nmm 22.09 KNm

Bending capacity 130030776.515152 Nmm 130.03 KNm OK

Hence the size of the stiffenr plate is satisfactory.

Weld connecting column-gusset-base plate

Load on weld 4109.25 KN

Assuming an 6 mm weld Weld size 10 mm Length of the weld 4726 mm

Load per mm 0.87 kN/mm

Weld capacity 1519.59 1.52 kN/mm OK

Thickness of the base plate Three sides fixed

Thickness of the base plate 30 mm

for stiffner plate connected to flange

Plate dimension (three edge fixed)a 138 b 200 cofficient from roarks b beta 3 0.1644

From Roark's chart (Table 11.4) str63.20267 a/b 0.69

Strength of the base plate 354.55 OK

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV B

Design of UCB #REF!

The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte

N/mm2

N/mm2 N/mm2

(12)

for stiffner plate connected to web

Plate dimension (three edge fixed)a 188 b 200 cofficient from roarks b beta 3 0.34 a/b 0.94 From Roark's chart (TablStress 130.7111

Strength of the base plate 354.55 OK

Shear capacity of Bolt 218386.2 N 218.39 KN

when the bolts will be in compression, they will be eefective in shear

Total capacity 436.77 KN > 412 OK

Bolt subjected to cobined shear and tension

Vsb Factored shear force acting on the 51.50 kN Vdb Design shear capacity 218.39 kN Tb Factored tensile force acting on th 135.73 kN Tdb Design tension capacity 337.10 kN

So, Interaction ratio 0.22 < 1OK

N/mm2 N/mm2

(13)

3.4 Design of Base Plate 3.4.1 Design of Base Plate C1

CHECK FOR SIZE OF BASE PLATE C1

Node No. 1956 Load Case 129

Axial Load P -3215 kN

Factored Moment about X-axis, Mpx -172 kNm

Factored Moment about Z-axis, Mpz -0.484 kNm

Horizontal Force along X- axis , Fx 6.633 kN

Horizontal Force along Z- axis , Fz 44.882 kN 1200 mm 1200 mm

Depth of column along X-axis , Dx 800 mm

Depth of column along Z-axis , Dz 400 mm

100 mm 470 295 25 14.0625

No Increase in permissible stress in LSD 1

-2.83 -1.64

Remarks Base Plate Size is O.K.

2 X 660MW LANCO VIDARBHA TPP LITL-008-CVE-104-R-0101 Sheet

REV B

Design of UCB PART1 #REF!

Portion Considered for

plate design

Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb

Distance betn. edge of base pl.& cl. of bolt, ed

Ultimate stress of bolt in tension stf N/mm2

Yield stress of bolt fyb N/mm2

Characteristic compressive strength of concrete,fck N/mm2 Permissible stress in conc. in bearing, scc N/mm2

Max Bearing Pressure,

s

max =P/A+6xMx/(Lbp2 x B

bp )+6xMz/(Lbp x Bbp2) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x B

bp )-6xMz/(Lbp x Bbp2) N/mm2 Z ( + ) M z (-) Mx ( -)X (+)

(14)

DESIGN OF BOLT

Calculation of bolt along X- axis

Node No. 1956 Load Case 129

Axial force, P -3215 kN

Moment about X-axis, Mx -172 kNm

Moment about Z-axis, Mz -0.484 kNm

Horizontal Force along X- axis , Fx 6.633 kN

Horizontal Force along Z- axis , Fz 44.882 kN -1.64 -2.84

Assume No. of bolt per side 4.00nos

Tension in one side single bolt due to moment -43000 N Tension in single bolt due to Axial tension in column -267916.7 N

Tension on each bolt 310916.67 N

Dia of bolt 40mm

Gross area provided 1257

Net area provided 1006

Tensile capacity of each bolt based on tensile strength 337105 N Tensile capacity of each bolt based on concrete break out failure 9687500 N So, Effective Tensile capacity of each bolt 337105 N

