• No results found

Bis­[di η5 cyclo­penta­­dienyl­cobalt(I)] di­carbonyl­tri­chloro­(chloro­di­phenyl­silyl)­ruthenium(II)

N/A
N/A
Protected

Academic year: 2020

Share "Bis­[di η5 cyclo­penta­­dienyl­cobalt(I)] di­carbonyl­tri­chloro­(chloro­di­phenyl­silyl)­ruthenium(II)"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, m679±m680DOI: 10.1107/S1600536802019153Andrea Berenbaumet al. [Co(C5H5)2]2[RuCl3(C12H10ClSi)(CO)2]

m679

metal-organic papers

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis[di-

g

5

-cyclopentadienylcobalt(I)]

dicarbonyl-trichloro(chlorodiphenylsilyl)ruthenium(II)

Andrea Berenbaum, Alan J. Lough* and Ian Manners

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study

T= 150 K

Mean(C±C) = 0.018 AÊ

Rfactor = 0.064

wRfactor = 0.127

Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The asymmetric unit of the title compound, [Co(C5H5)2]2

-[RuCl3(C12H10ClSi)(CO)2], consists of a discrete ClPh2

Si-Ru(CO)2Cl3 dianion and two (-C5H5)2Co cations. The

dianion has octahedral coordination geometry, with the three Cl atoms incispositions. In addition, two carbonyl groups (cis) and a Ph2ClSi group (bonded through Si) complete the

coordination. The RuÐSi bond length is 2.362 (3) AÊ and the longest RuÐCl bond [2.566 (2) AÊ] istransto the Si atom. In one cobaltocene cation, the cyclopentadienyl (Cp) rings are staggered, while in the other, theCprings are almost eclipsed.

Comment

Metal complexes with functional groups are of potential interest as precursors to metallopolymers. As part of our work in this area (Nguyenet al., 1999), we report the characteriza-tion of an unexpected product, (I).

Experimental

The reaction between two equivalents of (-C5H5)2Co and

[ClPh2SiRu(CO)4]2 was carried out at 298 K in tetrahydrofuran

under an atmosphere of N2. Afterca16 h, the solvent was removed

under high vacuum and CD2Cl2was added to the residue. A vigorous

reaction was observed with evolution of gas. Red±orange crystals of (I) were obtained upon slow room-temperature concentration of the resultant product mixture under an N2atmosphere.

Crystal data

[Co(C5H5)2]2

-[RuCl3(C12H10ClSi)(CO)2]

Mr= 859.40

Orthorhombic,P212121

a= 9.7462 (5) AÊ b= 10.2277 (6) AÊ c= 34.099 (2) AÊ V= 3399.0 (3) AÊ3

Z= 4

Dx= 1.679 Mg mÿ3

MoKradiation Cell parameters from 3060

re¯ections = 2.6±25.0

= 1.78 mmÿ1

T= 150 (1) K Plate, dark orange 0.200.200.02 mm

Data collection

Nonius KappaCCD diffractometer 'scans and!scans withoffsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997)

Tmin= 0.717,Tmax= 0.965

12 795 measured re¯ections

5652 independent re¯ections 3558 re¯ections withI> 2(I) Rint= 0.109

max= 25.0

h=ÿ11!11 k=ÿ12!12 l=ÿ37!36

(2)

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.064

wR(F2) = 0.128

S= 1.01 5652 re¯ections 397 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0371P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.84 e AÊÿ3 min=ÿ0.54 e AÊÿ3

Absolute structure: (Flack, 1983), 2319 Friedel pairs

Flack parameter = 0.03 (3)

Table 1

Selected geometric parameters (AÊ,).

Ru1ÐSi1 2.362 (3)

Ru1ÐCl2 2.456 (3)

Ru1ÐCl3 2.462 (3)

Ru1ÐCl1 2.566 (2)

Cl4ÐSi1 2.134 (4)

Si1ÐRu1ÐCl1 173.57 (10) Cl4ÐSi1ÐRu1 111.99 (15)

C1ÐRu1ÐSi1ÐCl4 ÿ11.3 (4)

All H atoms were included in calculated positions with distances of 0.95 AÊ for phenyl CÐH and 1.00 AÊ for cyclopentadienyl CÐH. In the re®nement, H atoms were included in a riding-motion approx-imation, withUiso= 1.2Ueqof the carrier atom.

