organic papers
o222
Valeria Menschiseet al. C13H21N3O6 DOI: 101107/S1600536801002410 Acta Cryst.(2001). E57, o222±o224 Acta Crystallographica Section EStructure Reports
Online
ISSN 1600-5368
(
S
)-
O
-Succinimidyl
N
-[2-(
tert
-butoxycarbonylamino)-propyl]carbamate
Valeria Menschise,aClaude
Didierjean,aVincent Semetey,b
Gilles Guichard,bJean-Paul
Briandband Andre Aubrya*
aLaboratoire de Cristallographie et ModeÂlisation des MateÂriaux MineÂraux, et Biologiques (LCM3B), UPRESA n7036, Groupe Biocristal-lographie, Universite Henri PoincareÂ, Nancy I, Faculte des Sciences, BP 239, 54506 Vandoeuvre leÁs Nancy CEDEX, France, and bLaboratoire de Chimie Immunologique, UPR 9021 CNRS, Institut de Biologie MoleÂculaire et Cellulaire 15, rue Descartes, 67000 Strasbourg, France
Correspondence e-mail: [email protected]
Key indicators Single-crystal X-ray study
T= 293 K
Mean(C±C) = 0.004 AÊ
Rfactor = 0.037
wRfactor = 0.097 Data-to-parameter ratio = 8.7
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved
The molecule of activated carbamate, (S )-2,5-dioxopyrrolidin-1-yl N-[2-(tert-butoxycarbonylamino)propyl]carbamate, t Bu-OCONHCH(Me)CH2NHCOONC4H4O2or C13H21N3O6,
pre-pared fromN-Boc-3HAla-OH, assumes a folded
conforma-tion with the NÐCÐCÐN torsion angle equal to 55.9 (3).
Both NÐH groups are involved in intermolecular hydrogen bonds, forming in®nite chains in the crystal.
Comment
Unnatural biopolymers with a urea backbone, such asN,N -linked oligoureas [N(CONHR)-(CH2)m-]n (Nowick, 1999),
N,N0-linked oligoureas [NH-CHR-CH
2-NH-CO-]n(Burgesset
al., 1995, 1997; Kim et al., 1996; Boeijen & Liskamp, 1999; Guichard et al., 1999, 2000; Tamilarasu et al., 1999), ureido-peptoids [NR-CH2-CH2-NH-CO-]n (Kruijzer et al., 1997; Wilson & Nowick, 1998) and oligomeric cyclic ureas (Kimet al., 1996) have been described recently as peptide backbone mimetics or as templates for the creation of arti®cial-sheets. The urea fragment appears particularly promising for drug discovery because of its expected metabolic stability and interesting hydrogen-bonding properties. We have recently reported a simple and effective synthesis of O-succinimidyl 2-(tert-butoxycarbonylamino)-2-subsituted-ethylcarbamate derivatives starting from the corresponding N-protected -amino acids and their use as activated monomers in the synthesis of di- and trisubstituted ureas and N,N0-linked
oligoureas (Guichard et al., 1999). These derivatives are stable compounds that react readily with amines to form substituted ureas. Furthermore, the mild conditions required for their preparation are compatible with most functionalized side chains of amino acids as well as with standard protecting groups used in solid-phase peptide synthesis (Guichard et al., 2000). Herein, we report the crystal structure of (S)-O-succinimidyl N-[2-(tert -butoxy-carbonylamino)propyl]carbamate, (I), which was prepared in three steps from Boc-(S)-3HAla-OH.
Bond distances and angles of the succinimide ring are in good agreement with those recently published by Tenonet al.
(2000) and Guichardet al.(1999) forN-methylsuccinimide and
O-succinimidyl (2-nitrophenyl)carbamate, respectively. The
succinimide ring in (I) is nearly planar, as in the unsubstituted succinimide (Mason, 1961) and O-succinimidyl (2-nitro-phenyl)carbamate (Guichardet al., 1999) molecules. Indeed, the puckering parameters of the succinimide ring in the title compound areq= 0.010 AÊ and'2= 314.0 for the sequence
N3ÐC10ÐC11ÐC12ÐC13 (Cremer & Pople, 1975).
