• No results found

60 Binomial Theorem Part 1 of 2

N/A
N/A
Protected

Academic year: 2021

Share "60 Binomial Theorem Part 1 of 2"

Copied!
20
0
0

Loading.... (view fulltext now)

Full text

(1)

C O M P L E X N U M B E R S / P a g e 1 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

Index

1. Theory

2. Short Revision

3. Exercise (Ex. 1 to 8)

4. Assertion & Reason

5. Que. from Compt. Exams

6. 34 Yrs. Que. from IIT-JEE

7. 10 Yrs. Que. from AIEEE

Subject : Mathematics

Topic :

Binomial Theorem

Student’s Name :______________________

Class

:______________________

Roll No.

:______________________

STUDY PACKAGE

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA

iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA

iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA

iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA

iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA

jfpr% ekuo /keZ iz.ksrk

jfpr% ekuo /keZ iz.ksrk

jfpr% ekuo /keZ iz.ksrk

jfpr% ekuo /keZ iz.ksrk

ln~xq# Jh j.kNksM+nklth egkjkt

ln~xq# Jh j.kNksM+nklth egkjkt

ln~xq# Jh j.kNksM+nklth egkjkt

ln~xq# Jh j.kNksM+nklth egkjkt

R

ADDRESS: R-1, Opp. Raiway Track,

New Corner Glass Building, Zone-2, M.P. NAGAR, Bhopal

(2)

C O M P L E X N U M B E R S / P a g e 2 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

Binomial Theorem

1 .

1 .

1 .

1 .

Bino mial Expression :

Bino mial Expression :

Bino mial Expression :

Bino mial Expression :

Any algebraic expression which contains two dissimilar terms is called binomial expression. For example : x + y, x2y +

2 xy 1 , 3 – x, x2+ + 1 3 1/3 ) 1 x ( 1 + etc.

2 .

2 .

2 .

2 .

Statement of Binomial theorem :

Statement of Binomial theorem :

Statement of Binomial theorem :

Statement of Binomial theorem :

If a, b ∈ R and n ∈ N, then ; (a + b)n = nC 0 a nb0 + nC 1 a n–1 b1 + nC 2 a n–2 b2 +...+ nC r a n–r br +...+ nC n a 0 bn or (a + b)n =

= − n 0 r r r n r n b a C

Now, putting a = 1 and b = x in the binomial theorem -or (1 + x)n= nC 0 + nC 1 x + nC 2 x 2 +... + nC r x r +...+ nC n x n (1 + x)n=

= n 0 r r r n x C

Solved Example # 1: Expand the following binomials :

(i) (x – 3)5 (ii) 4 2 2 x 3 1        −−−− Solution. (i) (x – 3)5= 5C 0x 5 + 5C 1x 4 (– 3)1 + 5C 2 x 3 (– 3)2 + 5C 3 x 2 (–3)3 + 5C 4 x (– 3) 4 + 5C 5 (– 3) 5 = x5 – 15x4 + 90x3 – 270x2 + 405x – 243 (ii) 4 2 2 x 3 1        − = 4C 0 + 4C 1         − 2 x 3 2 + 4C 2 2 2 2 x 3         − + 4C 3 3 2 2 x 3         − + 4C 4 4 2 2 x 3         − = 1 – 6x2 + 2 27 x4 2 27 x6 + 16 81 x8

Solved Example # 2: Expand the binomial

20 2 y 3 3 x 2       ++++ up to four terms Solution. 20 2 y 3 3 x 2      + = 20C 0 20 3 x 2      + 20C 1 19 3 x 2            2 y 3 + 20C 2 18 3 x 2      2 2 y 3      + 20C 3 17 3 x 2      3 2 y 3      + .... = 20 3 x 2      + 20. 18 3 2      x19y + 190 . 16 3 2      x18 y2 + 1140 14 3 2      x17 y3 + ...

Self practice problems

1. Write the first three terms in the expansion of

6 3 y 2       − .

2. Expand the binomial

5 2 x 3 3 x         + . Ans. (1) 64 – 64y + 3 80 y2 (2) 243 x10 + 27 5 x7 + 3 10 x4 + 30x + 2 x 135 + 5 x 243 .

3 .

3 .

3 .

3 .

Properties of Binomial Theorem :

Properties of Binomial Theorem :

Properties of Binomial Theorem :

Properties of Binomial Theorem :

(i) The number of terms in the expansion is n + 1. (ii) The sum of the indices of x and y in each term is n. (iii) The binomial coefficients (nC

0,

nC

1 ...

nC

n) of the terms equidistant from the beginning and

the end are equal, i.e. nC

0 = nC n, nC 1 = nC n–1 etc. {∵ nC r = nC n–r}

Solved Example # 3: The number of dissimilar terms in the expansion of (1 – 3x + 3x2 – x3)20 is

(A) 21 (B) 31 (C) 41 (D) 61

Solution. (1 – 3x + 3x2 – x3)20 = [(1 – x)3]20 = (1 – x)60

Therefore number of dissimilar terms in the expansion of (1 – 3x + 3x2 – x3)20 is 61.

4 .

4 .

4 .

4 .

Some important terms in the expansion of (x + y)

Some important terms in the expansion of (x + y)

Some important terms in the expansion of (x + y)

Some important terms in the expansion of (x + y)

nnnn

:

:

:

:

(i) General term :

(x + y)n = nC 0 x n y0 + nC 1 x n–1 y1 + ...+ nC r x n–r yr + ...+ nC n x 0 yn

(r + 1)th term is called general term. Tr+1 = nC

r x

n–r yr

Solved Example # 4

Find (i) 28th term of (5x + 8y)30 (ii) 7th term of

9 x 2 5 5 x 4       −−−−

(3)

C O M P L E X N U M B E R S / P a g e 3 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

Solution. (i) T27 + 1 = 30C 27 (5x) 30– 27 (8y)27 = ! 27 ! 3 ! 30 (5x)3 . (8y)27 Ans. (ii) 7th term of 9 x 2 5 5 x 4      T6 + 1 = 9C 6 6 9 5 x 4 −      6 x 2 5      − = 39!6! ! 3 5 x 4      6 x 2 5      = 3 x 10500 Ans.

