• No results found

EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

N/A
N/A
Protected

Academic year: 2021

Share "EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

European Patent Office Office européen des brevets

(19)

(11)

EP 0 678 590 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45)

Date of publication and mention of the grant of the patent:

06.09.2000 Bulletin 2000/36

(21)

Application number: 94302858.9

(22)

Date of filing: 21.04.1994

(51)

Int. Cl.7:

C23C 14/16, C23C 30/00,

F01D 5/28, F16D 1/06

(84)

Designated Contracting States:

DE FR GB

(43)

Date of publication of application:

25.10.1995 Bulletin 1995/43

(73)

Proprietor:

UNITED TECHNOLOGIES CORPORATION Hartford, CT 06101 (US)

(72)

Inventors:

• Beers, Russell A.

Palm Beach Gardens, Florida 33418 (US) • Machinchick, Michael F.

Royal Palm Beach, Florida 33411 (US)

• Noetzel, Allan A.

Palm Beach Gardens, Florida 33418 (US)

(74)

Representative:

Tomlinson, Kerry John Frank B. Dehn & Co., European Patent Attorneys, 179 Queen Victoria Street London EC4V 4EL (GB)

(56)

References cited:

US-A- 4 215 181 US-A- 4 409 295 US-A- 4 600 479 US-A- 5 292 596 • WEAR, vol.105, 1985, LAUSANNE/CH pages 283

- 301 BILL 'Selected fretting-wear-resistant coatings for Ti-6%Al-4%V alloy'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give

(54) Anti-fretting coating

Beschichtung zum Schützen vor Reibkorrosion

(2)

Description

BACKGROUND OF THE INVENTION Field of the invention

[0001] This invention relates to a method for increasing the high temperature fretting wear resistance of surfaces, particularly of many nickel, cobalt, and tita-nium alloys.

Description of the Prior Art

[0002] Fretting wear occurs on the mating surfaces of two parts in contact which are designed to be static, but, through transmitted forces such as vibration, oscil-late relative to each other with a high frequency, low amplitude motion. Since each surface contains many microscopic asperities in contact, the fretting motion tends to cause local adhesion at these junctions, which may fracture, producing material transfer, wear debris, or both. If the metals in contact are similar, or their con-stituent elements have good mutual solubilities, the majority of the fretting wear will be adhesive in nature. Elevated temperature will greatly accelerate the proc-ess, as may large loads and high frequencies. If the mating surfaces become extremely abraded and gnarled, stress concentrations will result in wear scar-ring, and a reduction in fatigue strength will result (known specifically as fretting fatigue), causing failure of the part(s). Specific examples of materials subject to fretting wear include turbofan airfoil bladeroots, friction dampers, bearings on shafts with loose fits, and drive-coupling components.

[0003] Prior art efforts to overcome the onset of fretting have included providing anti-fretting coatings on the surfaces of the materials in contact. These coatings behave as soft metallic films, keeping the substrate sur-faces from coming in contact and dissipating vibrational energy by intracoating shear mechanisms. Such prior art anti-fretting coatings for nickel, cobalt, and titanium alloys have been based on Cu-Ni or Cu-Ni-In composi-tions. Their success is well documented. However, at temperatures above about 1000°F (538°C), accelerated oxidation will rapidly deteriorate the coatings, allowing the substrate surfaces to come in contact and fret.

[0004] In addition, conventional application meth-ods rely primarily on thermally spraying the constituents onto the desired part. This has further disadvantages due to the line-of-sight nature of thermal spraying, and the detrimental effects this type of operation has (e.g. warping) on thin-gauge materials.

SUMMARY OF THE INVENTION

[0005] In accordance with the method of the present invention, force-transmitting and force-receiving bearing surfaces of nickel, cobalt, and titanium alloys

may be protected from fretting wear at temperatures up to 1200°F (649°C) or higher by coating either one or both of the surfaces with a coating of an alloy of copper as defined in claim 1. Preferably, the copper alloy com-prises about 92 weight percent copper, and about 8 weight percent aluminium. The metallic structure and compressor airfoil root according to claims 11 and 17, respectively, are further embodiments of the invention. Additions of other elements, such as up to about 5 weight percent iron, or nickel, may provide successful results at temperatures up to about 1000°F (538°C), but generally not at the higher temperatures achieved using the above-identified alloys, as these additional elements usually degrade high temperature oxidation resistance.