The molecule (Fig. 1 and Table 1) assumes a folded shape with thegaucheconformation about the central C6ÐC8 bond in the main chain, the N1ÐC6ÐC8ÐN2 torsion angle being equal to 55.9 (3). The molecules of the title compound in the
crystal are linked into in®nite chains via C O HÐN hydrogen bonds (Fig. 2 and Table 2). The chains are stretched along the [100] direction and form a parallel sheet-like arrangement. All interactions between the chains are purely van der Waals in nature.
Experimental
O-succinimidyl carbamate was prepared by homologation of Boc-L -Ala-OH, with subsequent conversion of Boc-(S)-3HAla-OH [we
used the nomenclature proposed by Seebach & Matthews (1997) for
-amino acids] to the corresponding acyl azide and trapping of the intermediate isocyanate, resulting from Curtius rearrangement of the acyl azide, with N-hydroxysuccinimide. Details of the synthetic procedures are available in the CIF ®le.
Crystal data
C13H21N3O6 Mr= 315.33
Monoclinic,P2
a= 5.1260 (2) AÊ
b= 8.5650 (4) AÊ
c= 18.7540 (9) AÊ
= 91.996 (3)
V= 822.88 (6) AÊ3 Z= 2
Dx= 1.273 Mg mÿ3
MoKradiation Cell parameters from 5236
re¯ections
= 4.0±26.3
= 0.10 mmÿ1 T= 293 (2) K Prismatic, colorless 0.300.250.22 mm
Data collection
KappaCCD diffractometer
'and! scans
5236 measured re¯ections 1792 independent re¯ections 1436 re¯ections withI> 2(I)
Rint= 0.030
max= 26.3 h= 0!6
k= 0!10
l=ÿ23!23
Re®nement
Re®nement onF2 R[F2> 2(F2)] = 0.037 wR(F2) = 0.097 S= 1.03 1792 re¯ections 205 parameters
H atoms treated by a mixture of independent and constrained re®nement
w= 1/[2(F
o2) + (0.0553P)2
+ 0.0391P]
whereP= (Fo2+ 2Fc2)/3
(/)max< 0.001 max= 0.11 e AÊÿ3 min=ÿ0.17 e AÊÿ3
Table 1
Selected geometric parameters ().
O1ÐC5ÐN1ÐC6 ÿ177.9 (2) C5ÐN1ÐC6ÐC8 ÿ139.7 (2)
N1ÐC6ÐC8ÐN2 55.9 (3)
C6ÐC8ÐN2ÐC9 ÿ141.7 (2)
C8ÐN2ÐC9ÐO4 179.76 (19) N2ÐC9ÐO4ÐN3 ÿ177.1 (2) C9ÐO4ÐN3ÐC10 90.4 (3)
Table 2
Hydrogen-bonding geometry (AÊ,).
DÐH A DÐH H A D A DÐH A
N1ÐH1 O2i 1.010 (10) 2.037 (18) 2.938 (2) 147 (2) N2ÐH2 O3ii 1.016 (10) 2.038 (14) 3.022 (3) 162 (3) Symmetry codes: (i) 1x;y;z; (ii)xÿ1;y;z.
The absolute stereochemistry of the title compound is based on the known con®guration of Boc-L-Ala-OH (purchased from Neosystem, Strasbourg, France) since the homologation using the Arndt±Eistert
Acta Cryst.(2001). E57, o222±o224 Valeria Menschiseet al. C13H21N3O6
o223
organic papers
Figure 1
The molecular structure of (I) with the atom-numbering scheme and 25% probability displacement ellipsoids. H atoms are shown only at the N atoms and at the chiral center.
Figure 2
organic papers
o224
Valeria Menschiseet al. C13H21N3O6 Acta Cryst.(2001). E57, o222±o224reaction is known to proceed without epimerization at thecarbon. The positions of H atoms attached to N atoms were located from a difference map and the NÐH bond distance was restrained to 1.03 (1) AÊ (Taylor & Kennard, 1983). The H atoms connected to carbon were placed in the calculated positions and included in the re®nement in the riding model approximation (CÐH distances are in the range 0.96±0.98 AÊ). The isotropic H-atom displacement para-meters were restricted to be 30% higher than the equivalent isotropic displacement parameters of the parent atom.