Remarks Bolt capacity satisfied

DESIGN OF STIFFNER PLATE

Fy 325 Ts 25 mm

Gusset outstand

Outstand length 200 mm

D/Ts 8 < 11.93

Average height of the stiffner plate should be less than 298.20 mm Smaller height 250 mm

Higher height 325 mm

So average height 287.5 mm < 298.20 mm OK

Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) N/mm2

mm2 mm2

The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte

(15)

The stiffner is semi compact section

distace between flange to edge of base plate 283.5 mm

distance between stiffner plate 169 mm

The shear on the stiffner plate -128855 N -128.85 KN

Shear capacity 1385969 N 1386.0 kN OK

0.6*Vd 831.58 > -128.85 KN

So the moment capacity will not get reduced by the effect of shear. Bending moment -18583374 Nmm -18.58 KNm

Bending capacity 130030777 Nmm 130.03 KNm OK

Hence the size of the stiffenr plate is satisfactory.

Weld connecting column-gusset-base plate

Load on weld 2037.50 KN

Assuming an 6 mm weld Weld size 10 mm Length of the weld 4639 mm

Load per mm 0.44 kN/mm

Weld capacity 1519.59 1.52 kN/mm OK

Thickness of the base plate Three sides fixed

Thickness of the base plate 30 mm

for stiffner plate connected to flange

Plate dimension (three edge fixed)a 169 b 283.5 cofficient from roarks b beta 3 0.224

From Roark's chart (Table 11.4) str -56.73 a/b 0.596

Strength of the base plate 354.55 OK

for stiffner plate connected to web

Plate dimension (three edge fixed)a 169 b 283.5 cofficient from roarks b beta 3 0.22448325 a/b 0.60 From Roark's chart (TablStress -56.7328

Strength of the base plate 354.55 OK

Shear capacity of Bolt 218386.2 N 218.39 KN

when the bolts will be in compression, they will be eefective in shear Total capacity 873.54 KN > 44.882 OK Bolt subjected to cobined shear and tension

Vsb Factored shear force acting on the 5.61 kN Vdb Design shear capacity 218.39 kN Tb Factored tensile force acting on th 310.92 kN Tdb Design tension capacity 337.10 kN

So, Interaction ratio 0.85 < 1OK

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV B

Design of UCB #REF!

N/mm2 N/mm2

N/mm2 N/mm2

(16)

3.4 Design of Base Plate 3.4.1 Design of Base Plate C1

CHECK FOR SIZE OF BASE PLATE C1

Node No. 990 Load Case 128

Axial Load P 1491.1

Factored Moment about X-axis, Mpx -2.4

Factored Moment about Z-axis, Mpz 1196.3

Horizontal Force along X- axis , Fx 260.5

Horizontal Force along Z- axis , Fz 0.8

900 1400

Depth of column along X-axis , Dx 800

Depth of column along Z-axis , Dz 500

100 470 295 25 15.03

No Increase in permissible stress in LSD 1

7.49 -5.12

Remarks Base Plate Size is O.K.

Portion Considered for

plate design

Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb

Distance betn. edge of base pl.& cl. of bolt, ed Ultimate stress of bolt in tension stf

Yield stress of bolt fyb

Characteristic compressive strength of concrete,fck Permissible stress in conc. in bearing, scc

Max Bearing Pressure,

s

max =P/A+6xMx/(Lbp2 x B

bp )+6xMz/(Lbp x Bbp2) Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x B

bp )-6xMz/(Lbp x Bbp2) Z (+) M z (-) Mx ( -)X (+)

(17)

DESIGN OF BOLT

Calculation of bolt along Z- axis

Node No. 990 Load Case 128

Axial force, P 1491.1

Moment about X-axis, Mx -2.4

Moment about Z-axis, Mz 1196.3

Horizontal Force along X- axis , Fx 260.5

Horizontal Force along Z- axis , Fz 0.8

5.24 -2.88 903.45 398.86 998.86 606.47

Remarks bolt required

Dia of bolt 40

Gross area provided 1257

Net area provided 1006

Tensile capacity of each bolt based on tensile strength 337105 Tensile capacity of each bolt based on concrete break out failure 4059698

So, Effective Tensile capacity 337105

No. of bolt per side 2.00

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV

Design of UCB #REF!

Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) Distance Y1 = smax x Bpb/ (smax + smin)

Distance betn. cl. of base pl. & cg. of comp. Force, Y2 = B / 2 - Y1 / 3

Lever arm, Y3 = Bpb - ed - Y1 / 3

Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y2) / Y3 T

Mz

Bpb Y1 t C con

P

100 mm Y1/3 A B

(18)

LENGTH OF BOLT

Length of bolt provided 1400

DESIGN OF STIFFNER PLATE

Fy 325 Ts 25 mm

Gusset outstand

Outstand length 200 mm

D/Ts 8 < 11.93

Average height of the stiffner plate should be less than 298.20 mm Smaller height 250 mm

Higher height 325 mm

So average height 287.5 mm < 298.20 mm The stiffner is semi compact section

distace between flange to edge of base plate 300.5 mm

distance between stiffner plate 188 mm

The shear on the stiffner plate 346685 N 346.69 KN

Shear capacity 1385969 N 1386.0 kN

0.6*Vd 831.58 > 346.69 KN

So the moment capacity will not get reduced by the effect of shear.

Bending moment 55918587 Nmm 55.92 KNm

Bending capacity 130030777 Nmm 130.03 KNm

Hence the size of the stiffenr plate is satisfactory.

Weld connecting column-gusset-base plate

Load on weld 3138.22 KN

Assuming an 6 mm weld Weld size 10 mm Length of the weld 5429 mm

Load per mm 0.58 kN/mm

Weld capacity 1519.59 1.52 kN/mm OK

Thickness of the base plate Three sides fixed

Thickness of the base plate 30 mm

for stiffner plate connected to flange

Plate dimension (three edge fixed)a 188 b 300.5 cofficient from roarks b beta 3 0.20560067

From Roark's chart (Table 11.4) str154.5086 a/b 0.62562396

Strength of the base plate 354.55 OK

The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte

N/mm2

N/mm2 N/mm2

(19)

for stiffner plate connected to web

Plate dimension (three edge fixed)a 169 b 175 cofficient from roarks b beta 3 0.317 a/b 0.97 From Roark's chart (TablStress 80.75676

Strength of the base plate 354.55 OK

Shear capacity of Bolt 218386.2 N 218.39 KN

when the bolts will be in compression, they will be eefective in shear Total capacity 436.77 KN > 260.55 OK Bolt subjected to cobined shear and tension

Vsb Factored shear force acting on the 0.10 kN Vdb Design shear capacity 218.39 kN Tb Factored tensile force acting on th 151.62 kN Tdb Design tension capacity 337.10 kN

So, Interaction ratio 0.20 < 1

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV

Design of UCB #REF!

N/mm2 N/mm2

(20)

CHECK FOR SIZE OF BASE PLATE C1 128 kN kNm kNm kN kN mm mm mm mm mm

Base Plate Size is O.K.

N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2

(21)

DESIGN OF BOLT 128 kN kNm kNm kN kN mm mm mm kN mm N N N nos B N/mm2 N/mm2 mm2 mm2

(22)

LENGTH OF BOLT

mm DESIGN OF STIFFNER PLATE

OK

OK

OK

Weld connecting column-gusset-base plate

(23)

OK

(24)

3.4 Design of Base Plate 3.4.1 Design of Base Plate C1

CHECK FOR SIZE OF BASE PLATE C1

Node No. 990 Load Case 129

Axial Load P 1150.0 kN

Factored Moment about X-axis, Mpx 380.0 kNm

Factored Moment about Z-axis, Mpz 15.0 kNm

Horizontal Force along X- axis , Fx 15.0 kN

Horizontal Force along Z- axis , Fz -85.0 kN

900 mm 1400 mm

Depth of column along X-axis , Dx 800 mm

Depth of column along Z-axis , Dz 500 mm

100 mm 470 295 25 15.03

No Increase in permissible stress in LSD 1

2.28 -0.46

Remarks Base Plate Size is O.K.