[0006] The thickness of the coating may be within the range of from 0.1 mils (2.5 micrometres) to about 4.0 mils (100 micrometres), and preferably within the range of from about 0.75 mils (19 micrometres) to about 1.5 mils (38 micrometres).

[0007] The coating may be applied by typical physi-cal vapour deposition techniques. Cathodic arc deposi-tion is the preferred method, although other forms of ion vapour deposition are suitable.

BRIEF DESCRIPTION OF THE DRAWING

[0008]

Figure 1 shows comparative results of fretting tests conducted on an uncoated nickel substrate, the same substrate having a conventional anti-fretting coating, and the same substrate having the anti-fretting coating of this invention.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

[0009] It has been determined that coating a thin nickel or nickel alloy work-piece in accordance with the present invention yields a significant improvement in durability as opposed to uncoated work-pieces at tem-peratures up to at least 1200°F (649°C). The coating of the invention finds particular utility with such parts as compressor airfoil roots, but can be applied with benefi-cial effect to any nickel or nickel alloy surface where fret-ting wear is a problem, such as blade and vane airfoil damping systems. The anti-fretting coating is also ben-eficial for cobalt and titanium alloy surfaces.

[0010] Since the coating, in accordance with the invention, is beneficial at temperatures up to approxi-mately 1250°F (677°C), it has been found to provide advantages over conventional methods of minimizing fretting wear, which include the use of dry film lubricants and coatings of alloys, such as copper-nickel, and cop-per-nickel-indium, or silver plating. Such conventional coatings are deficient in being effective only at tempera-tures up to about 1000°F (538°C), which temperature is below the temperature encountered in many applica-5 10 15 20 25 30 35 40 45 50 55

(3)

tions where fretting is a problem, such as in compo-nents of modern jet engines, e.g. compressor airfoil roots.

[0011] With the coating of the present invention, it has been found that the copper and aluminium con-tents, particularly in the presence of silicon, minimize oxidation of the contact surfaces in the high-tempera-ture environments encountered during use of the coated nickel-base alloy surfaces. This results in reten-tion of the protective properties of the coating at temper-atures exceeding 1000°F (538°C), at which temperatures conventional coatings are rendered inef-fective. By retaining oxidation resistant properties at these elevated temperatures, resistance against fretting is maintained in applications of nickel-based alloys for which conventional coating practices are not effective.

[0012] In accordance with the method of the inven-tion, test specimens of a nickel-base alloy correspond-ing to AMS 5544, of the composition, in weight percent, Ni-19.5 Cr-13.5 Co-4.2 Mo-3Ti-1.4 Al-0.08 Zr-0.05C, were coated by ion vapour deposition coating. Coating was performed in a conventional low pressure inert gas vapour deposition chamber to deposit a coating thick-ness of 32 µm (1.25 mils) of an alloy comprising, in weight percent, Cu-7.5 Al. Test specimens prepared as above were tested in spring form on an oscillating spring-on-plate wear test facility, using plate specimens of alloy AMS 5596 as the contacting surface. Test springs of uncoated AMS 5544 and AMS 5544 coated with a conventional anti-fretting coating of 62 percent copper, 38 percent nickel were prepared and tested simultaneously for comparative results. Two springs of each specimen of 0.015 inch (0.38mm) thickness and containing a 0.050 inch (1.3mm) contact radius were loaded against two uncoated plates of 0.125 inch (3.2mm) thickness, with a load of 15 pounds (6.8kg), producing a maximum contact pressure of 1100 psi (7584 kPa). The springs were held rigid in the vertical plane while the plates were oscillated by an electromag-netic shaker at a frequency of 300 Hz and amplitude of 0.005 inches (0.13mm). The entire fixture was sur-rounded by a resistant-element furnace producing a temperature of 1200°F (649°C). Thickness measure-ments were made on the spring and plate specimens at 2-hour intervals, and the test proceeded for either 10 hours or failure, whichever came first. As shown in Fig-ure 1, the coating of the present invention greatly reduced the fretting wear rate of the nickel substrate, as compared to the uncoated substrate and the conven-tional anti-fretting coating. Similar results are obtained when nickel, cobalt, and titanium substrates are tested using anti-fretting coatings of Cu-8Al, and Cu, 4-8 Al, 0-4 Si.

[0013] It is to be understood that the above descrip-tion of the invendescrip-tion is subject to considerable modifica-tion, change, and adaptation by those skilled in the art, and that such modifications, changes, and adaptations, are intended to be considered within the scope of the

present invention, which is set forth by the claims which follow.