Solved Example # 5 : Find the number of rational terms in the expansion of (91/4 + 81/6)1000.

Solution. The general term in the expansion of

(

91/4+81/6

)

1000 is

Tr+1 = 1000C r r 1000 4 1 9 −         r 6 1 8        = 1000C r 2 r 1000 3 − 2 r 2 The above term will be rational if exponent of 3 and 2 are integres It means 2 r 1000− and 2 r must be integers

The possible set of values of r is {0, 2, 4, ..., 1000} Hence, number of rational terms is 501 Ans.

(ii) Middle term (s) :

(a) If n is even, there is only one middle term, which is n+22th term.

(b) If n is odd, there are two middle terms, which are n2+1th and n2+1+1th terms.

Solved Example # 6 : Find the middle term(s) in the expansion of

(i) 14 2 2 x 1        −−−− (ii) 9 3 6 a a 3        −−−− Solution. (i) 14 2 2 x 1        −

Here, n is even, therefore middle term is       + 2 2 14 th term. It means T8 is middle term

T8 = 14C 7 7 2 2 x         − = 16 1616 16 429 429 429 429 x14. Ans. (ii) 9 3 6 a a 3        −

Here, n is odd therefore, middle terms are 92+1th & 92+1+1th. It means T5 & T6 are middle terms

T5 = 9C 4 (3a) 9 – 4 4 3 6 a         − = 8888 189 189 189 189 a17 Ans. T6 = 9C 5 (3a) 9 – 5 5 3 6 a         − = 16 16 16 16 21 2121 21 a19. Ans.

(iii) Term containing specified powers of x in

n x b ax       ± β α

Solved Example # 7: Find the coefficient of x32 and x–17 in

15 3 4 x 1 x       −−−− .

Solution.: Let (r + 1)th term contains xm

Tr + 1 = 15C r (x 4)15 – r r 3 x 1       = 15C r x 60 – 7r (– 1)r (i) for x32 , 60 – 7r = 32 ⇒ 7r = 28 ⇒ r = 4. (T5) T5 = 15C 4 x 32 (– 1)4

Hence, coefficient of x32 is 1365Ans.

(4)

C O M P L E X N U M B E R S / P a g e 4 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

⇒ r = 11 (T12) T12= 15C 11 x –17 (– 1)11

Hence, coefficient of x–17 is – 1365 Ans.

(iv) Numerically greatest term in the expansion of (x + y)n, n ∈ N∈∈

Let Tr and Tr+1 be the rth and (r + 1)th terms respectively Tr = nC r–1 x n–(r–1) yr–1 Tr+1 = nC r x n–r yr Now, r 1 r T T+ = n r 1 r 1 r r n 1 r n r n y x y x C C − + − − − = r 1 r n− + . xy Consider r 1 r T T+ ≥ 1       − + r 1 r n x y ≥ 1 r 1 n+ – 1 ≥ y x r ≤ y x 1 1 n + + Case - ΙΙΙΙ When y x 1 1 n + +

is an integer (say m), then

(i) Tr+1 > Tr when r < m (r = 1, 2, 3 ...., m – 1) i.e. T2 > T1, T3 > T2, ..., Tm > Tm–1 (ii) Tr+1 = Tr when r = m i.e. Tm+1 = Tm (iii) Tr+1 < Tr when r > m (r = m + 1, m + 2, ...n ) i.e. Tm+2 < Tm+1 , Tm+3 < Tm+2 , ...Tn+1 < Tn Conclusion : When y x 1 1 n + +

is an integer, equal to m, then TTm and Tm+1 will be numerically greatest terms

(both terms are equal in magnitude)

Case - ΙΙΙΙΙΙΙΙ When y x 1 1 n + +

is not an integer (Let its integral part be m), then

(i) Tr+1 > Tr when r < y x 1 1 n + + (r = 1, 2, 3,..., m–1, m) i.e. T2 > T1 , T3 > T2, ..., Tm+1 > Tm (ii) Tr+1 < Tr when r > y x 1 1 n + + (r = m + 1, m + 2, ...n) i.e. Tm+2 < Tm+1 , Tm+3 < Tm+2 , ..., Tn +1 < Tn Conclusion : When y x 1 1 n + +

is not an integer and its integral part is m, then Tm+1 will be the numerically

greatest term.

Solved Example # 8 Find the numerically greatest term in the expansion of (3 – 5x)15 when x =

5 1 . Solution. Let rth and (r + 1)th be two consecutive terms in the expansion of (3 – 5x)15

Tr + 1 ≥ Tr 15C r 3 15 – r (| – 5x|)r ≥ 15C r – 1 3 15 – (r – 1) (|– 5x|)r – 1 ! r ! ) r 15 ( )! 15 − ( |– 5x | ≥ ! ) 1 r ( ! ) r 16 ( )! 15 . 3 − − ( 5 . 5 1 (16 – r) ≥ 3r 16 – r ≥ 3r 4r ≤ 16 r ≤ 4 Explanation: For r ≤ 4, Tr + 1 ≥ Tr ⇒ T2 > T1 T3 > T2 T4 > T3 T5 = T4 For r > 5, Tr + 1 < Tr T6 < T5 T7 < T6

(5)

C O M P L E X N U M B E R S / P a g e 5 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

and so on Hence, T4 and T5 are numerically greatest terms and both are equal.

Self practice problems :

3. Find the term independent of x in

9 2 x 3 x      

4. The sum of all rational terms in the expansion of (31/5 + 21/3)15 is

(A) 60 (B) 59 (C) 95 (D) 105

5. Find the coefficient of x–1 in (1 + 3x2 + x4)

8 x 1 1       +

6. Find the middle term(s) in the expansion of (1 + 3x + 3x2 + x3)2n

7. Find the numerically greatest term in the expansion of (7 – 5x)11 where x =

3 2 . Ans. (3) 28.37 (4) B (5) 232 (6) 6nC 3n . x 3n (7) T 4 = 9 440 × 78 × 53.