Data collection: COLLECT (Nonius, 1998); cell re®nement:
COLLECT; data reduction: HKL (Otwinowski & Minor, 1997); program(s) used to solve structure:SIR92 (Altomare et al., 1994); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: maXus (Mackay et al., 1999) and WebLab ViewerPro3.5 (MSI, 1999).
We would like to thank the Service Commun de Diffraction X sur Monocristaux (Universite Henri PoincareÂ, Nancy I) for providing access to crystallographic experimental facilities.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435±436.
Boeijen, R. M. & Liskamp, J. (1999).Eur. J. Org. Chem.pp. 2127±2135. Burgess, K., Ibarzo, J., Linthicum, D. S., Russell, D. H., Shin, H., Shitangkoon,
A., Totani, R. & Zhang, A. J. (1997).J. Am. Chem. Soc.119, 1556±1564. Burgess, K., Linthicum, D. S. & Shin, H. (1995).Angew. Chem. Int. Ed. Engl.
34, 907±908.
Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354±1358. Guichard, G., Semetey, V., Didierjean, C., Aubry, A., Briand, J. P. & Rodriguez,
M. (1999).J. Org. Chem.64, 8702±8705.
Guichard, G., Semetey, V., Rodriguez, M. & Briand, J. P. (2000)Tetrahedron Lett.41, 1553±1557.
Kim, J. M., Wilson, T. E., Norman, T. C. & Schultz, P. G. (1996).Tetrahedron Lett.37, 5309±5312.
Kruijzer, J. A. W., Lefeber, D. J. & Liskamp, R. M. J. (1997).Tetrahedron Lett. 38, 5335±5338.
Mackay, S., Edwards, C., Henderson, A., Gilmore, C., Stewart, N., Shankland, K. & Donald, A. (1999).maXus. University of Glasgow, Scotland. Mason, R. (1961).Acta Cryst.14, 720±724.
MSI (1999).WebLab ViewerPro3.5. Molecular Simulation Inc., San Diego, California, USA.
Nonius (1998).COLLECT. Nonius BV, Delft, The Netherlands. Nowick, J. S. (1999).Acc. Chem. Res.32, 287±296.
Otwinowski, Z. & Minor, W. (1997).Methods Enzymol.276, 307±326. Seebach, D. & Matthews, J. (1997).Chem. Commun.pp. 2015±2022. Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen. Germany. Tamilarasu, N., Huq, I. & Rana, T. M. (1999).J. Am. Chem. Soc.121, 1597±
1598.
Taylor, R. & Kennard, O. (1983).Acta Cryst.B39, 133±138.
supporting information
sup-1
Acta Cryst. (2001). E57, o222–o224
supporting information
Acta Cryst. (2001). E57, o222–o224 [doi:10.1107/S1600536801002410]
(
S
)-
O
-Succinimidyl
N
-[2-(
tert
-butoxycarbonylamino)propyl]carbamate
Valeria Menschise, Claude Didierjean, Vincent Semetey, Gilles Guichard, Jean-Paul Briand and
Andr
é
Aubry
S1. Comment
Unnatural biopolymers with a urea backbone, such as N,N-linked oligoureas [N(CONHR)-(CH2)m–]n (Nowick, 1999),
N,N′-linked oligoureas [NH-CHR-CH2—NH—CO–]n (Burgess et al., 1995, 1997; Kim et al., 1996; Boeijen & Liskamp,
1999; Guichard et al. 1999, 2000; Tamilarasu et al., 1999), ureidopeptoids [NR—CH2—CH2—NH—CO–]n (Kruijtzer et
al., 1997; Wilson & Nowick, 1998) and oligomeric cyclic ureas (Kim et al., 1996) have been described recently as
peptide backbone mimetics or as template for the creation of artificial β-sheets. The urea fragment appears particularly
promising for drug discovery because of its expected metabolic stability and interesting hydrogen-bonding properties. We
have recently reported a simple and effective synthesis of O-succinimidyl 2-(tert
-butoxycarbonylamino)-2-subsituted-ethylcarbamate derivatives starting from the corresponding N-protected β-amino acids and their use as activated
monomers in the synthesis of di- and trisubstituted ureas and N,N′-linked oligoureas (Guichard et al., 1999). These
derivatives are stable compounds that react readily with amines to form substituted ureas. Furthermore, the mild
conditions required for their preparation are compatible with most functionalized side chains of amino acids as well as
with standard protecting groups used in solid-phase peptide synthesis (Guichard et al., 2000). Herein, we report the
crystal structure of (S)—O-succinimidyl N-[2-(tert-butoxycarbonylamino)propyl]carbamate, (I), which was prepared in
three steps from Boc-(S)-β3HAla-OH.