Claims

1. A method for protecting an alloy surface selected

from the group consisting of nickel, cobalt, and tita-nium alloys from fretting wear, said method com-prising coating said surface with a coating consisting essentially of from 88 to 96 weight per-cent copper, from 4 to 8 weight perper-cent aluminium, and from 0 to 4 weight percent silicon.

2. The method of claim 1, wherein said coating is

deposited by physical vapor deposition.

3. The method of claim 1, wherein said coating is

applied by cathodic arc deposition.

4. The method of any preceding claim, wherein said

coating is characterized by anti-fretting capability at temperatures up to about 1250°F (677°C).

5. The method of any preceding claim wherein the

alloy surface is of a nickel-base alloy.

6. The method of any preceding claim, wherein said

coating consists essentially of about 92 weight per-cent copper and about 8 weight perper-cent aluminium.

7. The method of any one of claims 1 to 5, wherein

said coating comprises about 92.5 weight percent copper and about 7.5 weight percent aluminium.

8. The method of any preceding claim, wherein said

coating is from about 0.1 mils (2.5 micrometres) to about 4 mils (100 micrometres) thick.

9. The method of claim 8, wherein said coating is from

about 0.75 mils (19 micrometres) to about 1.5 mils (38 micrometres) thick.

10. The method of claim 9, wherein said coating is from

about 1.0 mils (25 micrometres) to about 1.5 mils (38 micrometres) thick.

11. A metallic structure comprising a substrate

selected from the group consisting of nickel, cobalt, and titanium alloys, and an anti-fretting coating on said substrate, said coating consisting essentially of from 88 to 96 weight percent copper, from 4 to 8 weight percent aluminium, and from 0 to 4 weight percent silicon.

12. A structure as claimed in claim 11, wherein said

substrate is a nickel-base alloy.

13. A structure as claimed in claim 11 or claim 12,

5 10 15 20 25 30 35 40 45 50 55

(4)

wherein said coating consists essentially of copper and aluminium.

14. A structure as claimed in claim 13, wherein said

coating consists essentially of about 92.5 weight percent copper and about 7.5 weight percent alu-minium.

15. A structure as claimed in any one of claims 11 to 14

wherein said coating is from about 1.0 mils (25 micrometres) to about 1.5 mils (38 micrometres) thick.

16. A method for reducing fretting wear between

con-tacting surfaces at a temperature of from about 1000°F (538°C) to about 1250°F (677°C), said method comprising applying to at least one of said contacting surfaces a coating consisting essentially of from about 88 to about 96 weight percent copper, from about 4 to about 8 percent aluminium, and from 0 to about 4 weight percent silicon.

17. A fretting-fatigue resistant compressor airfoil root

for use at a temperature of from about 1000°F (538°C) to about 1250°F (677°C), comprising an airfoil root of a metal selected from nickel, cobalt and titanium alloys, the surface thereof having a coating of an alloy consisting essentially of from 88 to 96 weight percent copper, from 4 to 8 weight per-cent aluminium, and from 0 to 4 weight perper-cent sili-con, said coating being from 0.1 mils (2.5 micrometres) to 4 mils (100 micrometres) thick.

Patentansprüche

1. Verfahren zum Schützen einer

Legierungsoberflä-che, die ausgewählt ist aus der Gruppe aus Nickel-, Kobalt- und TitanlegierungenNickel-, vor ReibverschleißNickel-, wobei bei dem Verfahren die Oberfläche mit einer Beschichtung versehen wird, die im wesentlichen aus 88 bis 96 Gew.-% Kupfer, 4 bis 8 Gew.-% Alu-minium und 0 bis 4 Gew.-% Silizium besteht,

2. Verfahren nach Anspruch 1,

wobei die Beschichtung durch physikalische Abscheidung aus der Dampfphase (PVD-Abschei-dung) aufgebracht wird.

3. Verfahren nach Anspruch 1,

wobei die Beschichtung durch Kathoden-Lichtbo-gen-Abscheidung aufgebracht wird.

4. Verfahren nach einem der vorausgehenden

Ansprüche,

wobei die Beschichtung gekennzeichnet ist durch Reibverschleißbeständigkeit bei Temperaturen von bis zu ca. 1250°F (677°C).

5. Verfahren nach einem der vorausgehenden

Ansprüche,

wobei es sich bei der Legierungsoberfläche um eine Legierung auf Nickelbasis handelt.