Portion Considered for

plate design

Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb

Distance betn. edge of base pl.& cl. of bolt, ed

Ultimate stress of bolt in tension stf N/mm2

Yield stress of bolt fyb N/mm2

Characteristic compressive strength of concrete,fck N/mm2 Permissible stress in conc. in bearing, scc N/mm2

Max Bearing Pressure,

s

max =P/A+6xMx/(Lbp2 x B

bp )+6xMz/(Lbp x Bbp2) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x B

bp )-6xMz/(Lbp x Bbp2) N/mm2 Z (+) M z (-) Mx ( -)X (+)

(25)

DESIGN OF BOLT

Calculation of bolt along Z- axis

Node No. 990 Load Case 128

Axial force, P 1150.0 kN

Moment about X-axis, Mx 380.0 kNm

Moment about Z-axis, Mz 15.0 kNm

Horizontal Force along X- axis , Fx 15.0 kN

Horizontal Force along Z- axis , Fz -85.0 kN

2.21 -0.39 765.00 mm 195 mm 545 mm 283.29 kN

Remarks bolt required

Dia of bolt 40mm

Gross area provided 1257

Net area provided 1006

Tensile capacity of each bolt based on tensile strength 337105 N Tensile capacity of each bolt based on concrete break out failure 4059698 N

So, Effective Tensile capacity 337105 N

No. of bolt per side 1.00nos

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV B

Design of UCB #REF!

Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) N/mm2 Distance Y1 = smax x Bpb/ (smax + smin)

Distance betn. cl. of base pl. & cg. of comp. Force, Y2 = B / 2 - Y1 / 3

Lever arm, Y3 = Bpb - ed - Y1 / 3

Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y2) / Y3 mm2 mm2 T

Mx

Bpb Y1 t C con

P

100 mm Y1/3 A B

(26)

LENGTH OF BOLT

Length of bolt provided 1400 mm

DESIGN OF STIFFNER PLATE

Fy 325 Ts 25 mm

Gusset outstand

Outstand length 200 mm

D/Ts 8 < 11.93

Average height of the stiffner plate should be less than 298.20 mm Smaller height 250 mm

Higher height 325 mm

So average height 287.5 mm < 298.20 mm OK

The stiffner is semi compact section

distace between web side stiffner to edge of base plate 175 mm

distance between stiffner plate 169 mm

The shear on the stiffner plate 59552.55 N 59.55 KN

Shear capacity 1385969 N 1386.0 kN OK

0.6*Vd 831.58 > 59.55 KN

So the moment capacity will not get reduced by the effect of shear.

Bending moment 5440636 Nmm 5.44 KNm

Bending capacity 130030777 Nmm 130.03 KNm OK

Hence the size of the stiffenr plate is satisfactory.

Weld connecting column-gusset-base plate

Load on weld 1335.00 KN

Assuming an 6 mm weld Weld size 10 mm Length of the weld 4638 mm

Load per mm 0.29 kN/mm

Weld capacity 1519.59 1.52 kN/mm OK

Thickness of the base plate Three sides fixed

Thickness of the base plate 30 mm

for stiffner plate connected to webstiffner

Plate dimension (three edge fixed)a 169 b 175 cofficient from roarks b beta 3 0.31685714

From Roark's chart (Table 11.4) str24.58283 a/b 0.96571429

Strength of the base plate 354.55 OK

The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte

N/mm2

N/mm2 N/mm2

(27)

for stiffner plate connected to flange

Plate dimension (three edge fixed)a 169 b 175 cofficient from roarks b beta 3 0.317 a/b 0.97 From Roark's chart (TablStress 24.58283