Bond distances and angles of the succinimide ring are in good agreement with those recently published by Tenon et al.
(2000) and Guichard et al. (1999) for N-methylsuccinimide and O-succinimidyl (2-nitrophenyl)carbamate, respectively.
The succinimide ring in (I) is nearly planar, like in the unsubstituted succinimide (Mason, 1961) and O-succinimidyl
(2-nitrophenyl)carbamate (Guichard et al., 1999) molecules. Indeed, the puckering parameters of the succinimide ring in the
title compound are q = 0.010 Å and φ2 = 314.0° for the sequence N3—C10—C11—C12—C13 (Cremer & Pople, 1975).
The molecule (Fig. 1 and Table 1) assumes a folded shape with the gauche conformation about the central C6—C8 bond
in the main chain, the N1—C6—C8—N2 torsion angle being equal to 55.9 (3)°. The molecules of the title compound in
the crystal are linked into the infinite chains via C═O···H—N hydrogen bonds (Table 2). The chains are stretched along
the [100] direction and form parallel β sheet-like arrangement. All interactions between the chains are purely van der
Waals in nature.
S2. Experimental
O-succinimidyl carbamate was prepared by homologation of Boc-L-Ala-OH, with subsequent conversion of
Boc-(S)-β3HAla-OH [we used the nomenclature proposed by Seebach & Matthews (1997) for β-amino acids] to the corresponding
acyl azide and trapping of the intermediate isocyanate, resulting from Curtius rearrangement of the acyl azide, with N
supporting information
sup-2
Acta Cryst. (2001). E57, o222–o224 S3. Refinement
The absolute stereochemistry of the title compound is based on the known configuration of Boc-L-Ala-OH (purchased
from Neosystem, Strasbourg, France) since the homologation using the Arndt-Eistert reaction is known to proceed
without epimerization at the α carbon. The positions of H atoms attached to N atoms were located from a difference map
and the N—H bond distance was restrained to 1.03 (1) Å (Taylor & Kennard, 1983). The H atoms connected to carbon
were placed in the calculated positions and included in the refinement in the riding model approximation (C—H distances
are in the range 0.96–0.98 Å). The isotropic H-atom displacement parameters were restricted to be 30% higher than the
[image:5.610.125.485.203.465.2]equivalent isotropic displacement parameters of the parent atom.
Figure 1
The molecular structure of (I) with the atom-numbering scheme and 25% probability displacement ellipsoids. Only H
supporting information
sup-3
[image:6.610.130.483.72.465.2]Acta Cryst. (2001). E57, o222–o224 Figure 2
Packing of the molecules showing the infinite chains and the hydrogen-bonding network (in dashed lines).
(S)—O-Succinimidyl N-[2-(tert-butoxycarbonylamino)propyl]carbamate
Crystal data
C13H21N3O6 Mr = 315.33 Monoclinic, P21 a = 5.1260 (2) Å
b = 8.5650 (4) Å
c = 18.7540 (9) Å
β = 91.996 (3)°
V = 822.88 (6) Å3 Z = 2
F(000) = 336
Dx = 1.273 Mg m−3
Mo Kα radiation, λ = 0.71070 Å Cell parameters from 5236 reflections
θ = 4.0–26.3°
µ = 0.10 mm−1 T = 293 K
supporting information
sup-4
Acta Cryst. (2001). E57, o222–o224 Data collection
KappaCCD diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
oscillation scans
5236 measured reflections 1792 independent reflections
1436 reflections with I > 2σ(I)
Rint = 0.030
θmax = 26.3°, θmin = 4.0°
h = 0→6
k = 0→10
l = −23→23
Refinement
Refinement on F2 Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.097 S = 1.03 1792 reflections 205 parameters 3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.0553P)2 + 0.0391P] where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001 Δρmax = 0.11 e Å−3 Δρmin = −0.17 e Å−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
C1 −0.2288 (4) 0.3268 (3) 0.57925 (13) 0.0505 (6)
C2 −0.0629 (5) 0.4397 (4) 0.53911 (19) 0.0799 (10)
H2A 0.0275 0.3847 0.5028 0.104*
H2B 0.0617 0.4879 0.5716 0.104*
H2C −0.1723 0.5186 0.5173 0.104*
C3 −0.4126 (5) 0.2386 (4) 0.52903 (14) 0.0640 (7)
H3A −0.3143 0.1870 0.4933 0.083*
H3B −0.5334 0.3103 0.5065 0.083*
H3C −0.5071 0.1624 0.5554 0.083*
C4 −0.3705 (6) 0.4101 (4) 0.63710 (17) 0.0717 (8)
H4A −0.2470 0.4659 0.6671 0.093*
H4B −0.4612 0.3352 0.6652 0.093*
H4C −0.4937 0.4823 0.6159 0.093*
O1 −0.0307 (3) 0.2195 (2) 0.61109 (9) 0.0533 (5)
C5 −0.0988 (4) 0.1042 (3) 0.65552 (13) 0.0464 (6)
supporting information
sup-5
Acta Cryst. (2001). E57, o222–o224
N1 0.1146 (3) 0.0388 (3) 0.68556 (11) 0.0497 (5)
H1 0.283 (3) 0.081 (4) 0.6670 (12) 0.065*
C6 0.1006 (4) −0.0925 (3) 0.73422 (12) 0.0487 (6)
H6 −0.0739 −0.0946 0.7539 0.063*
C7 0.1472 (7) −0.2466 (4) 0.69701 (19) 0.0802 (10)
H7A 0.0171 −0.2611 0.6596 0.104*
H7B 0.1369 −0.3303 0.7308 0.104*
H7C 0.3173 −0.2459 0.6771 0.104*
C8 0.3002 (4) −0.0704 (3) 0.79532 (12) 0.0484 (6)
H8A 0.2844 −0.1552 0.8292 0.063*
H8B 0.4745 −0.0741 0.7768 0.063*
N2 0.2643 (3) 0.0775 (3) 0.83175 (11) 0.0507 (5)
H2 0.081 (3) 0.121 (4) 0.8364 (13) 0.066*
C9 0.4632 (5) 0.1632 (3) 0.85544 (13) 0.0507 (6)
O3 0.6921 (3) 0.1383 (3) 0.85408 (11) 0.0694 (6)
O4 0.3633 (3) 0.2988 (2) 0.88774 (10) 0.0644 (5)
N3 0.5616 (4) 0.3975 (3) 0.91066 (11) 0.0584 (6)
C10 0.6574 (6) 0.5138 (4) 0.86724 (16) 0.0653 (8)
O5 0.5707 (6) 0.5414 (4) 0.80823 (12) 0.1015 (8)