5 .

5 .

5 .

5 .

Multino mial Theo rem

Multino mial Theo rem

Multino mial Theo rem

Multino mial Theo rem

: As we know the Binomial Theorem –

(x + y)n =

= n 0 r r n C xn–r yr =

= − n 0 r (n r)!r! ! n xn–r yr putting n – r = r1 , r = r2 therefore, (x + y)n =

= +r n r1 2 r1! r2! ! n xr1.yr2

Total number of terms in the expansion of (x + y)n is equal to number of non-negative integral solution

of r1 + r2 = n i.e. n+2–1C

2–1 =

n+1C

1 = n + 1

In the same fashion we can write the multinomial theorem (x1 + x2 + x3 + ... xk)n =

= + + +r ... r n r1 2 k r1!r2!...rk! ! n k 2 1 r k r 2 r 1 .x ...x x

Here total number of terms in the expansion of (x1 + x2 + ... + xk)n is equal to number of

non-negative integral solution of r1 + r2 + ... + rk = n i.e. n+k–1C k–1

Solved Example # 9 Find the coeff. of a2 b3 c4 d in the expansion of (a – b – c + d)10

Solution. (a – b – c + d)10 =

= + + +r r r 10 r1 2 3 4 r1!r2!r3!r4! )! 10 ( 4 3 2 1 r r r r ) d ( ) c ( ) b ( ) a ( − −

we want to get a2 b3 c4 d this implies that r

1 = 2, r2 = 3, r3 = 4, r4 = 1 ∴ coeff. of a2 b3 c4 d is ! 1 ! 4 ! 3 ! 2 )! 10 ( (–1)3 (–1)4 = – 12600 Ans.

Solved Example # 10 In the expansion of

11 x 7 x 1       ++++

++++ find the term independent of x. Solution. 11 x 7 x 1       + + =

= + +r r 11 r1 2 3 r1!r2!r3! )! 11 ( 3 2 1 r r r x 7 ) x ( ) 1 (      

The exponent 11 is to be divided among the base variables 1, x and x 7

in such a way so that we get x0.

Therefore, possible set of values of (r1, r2, r3) are (11, 0, 0), (9, 1, 1), (7, 2, 2), (5, 3, 3), (3, 4, 4), (1, 5, 5)

Hence the required term is )! 11 ( )! 11 ( (70) + ! 1 ! 1 ! 9 )! 11 ( 71 + ! 2 ! 2 ! 7 )! 11 ( 72 + ! 3 ! 3 ! 5 )! 11 ( 73 + ! 4 ! 4 ! 3 )! 11 ( 74 + ! 5 ! 5 ! 1 )! 11 ( 75 = 1 + 9(11!2)!! . 12!1!! 71 + ! 4 ! 7 )! 11 ( . 24!2!! 72 + ! 6 ! 5 ! ) 11 ( . 36!3!! 73 + 3(11!8)!! . 48!4! ! 74 + ! 10 ! 1 ! ) 11 ( . 5(10!5)!! 75 = 1 + 11C 2 . 2C 1 . 7 1 + 11C 4 . 4C 2 . 7 2 + 11C 6 . 6C 3 . 7 3 + 11C 8 . 8C 4 . 7 4 + 11C 10 . 10C 5 . 7 5 = 1 +

= 5 1 r r 2 11C . 2rC r . 7 r Ans.

Self practice problems :

8. The number of terms in the expansion of (a + b + c + d + e + f)n is

(A) n+4C 4 (B) n+3C n (C) n+5C n (D) n + 1

9. Find the coefficient of x3 y4 z2 in the expansion of (2x – 3y + 4z)9

(6)

C O M P L E X N U M B E R S / P a g e 6 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

Ans. (8) C (9) 3!94!!2! (10) 23 34 42 – 91

6 .

6 .

6 .

6 .

Application of Binomial Theorem :

Application of Binomial Theorem :

Application of Binomial Theorem :

Application of Binomial Theorem :

(i) If ( A+B)n = ΙΙΙΙ + f where ΙΙΙΙ and n are positive integers, n being odd and 0 < f < 1 then (ΙΙΙΙ + f) f = kn where A – B2 = k > 0 and A – B < 1.

If n is an even integer, then (ΙΙΙΙ + f) (1 – f) = kn

Solved Example # 11

If n is positive integer, then prove that the integral part of (7 + 4 3 )n is an odd number..

Solution. Let (7 + 4 3 )n = Ι + f ...(i)

where Ι & f are its integral and fractional parts respectively. It means 0 < f < 1

Now, 0 < 7 – 4 3 < 1 0 < (7 – 4 3 )n < 1

Let (7 – 4 3 )n = f′ ...(ii)

⇒ 0 < f′ < 1 Adding (i) and (ii)

Ι + f + f′ = (7 + 4 3 )n + (7 – 4 3 )n = 2 [nC 0 7 n + nC 2 7 n – 2 (4 3 )2 + ...]

Ι + f + f′ = even integer(f + f′ must be an integer) 0 < f + f′ < 2 ⇒ f + f′ = 1

Ι + 1 = even integer therefore Ι is an odd integer.

Solved Example # 12

Show that the integer just above ( 3 + 1)2n is divisible by 2n + 1 for all n ∈ N.∈∈

Solution. Let ( 3 + 1)2n = (4 + 2 3 )n = 2n (2 + 3 )n = Ι + f ...(i)

where Ι and f are its integral & fractional parts respectively 0 < f < 1.

Now 0 < 3 – 1 < 1 0 < ( 3 – 1)2n < 1

Let ( 3 – 1)2n = (4 – 2 3 )n = 2n (2 – 3 )n = f′. ...(ii)

0 < f′ < 1 adding (i) and (ii)

Ι + f + f′ = ( 3 + 1)2n + ( 3 – 1)2n = 2n [(2 + 3 )n + (2 – 3 )n] = 2.2n [nC 0 2 n + nC 2 2 n – 2 ( 3 )2 + ...]