Strength of the base plate 354.55 OK

Shear capacity of Bolt 218386.2 N 218.39 KN

when the bolts will be in compression, they will be eefective in shear

Total capacity 218.39 KN > 15 OK

Bolt subjected to cobined shear and tension

Vsb Factored shear force acting on the 10.63 kN Vdb Design shear capacity 218.39 kN Tb Factored tensile force acting on th 70.82 kN Tdb Design tension capacity 337.10 kN

So, Interaction ratio 0.05 < 1OK

2 X 660MW LANCO VIDARBHA TPP

LITL-008-CVE-104-R-0101 Sheet REV B

Design of UCB #REF!

N/mm2 N/mm2

(28)

Sheet

REV A

Design of Anchor Bolt PART1 1

Design of Anchor Bolt: A

a Calculation of Maximum Anchor Bolt Tension &

Identification of Governing Load Case:

B Anchor Bolt (AB) Dia. d = 25mm

No. of Anchor Bolt/side N = 3Nos.

Size of Column: l = 600mm

b = 210mm

Length of Base Plate L = 900mm

Width of Base Plate B = 500mm L

C/C of Anchor Bolt A = 750mm

= 25Mpa

11.25

103.33kN

L/C

Maximum Effective Shear for Anchor

Bolt/ Shear Key Design kN

L/C

Governing Load Case for Base Plate Design : Load Case On compression side:

On Bolt Tension Side: Table 1: Node L/C FX (kN) FZ (kN) 1001 1 -35.59 -165.23 0.58 2.48 0.00 28.64 0.00 2 -6.02 -130.88 -37.21 -175.10 0.00 99.63 0.00 3 11.80 248.85 2.19 5.11 858.92 0.00 2.65 4 4.75 118.24 0.66 1.52 874.31 0.00 2.60 5 0.32 6.03 0.02 0.05 883.41 0.00 2.58 6 0.04 0.87 0.52 1.22 0.33 0.34 5.06 7 -0.01 -0.18 0.10 0.23 0.00 0.13 0.00 8 -0.03 -0.51 0.22 -0.37 0.00 0.25 0.00 9 -32.53 -93.66 0.14 0.56 0.00 15.86 0.00 10 -32.52 -93.64 0.14 0.56 0.00 15.86 0.00 11 32.51 93.57 -0.15 -0.58 900.00 0.00 2.53 Grade of concrete: fck

Max. bearing stress concrete pmax N/mm2 Maximum Anchor Bolt Tension Tmax

Fmax Vertical Load FY (kN) Moment M (kNm) Bearing Contact Length (Y1 in mm) Anchor Bolt Tension T (kN) Moment at column face due to bearing compressio n (kNm) Effective Shear (Fi) (kN)

Rectangular bearing stress distribution is considered in this analysis

(29)