6. Verfahren nach einem der vorausgehenden

Ansprüche,

wobei die Beschichtung im wesentlichen aus etwa 92 Gew.-% Kupfer und etwa 8 Gew.-% Aluminium besteht.

7. Verfahren nach einem der Ansprüche 1 bis 5,

wobei die Beschichtung etwa 92,5 Gew.-% Kupfer und etwa 7,5 Gew.-% Aluminium enthält.

8. Verfahren nach einem der vorausgehenden

Ansprüche,

wobei die Beschichtung eine Dicke von etwa 0,1 mil (2,5µm) bis etwa 4 mil (100 µm) aufweist.

9. Verfahren nach Anspruch 8,

wobei die Beschichtung eine Dicke von etwa 0,75 mil (19µm) bis etwa 1,5 mil (38 µm) aufweist.

10. Verfahren nach Anspruch 9,

wobei die Beschichtung ein Dicke von etwa 1,0 mil (25µm) bis etwa 1,5 mil (38 µm) aufweist.

11. Metallgebilde mit einem Substrat, das ausgewählt

ist aus der Gruppe bestehend aus Nickel-, Kobalt-und Titanlegierungen, Kobalt-und mit einer auf dem Sub-strat vorhandenen Beschichtung zum Schutz vor Reibverschleiß, wobei die Beschichtung im wesent-lichen aus 88 bis 96 Gew.-% Kupfer, 4 bis 8 Gew.-% Aluminium und 0 bis 4 Gew.-% Silizium besteht.

12. Gebilde nach Anspruch 11,

wobei es sich bei dem Substrat um eine Legierung auf Nickelbasis handelt.

13. Gebilde nach Anspruch 11 oder Anspruch 12,

wobei die Beschichtung im wesentlichen aus Kup-fer und Aluminium besteht.

14. Gebilde nach Anspruch 13,

wobei die Beschichtung im wesentlichen aus etwa 92,5 Gew.-% Kupfer und etwa 7,5 Gew.-% Alumi-nium besteht.

15. Gebilde nach einem der Ansprüche 11 bis 14,

wobei die Beschichtung eine Dicke von etwa 1,0 mil (25µm) bis etwa 1,5 mil (38 µm) aufweist.

16. Verfahren zum Reduzieren von Reibverschleiß

zwi-schen miteinander in Berührung stehenden Ober-flächen bei einer Temperatur von etwa 1000°F (538°C) bis etwa 1250°F (677°C), wobei bei dem Verfahren auf wenigstens eine der miteinander in 5 10 15 20 25 30 35 40 45 50 55

(5)

Berührung stehenden Oberflächen eine Beschich-tung aufgebracht wird, die im wesentlichen aus 88 bis 96 Gew.-% Kupfer, 4 bis 8 Gew.-% Aluminium und 0 bis 4 Gew.-% Silizium besteht.

17. Gegen Reibermüdung beständiger

Kompressor-Strömungsprofilfuß zur Verwendung bei einer Tem-peratur von etwa 1000°F (538°C) bis etwa 1250°F (677°C); mit einem Strömungsprofilfuß aus einem Metall, das ausgewählt ist aus Nickel-, Kobalt- und Titanlegierungen, wobei seine Oberfläche eine Beschichtung aus einer Legierung aufweist, die im wesentlichen aus 88 bis 96 Gew.-% Kupfer, 4 bis 8 Gew.-% Aluminium und 0 bis 4 Gew.-% Silizium besteht, wobei die Beschichtung eine Dicke von 0,1 mil (2,5µm) bis etwa 4 mil (100 µm) aufweist.

Revendications

1. Procédé de protection contre l'usure par frottement

d'une surface d'alliage, choisi dans le groupe com-prenant les alliages de nickel, de cobalt et de titane, ledit procédé comprenant le gainage de ladite sur-face avec un revêtement constitué essentiellement de 88 à 96 % en poids de cuivre, de 4 à 8 % en poids d'aluminium et de 0 à 4 % en poids de sili-cium.

2. Procédé selon la revendication 1, dans lequel ledit

revêtement est appliqué par déposition physique en phase gazeuse.

3. Procédé selon la revendication 1, dans lequel ledit

revêtement est appliqué par déposition à l'arc cathodique.

4. Procédé selon l'une quelconque des revendications

précédentes, dans lequel ledit revêtement est caractérisé par un pouvoir anti-corrosion à des tem-pératures allant jusqu'à 677°C (1250°F).