Ι + f + f′ =2n + 1 k (where k is a positive integer)

0 < f + f′ < 2 ⇒ f + f′ = 1 Ι + 1 = 2n + 1 k.

Ι + 1 is the integer just above ( 3 + 1)2n and which is divisible by 2n + 1.

(ii) Cheking divisibility

Solved Example # 13: Show that 9n + 7 is divisible by 8, where n is a positive integer.

Solution. 9n + 7 = (1 + 8)n + 7 = nC 0 + nC 1 . 8 + nC 2 . 8 2 + ... + nC n 8 n + 7. = 8. C1 + 82. C 2 + ... + Cn . 8 n + 8.

= 8λ where, λ is a positive integer, Hence, 9n + 7 is divisible by 8.

(iii) Finding remainder Solved Example # 14

What is the remainder when 599 is divided by 13.

Solution.: 599 = 5.598 = 5. (25)49 = 5 (26 – 1)49 = 5 [49C 0 (26) 4949C 1 (26) 48 + ... + 49C 48 (26) 149C 49 (26) 0] = 5 [49C 0 (26) 4949C 1 (26) 48 + ...+ 49C 48 (26) 1 – 1] = 5 [49C 0 (26) 4949C 1(26) 48 + ... + 49C 48 (26) 1 – 13] + 60

= 13 (k) + 52 + 8 (where k is a positive integer) = 13 (k + 4) + 8 Hence, remainder is 8. Ans.

(iv) Finding last digit, last two digits and last there digits of the given number. Solved Example # 15: Find the last two digits of the number (17)10.

Solution. (17)10 = (289)5 = (290 – 1)5 = 5C 0 (290) 55C 1 (290) 4 + ... + 5C 4 (290) 15C 5 (290) 0 = 5C 0 (290) 55C 1 . (290) 4 + ...5C 3 (290) 2 + 5 × 290 – 1

= A multiple of 1000 + 1449 Hence, last two digits are 49 Ans. Note : We can also conclude that last three digits are 449.

(v) Comparison between two numbers

Solved Example # 16 : Which number is larger (1.01)1000000 or 10,000 ?

Solution.: By Binomial Theorem (1.01)1000000 = (1 + 0.01)1000000

= 1 + 1000000C

1 (0.01) + other positive terms

= 1 + 1000000 × 0.01 + other positive terms

(7)

C O M P L E X N U M B E R S / P a g e 7 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

Self practice problems :

11. If n is positive integer, prove that the integral part of (5 5 + 11)2n + 1 is an even number..

12. If (7 + 4 3 )n = α + β, where α is a positive integer and β is a proper fraction then prove that

(1 – β) (α + β) = 1.

13. If n is a positive integer then show that 32n + 1 + 2n + 2 is divisible by 7.

14. What is the remainder when 7103 is divided by 25 .

15. Find the last digit, last two digits and last three digits of the number (81)25.

16. Which number is larger (1.2)4000 or 800

Ans. (14) 18 (15) 1, 01, 001 (16) (1.2)4000.

7.

7.

7.

7.

Pro perties of Binomial Coefficients :

Pro perties of Binomial Coefficients :

Pro perties of Binomial Coefficients :

Pro perties of Binomial Coefficients :

(1 + x)n = C 0 + C1x + C2x 2 + ... + C r x r + ... + C nx n ...(1)

(1) The sum of the binomial coefficients in the expansion of (1 + x)n is 2n

Putting x = 1 in (1) nC 0 + nC 1 + nC 2 + ...+ nC n = 2 n ...(2) or

= = n 0 r n r nC 2

(2) Again putting x = –1 in (1), we get

nC 0 – nC 1 + nC 2 – nC 3 + ... + (–1) nnC n = 0 ...(3) or

= = − n 0 r r n r C 0 ) 1 (

(3) The sum of the binomial coefficients at odd position is equal to the sum of the binomial coefficients at even position and each is equal to 2n–1.

from (2) and (3) nC 0 + nC 2 + nC 4 + ... = 2 n–1 nC 1 + nC 3 + nC 5 + ... = 2 n–1

(4) Sum of two consecutive binomial coefficients

nC r + nC r–1 = n+1C r L.H.S. = nC r + nC r–1 = (n r)!r! ! n − + (n r 1)!(r 1)! ! n − + − = (nr)!n!(r1)!       + − + 1 r n 1 r 1 = (nr)!n!(r1)! ) 1 r n ( r ) 1 n ( + − + = (n(nr++11)!)!r! = n+1C r = R.H.S.

(5) Ratio of two consecutive binomial coefficients

1 r n r n C C − = r 1 r n− + (6) nC r = r n n–1C r–1 = r(r 1) ) 1 n ( n − − n–2C r–2 = ... = r(r 1)(r 2)...2.1 )) 1 r ( n ( )... 2 n )( 1 n ( n − − − − − − Solved Example # 17 If (1 + x)n = C 0 + C1x + C2x 2 + ... + c nx

n, then show that

(i) C0 + 3C1 + 32C 2 + ... + 3 n C n = 4 n. (ii) C0 + 2C1 + 3. C2 + ... + (n + 1) Cn = 2n – 1 (n + 2). (iii) C0 2 C1 + 3 C2 4 C3 + ... + ( –1)n 1 n Cn ++++ = n 1 1 ++++ . Solution. (i) (1 + x)n = C 0 + C1 x + C2x 2 + ... + C nx n put x = 3 C0 + 3 . C1 + 32 . C 2 + ... + 3 n . C n= 4 n

(ii) ΙΙΙΙ Method : By Summation L.H.S. = nC 0 + 2. nC 1 + 3 . nC 2 + ... + (n + 1). nC n. =

= + n 0 r ) 1 r ( . nC r =

= n 0 r r nC . r +

= n 0 r r nC = n

= − − n 0 r 1 r 1 n C +

= n 0 r r nC = n . 2n – 1 + 2n = 2n – 1 (n + 2). RHS ΙΙ ΙΙ ΙΙ ΙΙ Method : By Differentiation (1 + x)n = C 0 + Cxx + C2x 2 + ... + C nx n

Multiplying both sides by x, x(1 + x)n = C 0x + C1x 2 + C 2x 3 + ... + C n x n + 1.