Data collection:COLLECT(Nonius, 1997±2001); cell re®nement:

DENZO-SMN (Otwinowski & Minor, 1997); data reduction:

DENZO-SMN; program(s) used to solve structure: SHELXTL

(Sheldrick, 2001); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The authors acknowledge NSERC Canada and the University of Toronto for ®nancial support.

References

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Nonius (1997±2001).COLLECT. Nonius BV, Delft, The Netherlands. Nguyen, P., GoÂmez-Elipe, P. & Manners, I. (1999).Chem. Rev.99, 1515±1548. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (2001).SHELXTL/PC. Version 5.1 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2002). E58, m679–m680

supporting information

Acta Cryst. (2002). E58, m679–m680 [https://doi.org/10.1107/S1600536802019153]

Bis[di-

η

5

-cyclopentadienylcobalt(I)]

dicarbonyltrichloro(chlorodiphenyl-silyl)ruthenium(II)

Andrea Berenbaum, Alan J. Lough and Ian Manners

dicarbonyltrichloro(chlorodiphenylsilyl)ruthenium(II) bis[di-η5-cyclopentadienylcobalt(I)]

Crystal data

[Co(C5H5)2]2[RuCl3(C12H10ClSi)(CO)2]

Mr = 859.40

Orthorhombic, P212121

Hall symbol: P 2ac 2ab

a = 9.7462 (5) Å

b = 10.2277 (6) Å

c = 34.099 (2) Å

V = 3399.0 (3) Å3

Z = 4

F(000) = 1720

Dx = 1.679 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3060 reflections

θ = 2.6–25.0°

µ = 1.78 mm−1

T = 150 K Plate, dark orange 0.20 × 0.20 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 9 pixels mm-1

φ scans and ω scans with κ offsets Absorption correction: multi-scan

(DENZO-SMN; Otwinowski & Minor, 1997)

Tmin = 0.717, Tmax = 0.965

12795 measured reflections 5652 independent reflections 3558 reflections with I > 2σ(I)

Rint = 0.109

θmax = 25.0°, θmin = 2.7°

h = −11→11

k = −12→12

l = −37→36

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.064

wR(F2) = 0.128

S = 1.01 5652 reflections 397 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0371P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.84 e Å−3

Δρmin = −0.54 e Å−3

Absolute structure: (Flack, 1983), 2319 Friedel pairs

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ru1 0.76741 (8) 0.48626 (7) 0.34656 (2) 0.0406 (2) Cl1 0.7378 (3) 0.4406 (2) 0.27306 (6) 0.0507 (7) Cl2 0.9653 (3) 0.6236 (2) 0.32940 (7) 0.0482 (7) Cl3 0.6065 (3) 0.6703 (2) 0.33936 (8) 0.0490 (7) Cl4 0.6548 (3) 0.4860 (3) 0.45106 (7) 0.0643 (8) Si1 0.8154 (3) 0.5437 (3) 0.41222 (8) 0.0445 (8) O1 0.5304 (8) 0.3205 (8) 0.3724 (2) 0.067 (3) O2 0.9436 (8) 0.2481 (7) 0.3578 (2) 0.065 (2) C1 0.6202 (13) 0.3830 (12) 0.3629 (3) 0.053 (3) C2 0.8796 (11) 0.3401 (11) 0.3527 (3) 0.045 (3) C3 0.9706 (12) 0.4584 (10) 0.4331 (3) 0.053 (3) C4 0.9636 (15) 0.3622 (11) 0.4626 (3) 0.071 (4)

H4A 0.8769 0.3409 0.4737 0.085*

C5 1.0822 (17) 0.2964 (12) 0.4764 (4) 0.078 (4)

H5A 1.0754 0.2312 0.4962 0.093*

C6 1.2088 (18) 0.3294 (12) 0.4602 (4) 0.082 (5)

H6A 1.2897 0.2878 0.4696 0.098*

C7 1.2183 (13) 0.4227 (11) 0.4305 (3) 0.067 (3)

H7A 1.3048 0.4443 0.4195 0.080*

C8 1.0989 (12) 0.4843 (11) 0.4172 (3) 0.060 (3)