5. Procédé selon l'une quelconque des revendications

précédentes, dans lequel la surface d'alliage est en alliage à base de nickel.

6. Procédé selon l'une quelconque des revendications

précédentes, dans lequel ledit revêtement est constitué essentiellement d'environ 92 % en poids de cuivre et d'environ 8 % en poids d'aluminium.

7. Procédé selon l'une quelconque des revendications

1 à 5, dans lequel ledit revêtement est constitué d'environ 92,5 % en poids de cuivre et d'environ 7,5 % en poids d'aluminium.

8. Procédé selon l'une quelconque des revendications

précédentes, dans lequel l'épaisseur dudit revête-ment est comprise entre environ 2,5µm (0,1 mils)

et environ 100µm (4 mils).

9. Procédé selon la revendication 8, dans lequel

l'épaisseur dudit revêtement est comprise entre environ 19 µm (0,75 mils) et environ 38 µm (1,5 mils).

10. Procédé selon la revendication 9, dans lequel

l'épaisseur dudit revêtement est comprise entre environ 25 µm (1,0 mils) et environ 38 µm (1,5 mils).

11. Structure métallique comprenant un substrat choisi

dans le groupe comprenant les alliages de nickel, de cobalt et de titane, et un revêtement anti-frotte-ment sur ledit substrat, ledit revêteanti-frotte-ment étant cons-titue essentiellement de 88 à 96 % en poids de cuivre, de 4 à 8 % en poids d'aluminium et de 0 à 4 % en poids de silicium.

12. Structure selon la revendication 11, dans laquelle

ledit substrat est un alliage à base de nickel.

13. Structure selon la revendication 11 ou la

revendica-tion 12, dans laquelle ledit revêtement est constitué essentiellement de cuivre et d'aluminium.

14. Structure selon la revendication 13, dans laquelle

ledit revêtement est constitué essentiellement d'environ 92,5 % en poids de cuivre et d'environ 7,5 % en poids d'aluminium.

15. Structure selon l'une quelconque des

revendica-tions 11 à 14, dans lequel l'épaisseur dudit revête-ment est comprise entre environ 25µm (1,0 mils) et environ 38µm (1,5 mils).

16. Procédé de réduction de l'usure par frottement

entre des surfaces en contact, à une température comprise entre environ 538°C (1000°F) et environ 677°C (1250°F), ledit procédé comprenant l'appli-cation sur au moins l'une desdites surfaces de con-tact d'un revêtement constitué essentiellement d'environ 88 à environ 96 % en poids de cuivre, d'environ 4 à environ 8 % en poids d'aluminium, et d'environ 0 à environ 4 % en poids de silicium.

17. Pied d'aube de compresseur résistant à la fatigue

par corrosion, destiné à être utilisé à une tempéra-ture comprise entre environ 538°C (1000°F) et environ 677°C (1250°F), comprenant un pied d'aube constitué d'un métal choisi parmi les allia-ges de nickel, de cobalt et de titane, sa surface étant revêtue d'un alliage constitué essentiellement de 88 à 96 % en poids de cuivre, de 4 à 8 % en poids d'aluminium et de 0 à 4 % en poids de sili-cium, l'épaisseur dudit revêtement étant comprise entre environ 2,5µm (0,1 mils) et environ 100 µm (4 5 10 15 20 25 30 35 40 45 50 55

(6)

mils). 5 10 15 20 25 30 35 40 45 50 55

(7)

References

Related documents

Similarly, an interpolation function software routine associated with the source video format and output video format (e.g., the native format of a display device) is executed to

[0042] It has now been found and is the subject of the present disclosure that a composition comprising a synergistic combination of copper, preferably in the form of copper

We build upon and further this view by defining embarrassment through an explicit review of (a) the transgressions that may trigger consumer embarrassment, (b) the social context of

[0025] Accordingly, in one aspect the discosure provides a method of treatment or prophylaxis of enteric disease caused by Gram negative bacteria, the method including the step

determining a scan pattern (1501,1601,1701) of the upper level square layer (1402) and the low- er level square layer (1401) according to an in- tra-prediction mode; and encoding

The new USDA estimates indicate that imports and consumption grew at average annual rates of nearly 15 percent during the period, while the previous estimates indicated that

Keywords: China, public finance, tax sharing, fiscal disparities, intergovernmental transfers, local government, service equalisation, land-use rights, property

For the classes of shares denominated in currencies other than the functional currency of the Company, the Net Asset Values are calculated by converting the US