Differentiating both sides (1 + x)n + x n (1 + x)n – 1 = C 0 + 2. C1 + 3 . C2x 2 + ... + (n + 1)C nx n. putting x = 1, we get C0 + 2.C1 + 3 . C2 + ... + (n + 1) Cn = 2n + n . 2n – 1 C0 + 2.C1 + 3 . C2 + ... + (n + 1) Cn = 2n – 1 (n + 2) Proved

(iii) ΙΙΙΙ Method : By Summation L.H.S. = C0 – 2 C1 + 3 C2 – 4 C3 + ... + (– 1)n. 1 n Cn +

(8)

C O M P L E X N U M B E R S / P a g e 8 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

=

= − n 0 r r ) 1 ( . 1 r Cr n + = 1 n 1 +

= − n 0 r r ) 1 ( . n + 1C r + 1      = + + + + 1 r 1 n r n C C . 1 r 1 n = 1 n 1 + [n + 1C1 – n + 1C 2 + n + 1C 3 – ...+ (– 1) n . n + 1C n + 1] = 1 n 1 + [– n + 1C0 + n + 1C 1 – n + 1C 2 + ... + (– 1) n . n + 1C n + 1 + n + 1C 0] = 1 n 1 + = R.H.S.

{

−n+1C0+n+1C1−n+1C2+...+(−1)n n+1Cn+1=0

}

ΙΙ ΙΙ ΙΙ ΙΙ Method : By Integration (1 + x)n = C 0 + C1x + C2x 2 + ... + C n x n.

Integrating both sides, with in the limits – 1 to 0.

0 1 1 n 1 n ) x 1 ( − +         + + = 0 1 1 n n 3 2 2 1 0 1 n x C ... 3 x C 2 x C x C − +         + + + + + 1 n 1 + – 0 = 0 –      + − + + − + − + 1 n C ) 1 ( ... 3 C 2 C C0 1 2 n 1 n C0 – 2 C1 + 3 C2 – ... + (– 1)n 1 n Cn + = n 1 1 + Proved Solved Example # 18 If (1 + x)n = C 0 + C1x + C2x 2 + ...+ C nx

n, then prove that

(i) C02 + C 1 2 + C 2 2 + ... + C n 2 = 2nC n (ii) C0C2 + C1C3 + C2C4 + ... + Cn – 2 Cn = 2nC n – 2 or 2nC n + 2 (iii) 1. C02 + 3 . C 1 2 + 5. C 2 2 + ... + (2n + 1) . C n 2 . = 2n. 2n – 1C n + 2nC n. Solution. (i) (1 + x)n = C 0 + C1x + C2x 2 + ... + C n x n. ...(i) (x + 1)n = C 0x n + C 1x n – 1+ C 2x n – 2 + ... + C n x 0 ...(ii)

Multiplying (i) and (ii)

(C0 + C1x + C2x2 + ... + C nx n) (C 0x n + C 1x n – 1 + ... + C nx 0) = (1 + x)2n Comparing coefficient of xn, C02 + C 1 2 + C 2 2 + ... + C n 2 = 2nC n

(ii) From the product of (i) and (ii) comparing coefficients of xn – 2 or xn + 2 both sides,

C0C2 + C1C3 + C2C4 + ... + Cn – 2Cn = 2nC

n – 2or

2nC

n + 2.

(iii) ΙΙΙΙ Method : By Summation L.H.S. = 1. C02 + 3. C 1 2 + 5. C 2 2 + ... + (2n + 1) C n 2. =

= + n 0 r ) 1 r 2 ( nC r 2 =

= n 0 r r . 2 . (nC r) 2 +

= n 0 r 2 r nC ) ( = 2

= n 1 r n . . n – 1C r – 1 nC r + 2nC n (1 + x)n = nC 1 + nC 4 x + nC 2 x 2 + ...nC n x n ...(i) (x + 1)n – 1 = n – 1C 0 x n – 1 + n – 1C 1 x n – 2 + ...+n – 1C n – 1x 0 ...(ii)

Multiplying (i) and (ii) and comparing coeffcients of xn.

n – 1C 0 . nC 1 + n – 1C 1 . nC 2 + ... + n – 1C n – 1. nC n = 2n – 1C n

= − − n 0 r 1 r 1 n C . nC r = 2n – 1C n

Hence, required summation is

2n. 2n – 1C n + 2nC n = R.H.S. ΙΙ ΙΙ ΙΙ ΙΙ Method : By Differentiation (1 + x2)n = C 0 + C1x 2 + C 2x 4 + C 3x 6 + ...+ C n x 2n

Multiplying both sides by x x(1 + x2)n = C 0x + C1x 3 + C 2x 5 + ... + C nx 2n + 1.

Differentiating both sides

x . n (1 + x2)n – 1 . 2x + (1 + x2)n = C 0 + 3. C1x 2 + 5. C 2 x 4 + ... + (2n + 1) C n x 2n ...(i) (x2 + 1)n = C 0 x 2n + C 1 x 2n – 2 + C 2 x 2n – 4 + ... + C n ...(ii)

Multiplying (i) & (ii) (C0 + 3C1x2 + 5C 2x 4 + ... + (2n + 1) C n x 2n) (C 0 x 2n + C 1x 2n – 2 + ... + C n) = 2n x2 (1 + x2)2n – 1 + (1 + x2)2n comparing coefficient of x2n, C02 + 3C 1 2 + 5C 2 2 + ...+ (2n + 1) C n 2= 2n . 2n – 1C n – 1 + 2nC n. C02 + 3C 1 2 + 5C 2 2 + ...+ (2n + 1) C n 2= 2n . 2n–1C n + 2nC n. Proved Solved Example # 19

Find the summation of the following series – (i) mC m + m+1C m + m+2C m + ... + nC m (ii) nC 3 + 2 . n+1C 3 + 3. n+2C 3 + ... + n . 2n–1C 3