H8A 1.1058 0.5459 0.3964 0.072*

(5)

supporting information

sup-3 Acta Cryst. (2002). E58, m679–m680

C16 0.3816 (14) 0.4297 (12) 0.2907 (3) 0.065 (3) H16A 0.4530 0.4961 0.2975 0.078* C17 0.2514 (15) 0.4211 (11) 0.3070 (3) 0.062 (3) H17A 0.2126 0.4805 0.3275 0.074* C18 0.1854 (14) 0.3182 (14) 0.2901 (4) 0.074 (4) H18A 0.0892 0.2906 0.2960 0.089* C19 0.2716 (17) 0.2578 (11) 0.2630 (3) 0.065 (4) H19A 0.2494 0.1798 0.2464 0.079* C20 0.2555 (11) 0.4925 (9) 0.1914 (3) 0.049 (3) H20A 0.3223 0.4541 0.1723 0.059* C21 0.2756 (13) 0.6051 (10) 0.2143 (3) 0.054 (3) H21A 0.3604 0.6601 0.2147 0.065* C22 0.1573 (12) 0.6259 (10) 0.2372 (3) 0.049 (3) H22A 0.1433 0.6982 0.2565 0.058* C23 0.0628 (11) 0.5258 (10) 0.2282 (3) 0.049 (3) H23A −0.0307 0.5146 0.2398 0.058* C24 0.1243 (11) 0.4445 (11) 0.1999 (3) 0.053 (3) H24A 0.0816 0.3649 0.1881 0.063* Co2 0.68687 (14) 0.43589 (13) 0.11062 (4) 0.0463 (4) C25 0.639 (2) 0.2732 (14) 0.0810 (4) 0.090 (5) H25A 0.6280 0.1837 0.0925 0.108* C26 0.7599 (16) 0.3266 (14) 0.0659 (3) 0.080 (4) H26A 0.8516 0.2830 0.0645 0.096* C27 0.7272 (17) 0.4549 (14) 0.0524 (3) 0.074 (4) H27A 0.7918 0.5187 0.0401 0.088* C28 0.5907 (17) 0.4742 (15) 0.0597 (4) 0.080 (4) H28A 0.5399 0.5569 0.0539 0.096* C29 0.5339 (15) 0.3665 (19) 0.0766 (4) 0.084 (5) H29A 0.4357 0.3558 0.0845 0.101* C30 0.7802 (16) 0.3932 (13) 0.1612 (3) 0.078 (4) H30A 0.8282 0.3096 0.1677 0.094* C31 0.8419 (12) 0.5088 (15) 0.1435 (3) 0.070 (4) H31A 0.9398 0.5194 0.1353 0.083* C32 0.7377 (17) 0.6016 (12) 0.1401 (3) 0.077 (4) H32A 0.7462 0.6915 0.1288 0.092* C33 0.6194 (14) 0.5451 (14) 0.1561 (4) 0.077 (4) H33A 0.5278 0.5889 0.1571 0.093* C34 0.6436 (13) 0.4221 (14) 0.1683 (3) 0.065 (4) H34A 0.5748 0.3619 0.1804 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