Sheet

REV A

Design of Anchor Bolt PART1 1

Rectangular bearing stress distribution is considered in this analysis 16 0.99 20.43 6.16 28.92 7.92 8.04 5.04 101 17.70 373.28 3.29 7.67 858.93 0.00 2.65 102 25.34 560.59 4.86 11.30 859.67 0.00 2.64 103 25.29 559.49 4.42 10.26 863.32 0.00 2.63 104 25.27 559.14 4.54 9.63 865.56 0.00 2.63 105 0.76 392.45 4.08 9.64 850.90 0.00 2.67 106 0.77 392.47 4.08 9.64 850.89 0.00 2.67 107 39.79 504.79 3.91 8.95 864.52 0.00 2.63 108 39.79 504.81 3.91 8.96 864.51 0.00 2.63 109 19.68 435.12 -1.64 -12.42 900.00 0.00 2.53 110 19.68 435.14 -1.64 -12.42 900.00 0.00 2.53 111 20.87 460.89 7.70 26.65 784.36 0.00 2.86 112 20.87 460.91 7.70 26.65 784.36 0.00 2.86 113 0.71 391.35 3.64 8.59 856.09 0.00 2.65 114 0.71 391.37 3.64 8.60 856.07 0.00 2.65 115 39.74 503.69 3.46 7.91 868.58 0.00 2.62 116 39.74 503.71 3.46 7.92 868.57 0.00 2.62 117 19.62 434.02 -2.09 -13.46 900.00 0.00 2.53 118 19.63 434.03 -2.08 -13.46 900.00 0.00 2.53 119 20.82 459.79 7.25 25.61 788.62 0.00 2.84 120 20.82 459.81 7.25 25.61 788.61 0.00 2.84 121 0.69 391.00 3.76 7.96 859.28 0.00 2.65 122 0.69 391.02 3.76 7.96 859.28 0.00 2.65 123 39.71 503.34 3.59 7.28 871.08 0.00 2.61 124 39.72 503.36 3.59 7.28 871.07 0.00 2.61 125 19.60 433.67 -1.96 -14.10 900.00 0.00 2.53 126 19.61 433.69 -1.96 -14.09 900.00 0.00 2.53 127 20.80 459.44 7.37 24.97 791.29 0.00 2.84 128 20.80 459.46 7.38 24.98 791.28 0.00 2.84 129 -1.45 342.28 4.32 10.73 837.31 0.00 2.71 130 41.25 540.56 3.63 7.75 871.33 0.00 2.61 131 16.29 362.89 -18.35 -95.82 51.58 -24.24 4.92 132 23.52 519.95 26.30 114.30 69.58 -42.85 4.87 133 -1.50 341.18 3.88 9.69 843.21 0.00 2.69 134 41.20 539.46 3.18 6.71 875.13 0.00 2.60 135 16.24 361.79 -18.79 -96.86 51.73 -23.60 4.92 136 23.46 518.85 25.85 113.26 69.24 -43.13 4.87 137 -1.52 340.83 4.00 9.05 846.87 0.00 2.68 138 41.18 539.11 3.31 6.07 877.47 0.00 2.59 139 16.21 361.44 -18.67 -97.49 51.84 -23.27 4.92 140 23.44 518.50 25.98 112.62 69.06 -43.35 4.87 141 -18.77 335.81 3.89 9.34 844.40 0.00 2.69 142 -18.77 335.83 3.90 9.34 844.38 0.00 2.69 143 59.27 560.48 3.54 7.97 871.55 0.00 2.61

(30)

Sheet

REV A

Design of Anchor Bolt PART1 1

Rectangular bearing stress distribution is considered in this analysis 144 59.28 560.51 3.55 7.98 871.53 0.00 2.61 145 19.05 421.14 -7.55 -34.77 900.00 0.00 2.53 146 19.06 421.17 -7.54 -34.77 900.00 0.00 2.53 147 21.44 472.69 11.12 43.36 716.53 0.00 3.05 148 21.45 472.71 11.12 43.37 716.52 0.00 3.05 149 -18.80 335.25 3.67 8.81 847.45 0.00 2.68 150 -18.80 335.28 3.67 8.82 847.42 0.00 2.68 151 59.25 559.93 3.32 7.45 873.40 0.00 2.61 152 59.25 559.95 3.32 7.45 873.38 0.00 2.61 153 19.03 420.58 -7.77 -35.30 900.00 0.00 2.53 154 19.03 420.61 -7.77 -35.29 900.00 0.00 2.53 155 21.42 472.13 10.89 42.84 718.55 0.00 3.04 156 21.42 472.16 10.90 42.84 718.53 0.00 3.04 157 -18.81 335.07 3.73 8.49 849.33 0.00 2.67 158 -18.81 335.10 3.73 8.50 849.30 0.00 2.67 159 59.24 559.75 3.38 7.13 874.53 0.00 2.60 160 59.24 559.78 3.39 7.13 874.51 0.00 2.60 161 19.01 420.41 -7.71 -35.62 900.00 0.00 2.53 162 19.02 420.44 -7.71 -35.61 900.00 0.00 2.53 163 21.40 471.95 10.96 42.52 719.83 0.00 3.04 164 21.41 471.98 10.96 42.52 719.82 0.00 3.04 165 -22.82 242.69 4.40 11.58 804.54 0.00 2.80 166 62.59 639.25 3.01 5.62 882.41 0.00 2.58 167 12.65 283.91 -40.94 -201.51 69.27 35.25 4.87 168 27.11 598.03 48.35 218.72 101.73 -8.60 4.78 169 -22.85 242.13 4.17 11.06 808.66 0.00 2.79 170 62.56 638.69 2.79 5.10 884.04 0.00 2.58 171 12.63 283.36 -41.17 -202.04 69.35 35.58 4.87 172 27.08 597.47 48.12 218.19 101.55 -8.75 4.78 173 -22.86 241.96 4.23 10.74 811.24 0.00 2.78 174 62.55 638.52 2.85 4.78 885.03 0.00 2.57 175 12.62 283.18 -41.11 -202.36 69.41 35.75 4.87 176 27.07 597.30 48.19 217.87 101.45 -8.87 4.78 177 -31.09 232.78 3.50 8.51 826.92 0.00 2.74 178 -31.08 232.82 3.50 8.51 826.88 0.00 2.74 179 66.47 513.63 3.06 6.80 873.51 0.00 2.61 180 66.48 513.67 3.07 6.81 873.48 0.00 2.61 181 16.19 339.45 -10.80 -46.63 900.00 0.00 2.53 182 16.20 339.49 -10.80 -46.62 900.00 0.00 2.53 183 19.18 403.88 12.53 51.04 647.26 0.00 3.24

(31)

Sheet

REV A

Design of Anchor Bolt PART1 1

Rectangular bearing stress distribution is considered in this analysis 188 26.74 569.60 59.10 270.31 111.86 19.87 4.75 189 -38.17 83.47 2.18 5.44 769.68 0.00 2.90 190 -38.16 83.51 2.19 5.45 769.57 0.00 2.90 191 59.39 364.32 1.74 3.74 879.49 0.00 2.59 192 59.40 364.35 1.75 3.74 879.45 0.00 2.59 193 9.11 190.14 -12.12 -49.70 26.50 -13.69 4.99 194 9.12 190.18 -12.11 -49.69 26.50 -13.70 4.99 195 12.10 254.57 11.21 47.97 31.51 -25.77 4.97 196 12.11 254.61 11.22 47.98 31.52 -25.78 4.97 197 -42.76 -23.88 2.84 8.33 0.00 7.68 0.00 198 64.00 471.82 1.11 0.88 896.29 0.00 2.54 199 1.59 27.64 -53.83 -258.04 60.02 103.33 4.89 200 19.66 420.29 57.78 267.24 97.29 42.32 4.79

(32)

Sheet

REV A

Design of Anchor Bolt PART1 1

Rectangular bearing stress distribution is considered in this analysis

(33)

Sheet REV A

Design of Anchor Bolt PART1 1

Rectangular bearing stress distribution is considered in this analysis

References

Related documents

Futrus reserves the right to make changes without notice in design, specifications and models.. duPont™ and Corian ® are registered trademarks of duPont and are used under license

When the independent variable isn’t time, or the function doesn’t tell us about position, the units associated with the derivative (and so what it means to us) can be very

· A drug manufacturer in the North may export its good to a price-regulated South · We discuss the impact of the international exhaustion of IPRs (parallel trade) · When the

In the microscopic study of both kidneys, isolated focuses of lymphoplasmocyte intersti­ tial infiltrate were detected at a cortical zone; the glomeruli showed marked

A computational ankle model with three rotational DOFs and 19 force elements (FEs) was constructed for use in robot-assisted therapy. These 19 FEs consist of 12 muscles and

Program to perform various operations on Heap using Dynamic memory management. Delete an element from

[r]

A multitude of research studies has dealt with the issue of calibrating the often indirect field-based measurements against lab analyses to produce accurate values of a variety of