Solution. (i) Ι Ι Ι Ι Method : Using property, nC r + nC r–1 = n+1C r mC m + m+1C m + m+2C m + ... + nC m = m 1 m 1 m 1 m C + C + + + + m+2C m + ... + nC m {∵ mC m = m+1C m+1}

(9)

C O M P L E X N U M B E R S / P a g e 9 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

= m 2 m 1 m 2 m C + C + + + + ... + nC m = m+3C m+1 + ... + nC m = nC m+1 + nC m = n+1C m+1 Ans. ΙΙ ΙΙ ΙΙ ΙΙ Method mC m + m+1C m + m+2C m + ... + nC m

The above series can be obtained by writing the coefficient of xm in

(1 + x)m + (1 + x)m+1 + ... + (1 + x)n Let S = (1 + x)m + (1 + x)m+1 +... + (1 + x)n =

(

)

[

]

x 1 x 1 ) x 1 ( + m + n−m+1− =

(

)

(

)

x x 1 x 1+ n+1− + m xm : S (coefficient of xm in S) xm : x ) x 1 ( ) x 1 ( + n+1− + m

Hence, required summation of the series is n+1C

m+1 Ans. (ii) nC 3 + 2 . n+1C 3 + 3 . n+2C 3 + ... + n . 2n–1C 3

The above series can be obatined by writing the coefficient of x3 in

(1 + x)n + 2 . (1 + x)n+1 + 3 . (1 + x)n+2 + ... + n . (1 + x)2n–1

Let S = (1 + x)n + 2 . (1 + x)n+1 + 3. (1 + x)n+2 + ... + n (1 + x)2n–1 ...(i)

(1 + x)S = (1 + x)n+1 + 2 (1 + x)n+2 + ... + (n – 1) (1 + x)2n–1

+ n(1 + x)2n ...(ii)

Subtracting (ii) from (i)

– xS = (1 + x)n + (1 + x)n+1 + (1 + x)n+2 + ... + (1 + x)2n–1 – n(1 + x)2n =

[

]

x 1 ) x 1 ( ) x 1 ( + n + n− – n (1 + x)2n S = 2 n n 2 x ) x 1 ( ) x 1 ( + + + − + x ) x 1 ( n + 2n x3 : S (coefficient of x3 in S) x3 : 2 n n 2 x ) x 1 ( ) x 1 ( + + + − + x ) x 1 ( n + 2n

Hence, required summation of the series is – 2nC 5 +

nC 5 + n .

2nC

4 Ans.

Self practice problems : 17. Prove the following

(i) C0 + 3C1 + 5C2 + ... + (2n + 1) Cn = 2n (n + 1) (ii) 4C0 + 2 42 . C1 + 3 43 C2 + ... + 1 n 4n 1 + + Cn = 1 n 1 5n 1 + − + (iii) nC 0 . n+1C n + nC 1 . nC n–1 + nC 2 . n–1C n–2 + ... + nC n . 1C 0 = 2 n–1 (n + 2) ( i v ) ( i v ) ( i v ) ( i v ) 2C 2 + 3C 2 + ... + nC 2 = n+1C 3

8.

Binomial Theorem For Negative Integer Or Fractional Indices

If n ∈ R then, (1 + x)n = 1 + nx + ! 2 ) 1 n ( n − x2 + ! 3 ) 2 n )( 1 n ( n − − x3 + ... ... + n(n−1)(n−2r)...(! n−r+1) xr + ... ∞.

Remarks:(i) The above expansion is valid for any rational number other than a whole number if | x | < 1. (ii) When the index is a negative integer or a fraction then number of terms in the expansion of

(1 + x)n is infinite, and the symbol nC

r cannot be used to denote the coefficient of the general term.

(iii) The first terms must be unity in the expansion, when index ‘n’ is a negative integer or fraction

(x + y)n =          <         +       − + + =       + <         +       − + + =       + 1 y x if ... y x ! 2 ) 1 n ( n y x . n 1 y y x 1 y 1 x y if ... x y ! 2 ) 1 n ( n x y . n 1 x x y 1 x 2 n n n 2 n n n

(iv) The general term in the expansion of (1 + x)n is T

r+1 = r! ) 1 r n ( )... 2 n )( 1 n ( n − − − + xr

(v) When ‘n’ is any rational number other than whole number then approximate value of (1 + x)n is

1 + nx (x2 and higher powers of x can be neglected)

(vi) Expansions to be remembered (|x| < 1)

(a) (1 + x)–1 = 1 – x + x2 – x3 + ... + (–1)r xr + ...∞

(b) (1 – x)–1 = 1 + x + x2 + x5 + ... + xr + ...∞

(c) (1 + x)–2 = 1 – 2x + 3x2 – 4x3 + ... + (–1)r (r + 1) xr + ...∞

(d) (1 – x)–2 = 1 + 2x + 3x2 + 4x3 + ... + (r + 1)xr + ... ∞

Solved Example # 20: Prove that the coefficient of xr in (1 – x)–n is n+r–1C r

Soltion.: (r + 1)th term in the expansion of (1 – x)–n can be written as

Tr +1 = ! r ) 1 r n )...( 2 n )( 1 n ( n− − − − − − + − (–x)r

(10)

C O M P L E X N U M B E R S / P a g e 1 0 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

= (–1)r ! r ) 1 r n )...( 2 n )( 1 n ( n + + + − (–x)r = ! r ) 1 r n )...( 2 n )( 1 n ( n + + + − xr = ! r ! ) 1 n ( ) 1 r n )...( 1 n ( n )! 1 n ( − − + + − xr Hence, coefficient of xr is ! r )! 1 n ( )! 1 r n ( − − + = n+r–1C r Proved

Solved Example # 21: If x is so small such that its square and higher powers may be neglected then

find the value of 1/2

3 / 5 2 / 1 ) x 4 ( ) x 1 ( ) x 3 1 ( ++++ −−−− ++++ −−−− Solution. 1/2 3 / 5 2 / 1 ) x 4 ( ) x 1 ( ) x 3 1 ( + − + − = 1/2 4 x 1 2 3 x 5 1 x 2 3 1       + − + − = 2 1      − x 6 19 2 2 / 1 4 x 1 −       + = 2 1      − x 6 19 2       − 8 x 1 = 2 1      − − x 6 19 4 x 2 = 1 – 8 x – 12 19 x = 1 – 24 24 24 24 41 4141 41 x Ans. Self practice problems :

18. Find the possible set of values of x for which expansion of (3 – 2x)1/2 is valid in ascending powers of x.

19. If y = 5 3 + ! 2 3 . 1 2 5 2      + ! 3 5 . 3 . 1 3 5 2     

+ ..., then find the value of y2 + 2y

20. The coefficient of x100 in 2 ) x 1 ( x 5 3 − − is (A) 100 (B) –57 (C) –197 (D) 53 Ans. (18) x ∈      − 2 3 , 2 3 (19) 4 (20) C

(11)

C O M P L E X N U M B E R S / P a g e 1 1 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

Short Revision

BINOMIAL EXPONENTIAL & LOGARITHMIC SERIES

1.

BINOMIAL THEOREM : The formula by which any positive integral power of a binomial

expression can be expanded in the form of a series is known as B

INOMIAL

T

HEOREM

.

If x

, y ∈ R and n ∈ N, then ;

(x + y)

n

=

n

C

0

x

n

+

n

C

1

x

n−1

y +

n

C

2

x

n−2

y

2

+ ... +

n

C

r

x

n−r

y

r

+ ... +

n

C

n

y

n

=

= n 0 r n

C

r

x

n – r

y

r

.

This theorem can be proved by Induction .

OBSERVATIONS :

(i)

The number of terms in the expansion is (n + 1) i.e. one or more than the index .

(ii)

The sum of the indices of x & y in each term is n .

(iii)

The binomial coefficients of the terms

n

C

0

,

n

C

1

.... equidistant from the beginning and the end are

equal.

2.

IMPORTANT TERMS IN THE BINOMIAL EXPANSION ARE :

(i)

General term

(ii)

Middle term

(iii)

Term independent of x &

(iv)

Numerically greatest term

(i)

The general term or the (r + 1)

th

term in the expansion of (x + y)

n

is given by ;

T

r+1

=

n

C

r

x

n−r

. y

r

(ii)

The middle term(s) is the expansion of (x + y)

n

is (are) :

(a)

If n is even , there is only one middle term which is given by ;

T

(n+2)/2

=

n

C

n/2

. x

n/2

. y

n/2

(b)

If n is odd , there are two middle terms which are :

T

(n+1)/2

& T

[(n+1)/2]+1

(iii)

Term independent of x contains no x ; Hence find the value of r for which the exponent of x is zero.

(iv)

To find the Numerically greatest term is the expansion of (1 + x)

n

, n

∈ N find

x

r

1

r

n

x

C

x

C

T

T

1 r 1 r n r r n r 1 r

=

=

+

− −

+

. Put the absolute value of x & find the value of r Consistent with the

inequality

r 1 r

T

T

+

> 1.

Note that the Numerically greatest term in the expansion of (1 − x)

n

, x > 0 , n ∈ N is the same

as the greatest term in (1 + x)

n

.

3.

If

(

A

+

B

)

n

= I + f, where I & n are

positive

integers, n being odd and 0 < f < 1, then

(I + f) . f = K

n

where A − B

2

= K > 0 & A

− B < 1.

If n is an even integer, then (I + f) (1 − f) = K

n

.

4.

BINOMIAL COEFFICIENTS :

(i)

C

0

+ C

1

+ C

2

+ ... + C

n

= 2

n

(ii)

C

0

+ C

2

+ C

4

+ ... = C

1

+ C

3

+ C

5

+ ... = 2

n−1

(iii)

C

0

² + C

1

² + C

2

² + .... + C

n

² =

2n

C

n

=

( ) ! ! ! 2 n n n

(iv)

C

0

.C

r

+ C

1

.C

r+1

+ C

2

.C

r+2

+ ... + C

n−r

.C

n

=

)!

r

n

(

)

r

n

(

)!

n

2

(

+

REMEMBER :

(i)

(2n)! = 2

n

. n! [1. 3. 5 ... (2n − 1)]

5.

BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES :

If n ∈ Q , then (1 + x)

n

=

+

+

+

x

+

...

!

3

)

2

n

(

)

1

n

(

n

x

!

2

)

1

n

(

n

x

n

1

2 3

Provided | x | < 1.

Note : (i)

When the index n is a positive integer the number of terms in the expansion of

(1 + x)

n

is finite i.e. (n + 1) & the coefficient of successive terms are :

n

C

0

,

n

C

1

,

n

C

2

,

n

C

3

...

n

C

n

(ii)

When the index is other than a positive integer such as negative integer or fraction, the number of

terms in the expansion of (1 + x)

n

is infinite and the symbol

n

C

r

cannot be used to denote the

Coefficient of the general term .

(iii)

Following expansion should be remembered (x < 1).

(a) (1 + x)

−1

= 1 − x + x

2

− x

3

+ x

4

− .... ∞

(b) (1

− x)

−1

= 1 + x + x

2

+ x

3

+ x

4

+ .... ∞

(c) (1 + x)

−2

= 1 − 2x + 3x

2

− 4x

3

+ .... ∞

(d) (1

− x)

−2

= 1 + 2x + 3x

2

+ 4x

3

+ ... ∞

(iv)

The expansions in ascending powers of x are only valid if x is ‘small’. If x is large i.e. | x | > 1 then

we may find it convinient to expand in powers of

x

1

, which then will be small.

6.

APPROXIMATIONS :

(1 + x)

n

= 1 + nx +

2

.

1

)

1

n

(

n

x² +

3

.

2

.

1

)

2

n

(

)

1

n

(

n

x

3

...

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be

reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be

so small that its squares and higher powers may be neglected then (1 + x)

n

= 1 + nx, approximately.