Si1 0.0557 (19) 0.0346 (18) 0.0432 (18) −0.0024 (16) −0.0025 (14) 0.0023 (13) O1 0.059 (6) 0.056 (6) 0.086 (6) −0.019 (5) −0.006 (5) −0.002 (4) O2 0.067 (6) 0.040 (5) 0.087 (6) 0.021 (4) 0.000 (5) 0.004 (4) C1 0.052 (8) 0.052 (8) 0.056 (8) 0.010 (7) −0.016 (6) −0.011 (6) C2 0.050 (7) 0.044 (8) 0.040 (6) −0.017 (6) 0.009 (5) −0.003 (6) C3 0.060 (8) 0.034 (7) 0.065 (8) 0.011 (6) −0.013 (6) 0.001 (6) C4 0.102 (11) 0.040 (8) 0.069 (9) 0.015 (8) −0.013 (8) 0.000 (7) C5 0.115 (13) 0.050 (9) 0.068 (10) 0.007 (10) −0.007 (9) 0.019 (7) C6 0.124 (14) 0.046 (8) 0.076 (10) 0.022 (9) −0.052 (10) −0.005 (7) C7 0.057 (9) 0.061 (8) 0.082 (9) −0.001 (8) −0.016 (7) −0.004 (7) C8 0.047 (7) 0.054 (8) 0.080 (8) 0.011 (7) −0.014 (6) 0.011 (7) C9 0.048 (7) 0.036 (7) 0.040 (7) −0.006 (5) 0.008 (5) 0.001 (5) C10 0.139 (13) 0.031 (7) 0.044 (7) 0.002 (7) −0.013 (8) 0.007 (6) C11 0.166 (15) 0.037 (8) 0.051 (8) −0.023 (9) −0.014 (8) −0.006 (6) C12 0.104 (10) 0.038 (7) 0.069 (9) −0.005 (7) 0.014 (7) −0.016 (7) C13 0.076 (8) 0.036 (7) 0.056 (8) −0.002 (6) 0.007 (6) −0.012 (6) C14 0.048 (7) 0.061 (8) 0.037 (6) 0.007 (6) 0.002 (5) 0.001 (6) Co1 0.0433 (9) 0.0321 (7) 0.0498 (8) −0.0007 (8) −0.0021 (8) −0.0014 (6) C15 0.088 (11) 0.077 (10) 0.063 (9) 0.052 (9) 0.011 (8) 0.002 (8) C16 0.066 (9) 0.057 (9) 0.071 (9) 0.001 (7) −0.034 (7) −0.003 (7) C17 0.067 (9) 0.061 (8) 0.056 (7) 0.023 (9) 0.000 (7) 0.005 (6) C18 0.059 (9) 0.079 (10) 0.084 (10) −0.027 (8) −0.008 (8) 0.025 (8) C19 0.098 (12) 0.040 (7) 0.059 (8) −0.003 (9) −0.007 (8) 0.008 (6) C20 0.053 (7) 0.040 (6) 0.055 (6) 0.014 (7) 0.005 (6) −0.001 (5) C21 0.073 (9) 0.042 (7) 0.047 (7) −0.004 (7) 0.014 (7) 0.007 (5) C22 0.070 (9) 0.023 (6) 0.053 (7) 0.001 (6) 0.002 (6) 0.004 (5) C23 0.047 (7) 0.039 (7) 0.060 (7) 0.007 (6) 0.003 (5) 0.007 (6) C24 0.055 (8) 0.053 (8) 0.051 (7) 0.003 (6) −0.010 (6) −0.007 (6) Co2 0.0467 (9) 0.0427 (9) 0.0496 (9) −0.0025 (7) 0.0008 (7) 0.0001 (7) C25 0.135 (15) 0.061 (10) 0.076 (10) −0.036 (11) 0.014 (10) −0.030 (8) C26 0.085 (11) 0.067 (9) 0.087 (9) −0.001 (10) 0.024 (9) −0.022 (7) C27 0.084 (11) 0.088 (11) 0.049 (7) −0.049 (10) −0.017 (7) 0.000 (6) C28 0.084 (11) 0.084 (12) 0.071 (9) −0.016 (10) −0.044 (8) 0.010 (8) C29 0.066 (10) 0.135 (15) 0.052 (9) −0.026 (12) −0.007 (7) −0.027 (10) C30 0.105 (12) 0.063 (9) 0.068 (9) 0.028 (9) −0.023 (9) 0.008 (7) C31 0.046 (7) 0.098 (12) 0.065 (8) 0.003 (9) −0.014 (6) 0.007 (8) C32 0.109 (12) 0.048 (7) 0.074 (8) −0.021 (10) −0.005 (10) 0.005 (6) C33 0.079 (10) 0.064 (9) 0.089 (10) −0.007 (8) 0.008 (8) 0.003 (9) C34 0.069 (10) 0.059 (9) 0.066 (9) −0.023 (8) 0.007 (7) 0.010 (7)

Geometric parameters (Å, º)

Ru1—C2 1.864 (12) C16—H16A 1.0000

Ru1—C1 1.867 (14) C17—C18 1.362 (15)

Ru1—Si1 2.362 (3) C17—H17A 1.0000

Ru1—Cl2 2.456 (3) C18—C19 1.395 (16)

Ru1—Cl3 2.462 (3) C18—H18A 1.0000

(7)

supporting information

sup-5 Acta Cryst. (2002). E58, m679–m680

Cl4—Si1 2.134 (4) C20—C24 1.400 (13) Si1—C3 1.886 (11) C20—C21 1.405 (12)

Si1—C9 1.901 (10) C20—H20A 1.0000

O1—C1 1.131 (12) C21—C22 1.408 (14)

O2—C2 1.143 (11) C21—H21A 1.0000

C3—C8 1.389 (14) C22—C23 1.411 (13)

C3—C4 1.409 (13) C22—H22A 1.0000

C4—C5 1.417 (16) C23—C24 1.408 (13)

C4—H4A 0.9500 C23—H23A 1.0000

C5—C6 1.393 (18) C24—H24A 1.0000

C5—H5A 0.9500 Co2—C30 1.997 (11)

C6—C7 1.395 (15) Co2—C25 2.002 (12)

C6—H6A 0.9500 Co2—C28 2.011 (11)