C11 0.8740 (5) 0.5889 (4) 0.90923 (16) 0.0725 (8)
H11A 0.8381 0.6990 0.9161 0.094*
H11B 1.0368 0.5789 0.8848 0.094*
C12 0.8908 (5) 0.5049 (4) 0.98018 (15) 0.0709 (9)
H12A 1.0620 0.4583 0.9879 0.092*
H12B 0.8601 0.5769 1.0189 0.092*
C13 0.6842 (5) 0.3813 (4) 0.97655 (15) 0.0606 (7)
O6 0.6276 (4) 0.2834 (3) 1.01994 (12) 0.0886 (7)
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
C1 0.0311 (10) 0.0514 (14) 0.0686 (15) 0.0023 (10) −0.0046 (10) 0.0046 (13)
C2 0.0481 (14) 0.079 (2) 0.112 (2) 0.0056 (15) −0.0033 (14) 0.042 (2)
C3 0.0483 (13) 0.0763 (19) 0.0667 (17) 0.0101 (14) −0.0066 (11) −0.0067 (16)
C4 0.0622 (16) 0.0658 (18) 0.087 (2) 0.0080 (15) −0.0030 (14) −0.0172 (18)
O1 0.0290 (7) 0.0590 (11) 0.0718 (11) 0.0008 (7) 0.0004 (7) 0.0189 (10)
C5 0.0313 (12) 0.0510 (15) 0.0566 (13) −0.0035 (10) −0.0002 (9) 0.0027 (12)
O2 0.0287 (8) 0.0807 (14) 0.0947 (13) −0.0057 (9) 0.0038 (8) 0.0272 (12)
N1 0.0289 (8) 0.0587 (13) 0.0614 (12) −0.0017 (9) 0.0021 (8) 0.0118 (11)
C6 0.0411 (11) 0.0487 (14) 0.0564 (13) −0.0054 (11) 0.0004 (10) 0.0034 (13)
C7 0.103 (2) 0.0571 (19) 0.079 (2) −0.0039 (17) −0.0194 (17) −0.0078 (17)
C8 0.0413 (11) 0.0508 (15) 0.0531 (13) 0.0011 (11) 0.0014 (9) 0.0025 (12)
N2 0.0334 (10) 0.0598 (14) 0.0589 (12) 0.0016 (9) 0.0003 (8) −0.0079 (11)
C9 0.0413 (13) 0.0609 (17) 0.0498 (13) 0.0011 (12) 0.0015 (10) −0.0048 (12)
O3 0.0344 (9) 0.0810 (14) 0.0929 (14) 0.0008 (9) 0.0027 (8) −0.0244 (12)
O4 0.0463 (9) 0.0648 (13) 0.0819 (12) 0.0027 (9) −0.0021 (8) −0.0224 (11)
N3 0.0545 (12) 0.0590 (14) 0.0613 (13) −0.0045 (11) −0.0046 (10) −0.0099 (12)
supporting information
sup-6
Acta Cryst. (2001). E57, o222–o224
O5 0.130 (2) 0.099 (2) 0.0745 (14) 0.0048 (16) −0.0167 (14) 0.0116 (15)
C11 0.0668 (17) 0.065 (2) 0.086 (2) −0.0044 (15) 0.0131 (14) −0.0089 (18)
C12 0.0575 (15) 0.091 (2) 0.0638 (17) −0.0073 (16) 0.0008 (12) −0.0215 (18)
C13 0.0527 (14) 0.072 (2) 0.0568 (15) 0.0036 (14) 0.0036 (12) −0.0066 (16)
O6 0.0862 (14) 0.108 (2) 0.0720 (14) −0.0075 (14) 0.0033 (11) 0.0133 (15)
Geometric parameters (Å, º)
C1—O1 1.479 (3) C7—H7B 0.9600
C1—C4 1.507 (4) C7—H7C 0.9600
C1—C2 1.507 (4) C8—N2 1.454 (3)
C1—C3 1.511 (3) C8—H8A 0.9700
C2—H2A 0.9600 C8—H8B 0.9700
C2—H2B 0.9600 N2—C9 1.321 (3)
C2—H2C 0.9600 N2—H2 1.016 (10)
C3—H3A 0.9600 C9—O3 1.194 (3)
C3—H3B 0.9600 C9—O4 1.415 (3)
C3—H3C 0.9600 O4—N3 1.379 (3)
C4—H4A 0.9600 N3—C13 1.374 (3)
C4—H4B 0.9600 N3—C10 1.387 (4)
C4—H4C 0.9600 C10—O5 1.202 (4)
O1—C5 1.346 (3) C10—C11 1.486 (4)
C5—O2 1.210 (3) C11—C12 1.513 (4)
C5—N1 1.336 (3) C11—H11A 0.9700
N1—C6 1.451 (3) C11—H11B 0.9700
N1—H1 1.010 (10) C12—C13 1.498 (4)
C6—C7 1.516 (4) C12—H12A 0.9700
C6—C8 1.521 (3) C12—H12B 0.9700
C6—H6 0.9800 C13—O6 1.210 (4)
C7—H7A 0.9600
O1—C1—C4 110.2 (2) H7A—C7—H7B 109.5
O1—C1—C2 102.08 (17) C6—C7—H7C 109.5
C4—C1—C2 110.5 (3) H7A—C7—H7C 109.5
O1—C1—C3 110.2 (2) H7B—C7—H7C 109.5
C4—C1—C3 112.3 (2) N2—C8—C6 111.7 (2)
C2—C1—C3 111.1 (2) N2—C8—H8A 109.3
C1—C2—H2A 109.5 C6—C8—H8A 109.3
C1—C2—H2B 109.5 N2—C8—H8B 109.3
H2A—C2—H2B 109.5 C6—C8—H8B 109.3
C1—C2—H2C 109.5 H8A—C8—H8B 107.9
H2A—C2—H2C 109.5 C9—N2—C8 122.2 (2)
H2B—C2—H2C 109.5 C9—N2—H2 118.2 (17)
C1—C3—H3A 109.5 C8—N2—H2 119.5 (17)
C1—C3—H3B 109.5 O3—C9—N2 129.9 (2)
H3A—C3—H3B 109.5 O3—C9—O4 121.8 (2)
C1—C3—H3C 109.5 N2—C9—O4 108.29 (19)
supporting information
sup-7
Acta Cryst. (2001). E57, o222–o224
H3B—C3—H3C 109.5 C13—N3—O4 121.8 (2)
C1—C4—H4A 109.5 C13—N3—C10 116.2 (2)
C1—C4—H4B 109.5 O4—N3—C10 121.9 (2)
H4A—C4—H4B 109.5 O5—C10—N3 123.7 (3)
C1—C4—H4C 109.5 O5—C10—C11 130.4 (3)
H4A—C4—H4C 109.5 N3—C10—C11 105.9 (2)
H4B—C4—H4C 109.5 C10—C11—C12 106.2 (3)
C5—O1—C1 121.10 (16) C10—C11—H11A 110.5
O2—C5—N1 124.8 (2) C12—C11—H11A 110.5
O2—C5—O1 125.1 (2) C10—C11—H11B 110.5
N1—C5—O1 110.03 (17) C12—C11—H11B 110.5
C5—N1—C6 122.14 (18) H11A—C11—H11B 108.7
C5—N1—H1 113.6 (17) C13—C12—C11 106.1 (2)
C6—N1—H1 123.9 (17) C13—C12—H12A 110.5
N1—C6—C7 111.9 (2) C11—C12—H12A 110.5
N1—C6—C8 109.31 (19) C13—C12—H12B 110.5
C7—C6—C8 110.0 (2) C11—C12—H12B 110.5
N1—C6—H6 108.5 H12A—C12—H12B 108.7
C7—C6—H6 108.5 O6—C13—N3 124.2 (3)
C8—C6—H6 108.5 O6—C13—C12 130.1 (3)
C6—C7—H7A 109.5 N3—C13—C12 105.7 (3)
C6—C7—H7B 109.5
O1—C5—N1—C6 −177.9 (2) O3—C9—O4—N3 4.7 (3)
C5—N1—C6—C8 −139.7 (2) C9—O4—N3—C13 −86.4 (3)
N1—C6—C8—N2 55.9 (3) C13—N3—C10—O5 179.8 (3)
C6—C8—N2—C9 −141.7 (2) O4—N3—C10—O5 2.8 (4)
C8—N2—C9—O4 179.76 (19) C13—N3—C10—C11 −0.6 (3)
N2—C9—O4—N3 −177.1 (2) O4—N3—C10—C11 −177.5 (2)
C9—O4—N3—C10 90.4 (3) O5—C10—C11—C12 179.4 (3)
C4—C1—O1—C5 58.6 (3) N3—C10—C11—C12 −0.2 (3)
C2—C1—O1—C5 176.0 (2) C10—C11—C12—C13 0.8 (3)
C3—C1—O1—C5 −65.8 (3) O4—N3—C13—O6 −1.5 (4)
C1—O1—C5—O2 9.5 (4) C10—N3—C13—O6 −178.4 (3)
C1—O1—C5—N1 −170.7 (2) O4—N3—C13—C12 178.0 (2)
O2—C5—N1—C6 1.9 (4) C10—N3—C13—C12 1.1 (3)
C5—N1—C6—C7 98.2 (3) C11—C12—C13—O6 178.3 (3)
C7—C6—C8—N2 179.2 (2) C11—C12—C13—N3 −1.1 (3)
C8—N2—C9—O3 −2.2 (4)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 1.01 (1) 2.04 (2) 2.938 (2) 147 (2)
N2—H2···O3ii 1.02 (1) 2.04 (1) 3.022 (3) 162 (3)