(12)

C O M P L E X N U M B E R S / P a g e 1 2 o f 2 5 T E K O C L A S S E S , H .O .D . M A T H S : S U H A G R . K A R IY A ( S . R . K . S ir ) P H : (0 7 5 5 3 2 0 0 0 0 0 , 0 9 8 9 3 0 5 8 8 8 1 , B H O P A L , ( M .P .)

F

R

E

E

D

o

w

n

lo

a

d

S

tu

d

y

P

a

ck

a

g

e

fr

o

m

w

eb

si

te

:

w

w

w

.t

ek

o

cl

a

ss

es

.c

o

m

This is an approximate value of (1 + x)

n

.

7.

EXPONENTIAL SERIES :

(i)

e

x

= 1 +

+

+

+

...

!

3

x

!

2

x

!

1

x

2 3

; where

x

may be any real or complex & e =

Limitn→ ∞ 1+ 1    n n

(ii)

a

x

= 1 +

+

+

n

a

+

...

!

3

x

a

n

!

2

x

a

n

!

1

x

2 2 3 3

l

l

l

where a > 0

Note :

(a)

e = 1 +

+

+

+

...

!

3

1

!

2

1

!

1

1

(b)

e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is

2.7182818284.

(c)

e + e

−1

= 2

+

+

+

+

...

!

6

1

!

4

1

!

2

1

1

(d)

e − e

−1

= 2

+

+

+

+

...

!

7

1

!

5

1

!

3

1

1

(e)

Logarithms to the base ‘e’ are known as the Napierian system, so named after Napier,

their inventor.

They are also called Natural Logarithm.

8.

LOGARITHMIC SERIES :

(i)

l

n (1+ x) = x −

+

+

...

4

x

3

x

2

x

2 3 4

where −1 < x ≤ 1

(ii)

l

n (1− x) = − x −

+

...

4

x

3

x

2

x

2 3 4

where −1 ≤ x < 1

(iii)

l

n

)

x

1

(

)

x

1

(

+

= 2

+

+

+

...

5

x

3

x

x

5 3

x < 1

R

EMEMBER

:

(a)

1 −

4

1

3

1

2

1

+

+... ∞ = ln 2

(b)

e

ln x

= x

(c)

l

n2 = 0.693

(d)

l

n10 = 2.303

EXERCISE - 1

EXERCISE - 1

EXERCISE - 1

EXERCISE - 1

Q.1

Find the coefficients : (i) x

7

in

11 2

x

b

1

x

a





+

(ii) x

−7

in

11 2

x

b

1

ax

(iii) Find the relation between a & b , so that these coefficients are equal.

Q.2

If the coefficients of (2r + 4)

th

, (r − 2)

th

terms in the expansion of (1 + x)

18

are equal , find r.

Q.3

If the coefficients of the r

th

, (r + 1)

th

& (r + 2)

th

terms in the expansion of (1 + x)

14

are in AP,

find r.

Q.4

Find the term independent of x in the expansion of (a)

10 2

x

2

3

3

x

+

(b)

8 5 / 1 3 / 1

x

x

2

1





+

Q.5

Find the sum of the series

=

n 0 r n r r

C

.

)

1

(

+

+

+

+

...

up

to

m

terms

2

15

2

7

2

3

2

1

r 4 r r 3 r r 2 r r

Q.6

If the coefficients of 2

nd

, 3

rd

& 4

th

terms in the expansion of (1 + x)

2n

are in AP, show

that

2n² − 9n + 7 = 0.

Q.7

Given that (1 + x + x²)

n

= a

0

+ a

1

x + a

2

x² + .... + a

2n

x

2n

, find the values of :

(i) a

0

+ a

1

+ a

2

+ ... + a

2n

; (ii) a

0

− a

1

+ a

2

− a

3

... + a

2n

; (iii) a

02

− a

12

+ a

22

− a

32

+ ... + a

2n2

Q.8

If a, b, c & d are the coefficients of any four consecutive terms in the expansion of (1 + x)

n

, n ∈ N,

prove that

a

+

a

b

+

c

+

c

d

=

b

2

+

b

c

.

Q.9

Find the value of x for which the fourth term in the expansion,

8 log 3 x1 5 5 7 2 44 4 log

5

1

5

x 5 2

+

+ + −

is 336.

Q.10

Prove that :

n−1

C

r

+

n−2

C

r

+

n−3

C

r

+ .... +

r

C

r

=

n

C

r+1

.

Q.11

(a) Which is larger : (99

50

+ 100

50

) or (101)

50

.

(b) Show that

2n–2

C

n–2

+ 2.

2n–2

C

n–1

+

2n–2

C

n

>

n

1

,

n

N

,

n

2

n

4

>

+

Q.12

In the expansion of

1 7 11 + +       x

x

find the term not containing x.

Q.13

Show that coefficient of x

5

in the expansion of (1 + x²)

5

. (1 + x)

4

is 60.

Q.14

Find the coefficient of x

4

in the expansion of :

References

Related documents

The appeal is scheduled for Monday's meeting but we are surprised that the Planning Commission is already denying our appeal as noted on the agenda when we haven't yet been

A recent fMRI study suggested that paradoxical brain activation in schizophrenia patients with auditory hallucination may be caused by both reduced activation due to impaired

Managing Storage in Virtual Environments: Installation and Configuration Guide 16 Chapter 1—Foglight™ for Storage Management Hardware, System, and Database Requirements..

Die  Tatsache,  dass  sich  eine  Person  an  bestimmte  Ereignisse,  Sachverhalte 

The Nokia Solutions and Networks training material cannot be used outside of an agreed Nokia Solutions and Networks training session for development of groups without the prior

The Reset to Factory Default procedure resets the Digi Wi-Point 3G configuration settings, but does not change the current firmware. The Forced Reload procedure will erase the

13 A study of 1659 women found to have breast cancer through their participation in the CDC’s National Breast and Cervical Cancer Early Detection Pro- gram (NBCCEDP) for uninsured

) BRITO,)Liz)Magalhães*) FERNANDES,)Mário)Marques*) SZABO,)Margarida)Santini*) MICHEL?CROSATO,)Edgard*) OLIVEIRA,)Rogério)Nogueira*) ) ) ) ) ) )