C7—C8 1.399 (14) Co2—C34 2.017 (11)

C7—H7A 0.9500 Co2—C29 2.017 (12)

C8—H8A 0.9500 Co2—C26 2.021 (11)

C9—C10 1.373 (13) Co2—C33 2.021 (13) C9—C14 1.384 (12) Co2—C31 2.024 (11) C10—C11 1.323 (14) Co2—C27 2.032 (11)

C10—H10A 0.9500 Co2—C32 2.032 (11)

C11—C12 1.403 (15) C25—C26 1.402 (18)

C11—H11A 0.9500 C25—C29 1.405 (19)

C12—C13 1.353 (13) C25—H25A 1.0000

C12—H12A 0.9500 C26—C27 1.425 (16)

C13—C14 1.413 (13) C26—H26A 1.0000

C13—H13A 0.9500 C27—C28 1.367 (18)

C14—H14A 0.9500 C27—H27A 1.0000

Co1—C16 2.001 (11) C28—C29 1.361 (17) Co1—C18 2.004 (12) C28—H28A 1.0000 Co1—C24 2.007 (10) C29—H29A 1.0000 Co1—C17 2.009 (10) C30—C34 1.386 (16) Co1—C20 2.015 (9) C30—C31 1.456 (16) Co1—C23 2.024 (10) C30—H30A 1.0000 Co1—C21 2.025 (10) C31—C32 1.395 (15) Co1—C19 2.025 (11) C31—H31A 1.0000 Co1—C22 2.031 (10) C32—C33 1.400 (16) Co1—C15 2.061 (12) C32—H32A 1.0000 C15—C16 1.409 (15) C33—C34 1.346 (16) C15—C19 1.411 (17) C33—H33A 1.0000

C15—H15A 1.0000 C34—H34A 1.0000

C16—C17 1.389 (15)

(8)
(9)

supporting information

sup-7 Acta Cryst. (2002). E58, m679–m680

(10)

C19—Co1—C15 40.4 (5) C25—C29—H29A 126.3 C22—Co1—C15 153.2 (6) Co2—C29—H29A 126.3 C16—C15—C19 107.0 (11) C34—C30—C31 107.2 (11) C16—C15—Co1 67.4 (7) C34—C30—Co2 70.6 (7) C19—C15—Co1 68.4 (7) C31—C30—Co2 69.8 (6) C16—C15—H15A 126.5 C34—C30—H30A 126.4 C19—C15—H15A 126.5 C31—C30—H30A 126.4 Co1—C15—H15A 126.5 Co2—C30—H30A 126.4 C17—C16—C15 108.2 (12) C32—C31—C30 106.6 (10) C17—C16—Co1 70.1 (6) C32—C31—Co2 70.2 (6) C15—C16—Co1 72.0 (7) C30—C31—Co2 67.8 (7) C17—C16—H16A 125.9 C32—C31—H31A 126.7 C15—C16—H16A 125.9 C30—C31—H31A 126.7 Co1—C16—H16A 125.9 Co2—C31—H31A 126.7 C18—C17—C16 108.1 (11) C31—C32—C33 106.6 (11) C18—C17—Co1 70.0 (7) C31—C32—Co2 69.6 (7) C16—C17—Co1 69.4 (6) C33—C32—Co2 69.4 (7) C18—C17—H17A 126.0 C31—C32—H32A 126.7 C16—C17—H17A 126.0 C33—C32—H32A 126.7 Co1—C17—H17A 126.0 Co2—C32—H32A 126.7 C17—C18—C19 109.8 (12) C34—C33—C32 111.2 (13) C17—C18—Co1 70.3 (7) C34—C33—Co2 70.3 (8) C19—C18—Co1 70.6 (7) C32—C33—Co2 70.2 (7) C17—C18—H18A 125.1 C34—C33—H33A 124.3 C19—C18—H18A 125.1 C32—C33—H33A 124.3 Co1—C18—H18A 125.1 Co2—C33—H33A 124.3 C18—C19—C15 106.8 (11) C33—C34—C30 108.3 (12) C18—C19—Co1 69.0 (7) C33—C34—Co2 70.7 (8) C15—C19—Co1 71.2 (7) C30—C34—Co2 69.0 (7) C18—C19—H19A 126.6 C33—C34—H34A 125.9 C15—C19—H19A 126.6 C30—C34—H34A 125.9 Co1—C19—H19A 126.6 Co2—C34—H34A 125.9 C24—C20—C21 107.4 (10)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical