organic papers
o2826
Akbalet al. C13H20N2O3S doi:10.1107/S1600536805024657 Acta Cryst.(2005). E61, o2826–o2827
Acta Crystallographica Section E Structure Reports
Online
ISSN 1600-5368
2-Morpholino-
N
-(
p
-tolylsulfonyl)ethylamine
Tufan Akbal,aNesuhi Akdemir,b Erbil Ag˘arband
Ahmet Erdo¨nmeza*
aDepartment of Physics, Faculty of Arts and
Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, andbDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
Correspondence e-mail: takbal@omu.edu.tr
Key indicators
Single-crystal X-ray study T= 290 K
Mean(C–C) = 0.004 A˚ Rfactor = 0.043 wRfactor = 0.108
Data-to-parameter ratio = 19.1
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2005 International Union of Crystallography
Printed in Great Britain – all rights reserved
In the crystal structure of the title compound, C13H20N2O3S, there are some inter- and intramolecular N—H O, N— H N and C—H O hydrogen-bonding interactions.
Comment
The title compound, (I), is a derivative of sulfonamide. Sulfonamide derivatives are generally used as antibiotics and photosensitizers for photodynamic therapy (PDT) (Strom et al., 2003; Maket al., 2003).
The molecular structure of (I) is shown in Fig. 1and selected geometric parameters are in Table 1. The S1—N1 bond length is in good agreement with data observed in the literature (O¨ ztu¨rket al., 2000). In the morpholine group, the C11—O3 and C12—O3 bond lengths are consistent with corresponding bonds [1.421 (3) and 1.424 (3) A˚ ] inerythro -2-morpholino-1,2-diphenylethanol (Karadayı et al., 2002). The N2—C10 and N2—C13 bond lengths agree with the corresponding values in 1-morpholinomethyl-2-naphthol (Maet al., 2005) anderythro -2-morpholino-1,2-diphenylethanol (Karadayıet al., 2002). The morpholine ring adopts a chair conformation, with puckering parameters of = 180.0 (2), ’ = 259 (12) and Q
T = 0.567 (2) A˚ (Cremer & Pople, 1975).
The crystal structure is stabilized by some inter- and intra-molecular N—H O, N—H N and C—H O hydrogen-bonding interactions (Fig. 2 and Table 2).
Experimental
2-Morpholinoethylamine (6.45 g, 49.61 mmol) and sodium hydroxide (2.10 g, 52.5 mmol) were dissolved in water (15 ml). A solution of toluene-p-sulfonyl chloride (10.15 g, 53.25 mmol) in diethyl ether was added dropwise over 2 h. The mixture was then stirred at room temperature for 10 h. The organic phase was dried over Na2SO4and
evaporated. The white product was washed with water and diethyl ether and recrystallization from ethanol gave the title product (yield 12.06 g, 85.05%). Single crystals were obtained from absolute ethanol at room temperature by slow evaporation (m.p. 372–373 K).
Crystal data
C13H20N2O3S
Mr= 284.37 Monoclinic,P21=c
a= 13.7639 (14) A˚
b= 8.0723 (7) A˚
c= 14.1519 (15) A˚
= 109.028 (8)
V= 1486.5 (3) A˚3
Z= 4
Dx= 1.271 Mg m
3
MoKradiation Cell parameters from 8322
reflections
= 2.5–27.4
= 0.22 mm1
T= 290 (2) K Prism, colourless 0.580.380.13 mm
Data collection
Stoe IPDS-2 diffractometer
!scans
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)
Tmin= 0.975,Tmax= 0.987 9234 measured reflections 3303 independent reflections
1888 reflections withI> 2(I)
Rint= 0.056
max= 27.4
h=17!17
k=10!7
l=18!18
Refinement
Refinement onF2
R[F2> 2(F2)] = 0.043
wR(F2) = 0.108
S= 0.90 3303 reflections 173 parameters
H-atom parameters constrained
w= 1/[2(F
o2) + (0.0563P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001
max= 0.31 e A˚
3
min=0.24 e A˚
3
Extinction correction:SHELXL97
Extinction coefficient: 0.026 (2)
Table 1
Selected geometric parameters (A˚ ,).
S1—O1 1.4217 (16) S1—O2 1.4273 (18) S1—N1 1.5966 (18) N2—C10 1.454 (3)
N2—C13 1.460 (2) O3—C12 1.419 (3) O3—C11 1.429 (3)
O1—S1—O2 119.78 (12) N1—S1—C1 108.51 (9)
C10—N2—C13 108.86 (17) C12—O3—C11 109.70 (16)
O1—S1—N1—C8 43.81 (19) O2—S1—N1—C8 172.99 (16)
C1—S1—N1—C8 72.04 (17)
Table 2
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
N1—H4 O3i
0.86 2.20 2.916 (2) 140 C5—H5 O1ii 0.93 2.55 3.248 (3) 132 N1—H4 N2 0.86 2.61 2.906 (2) 102 C8—H12B O1 0.97 2.51 2.949 (3) 107
Symmetry codes: (i)xþ2;yþ1 2;zþ
3
2; (ii)x;yþ 1 2;z
1 2.
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 A˚ , and withUiso(H) constrained to be 1.2 (or 1.5 for methyl H atoms) timesUeqof the carrier atom.
Data collection: X-AREA (Stoe & Cie, 2002); cell refinement:
X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and
PARST(Nardelli, 1995).
References
Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.
Karadayı, N., Kazak, C., O¨ ztu¨rk, S., Aydın, M., Arsu, N., Fun, H.-K. & Bu¨yu¨kgu¨ngo¨r, O. (2002).Acta Cryst.E58, o1152–o1153.
Ma, S.-S., Zhang, M.-J., Yuan, D.-Y. & Qi, Z.-B. (2005).Acta Cryst.E61, o1370– o1371.
Mak, N. K., Kok, T. W., Wong, R. N. S., Lam, S. W., Lau, Y. K., Leung, W. N., Cheung, N. H., Huang, D. P., Yeung, L. L. & Chang, C. K. (2003).J. Biomed. Sci.10, 418–429.
Nardelli, M. (1995).J. Appl. Cryst.28, 659.
O¨ ztu¨rk, S., Is¸ık, S¸., Ag˘ar, E., S¸as¸maz, S¸., Fun, H. K. & Erdonmez, A. (2000).
Spectrosc. Lett.33, 245–254.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.
Stoe & Cie (2002).X-AREA(Version 1.18) andX-RED32(Version 1.04). Stoe & Cie, Darmstadt, Germany.
Strom, B. L., Schinnar, R., Apter, A. J., Margolis, D. J., Lautenbach, E., Figure 2
[image:2.610.312.565.71.288.2]A view of the hydrogen-bonding interactions (dashed lines) in (I). Figure 1
supporting information
sup-1 Acta Cryst. (2005). E61, o2826–o2827
supporting information
Acta Cryst. (2005). E61, o2826–o2827 [https://doi.org/10.1107/S1600536805024657]
2-Morpholino-
N
-(
p
-tolylsulfonyl)ethylamine
Tufan Akbal, Nesuhi Akdemir, Erbil A
ğ
ar and Ahmet Erd
ö
nmez
2-Morpholino-N-(p-tolylsulfonyl)ethylamine
Crystal data C13H20N2O3S
Mr = 284.37
Monoclinic, P21/c
Hall symbol: -P 2ybc a = 13.7639 (14) Å b = 8.0723 (7) Å c = 14.1519 (15) Å β = 109.028 (8)° V = 1486.5 (3) Å3
Z = 4
F(000) = 608 Dx = 1.271 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 8322 reflections θ = 2.5–27.4°
µ = 0.22 mm−1
T = 290 K Prism, colourless 0.58 × 0.38 × 0.13 mm
Data collection Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Detector resolution: 6.67 pixels mm-1
ω scans
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.975, Tmax = 0.987
9234 measured reflections 3303 independent reflections 1888 reflections with I > 2σ(I) Rint = 0.056
θmax = 27.4°, θmin = 2.9°
h = −17→17 k = −10→7 l = −18→18
Refinement Refinement on F2
Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043
wR(F2) = 0.108
S = 0.90 3303 reflections 173 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained w = 1/[σ2(F
o2) + (0.0563P)2]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.001
Δρmax = 0.31 e Å−3
Δρmin = −0.24 e Å−3
Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
supporting information
sup-3 Acta Cryst. (2005). E61, o2826–o2827
C7 0.3564 (3) 0.1749 (5) 0.4568 (2) 0.1170 (12) H7A 0.3722 0.2407 0.4072 0.176* H7B 0.2961 0.2180 0.4679 0.176* H7C 0.3442 0.0624 0.4339 0.176*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
S1 0.0524 (3) 0.0634 (4) 0.0719 (3) 0.0042 (3) 0.0205 (2) −0.0146 (3) N2 0.0532 (10) 0.0513 (9) 0.0470 (8) 0.0060 (8) 0.0188 (7) 0.0018 (6) N1 0.0452 (10) 0.0596 (11) 0.0793 (10) 0.0028 (8) 0.0309 (8) 0.0005 (8) C1 0.0459 (12) 0.0512 (11) 0.0666 (11) 0.0050 (10) 0.0252 (9) −0.0043 (9) O3 0.0643 (10) 0.0652 (9) 0.0717 (9) 0.0108 (8) 0.0289 (8) −0.0055 (7) C10 0.0658 (14) 0.0742 (15) 0.0526 (10) 0.0135 (12) 0.0168 (10) 0.0044 (10) O1 0.0749 (11) 0.1256 (16) 0.0675 (9) 0.0183 (10) 0.0330 (8) −0.0182 (9) C12 0.0753 (15) 0.0678 (14) 0.0545 (11) 0.0027 (12) 0.0265 (11) −0.0049 (10) O2 0.0674 (11) 0.0589 (11) 0.1280 (14) −0.0078 (8) 0.0129 (10) −0.0205 (9) C2 0.0598 (15) 0.0663 (14) 0.0766 (14) −0.0038 (12) 0.0261 (12) 0.0073 (11) C13 0.0616 (14) 0.0667 (14) 0.0578 (10) 0.0001 (11) 0.0171 (10) −0.0084 (10) C6 0.0543 (14) 0.0817 (17) 0.0860 (15) 0.0006 (12) 0.0360 (13) 0.0094 (12) C9 0.0695 (14) 0.0610 (13) 0.0641 (11) 0.0076 (11) 0.0333 (11) 0.0105 (10) C11 0.0577 (14) 0.0757 (16) 0.0678 (12) 0.0079 (12) 0.0170 (10) −0.0058 (11) C4 0.0609 (15) 0.0864 (18) 0.0716 (14) 0.0144 (13) 0.0186 (11) −0.0128 (12) C3 0.0530 (15) 0.0713 (16) 0.0955 (17) −0.0086 (12) 0.0171 (13) −0.0030 (13) C5 0.0738 (18) 0.111 (2) 0.0694 (14) 0.0200 (15) 0.0369 (14) 0.0179 (13) C8 0.0569 (14) 0.0640 (14) 0.0771 (13) −0.0042 (11) 0.0331 (11) −0.0015 (11) C7 0.098 (2) 0.154 (3) 0.0803 (17) 0.029 (2) 0.0029 (16) −0.0236 (19)
Geometric parameters (Å, º)
C12—H10B 0.9700 C7—H7B 0.9600 C2—C3 1.375 (3) C7—H7C 0.9600
O1—S1—O2 119.78 (12) C5—C6—C1 119.9 (2) O1—S1—N1 107.25 (10) C5—C6—H6 120.1 O2—S1—N1 106.21 (10) C1—C6—H6 120.1 O1—S1—C1 107.50 (10) N2—C9—C8 113.28 (16) O2—S1—C1 107.21 (11) N2—C9—H13A 108.9 N1—S1—C1 108.51 (9) C8—C9—H13A 108.9 C10—N2—C9 110.84 (15) N2—C9—H13B 108.9 C10—N2—C13 108.86 (17) C8—C9—H13B 108.9 C9—N2—C13 111.75 (17) H13A—C9—H13B 107.7 C8—N1—S1 121.54 (14) O3—C11—C10 110.50 (19) C8—N1—H4 119.2 O3—C11—H9A 109.6 S1—N1—H4 119.2 C10—C11—H9A 109.6 C6—C1—C2 119.4 (2) O3—C11—H9B 109.6 C6—C1—S1 120.28 (17) C10—C11—H9B 109.6 C2—C1—S1 120.35 (16) H9A—C11—H9B 108.1 C12—O3—C11 109.70 (16) C3—C4—C5 118.2 (2) N2—C10—C11 111.17 (16) C3—C4—C7 121.0 (3) N2—C10—H8A 109.4 C5—C4—C7 120.8 (3) C11—C10—H8A 109.4 C4—C3—C2 121.1 (2) N2—C10—H8B 109.4 C4—C3—H3 119.4 C11—C10—H8B 109.4 C2—C3—H3 119.4 H8A—C10—H8B 108.0 C6—C5—C4 121.4 (2) O3—C12—C13 111.90 (16) C6—C5—H5 119.3 O3—C12—H10A 109.2 C4—C5—H5 119.3 C13—C12—H10A 109.2 N1—C8—C9 110.61 (18) O3—C12—H10B 109.2 N1—C8—H12A 109.5 C13—C12—H10B 109.2 C9—C8—H12A 109.5 H10A—C12—H10B 107.9 N1—C8—H12B 109.5 C1—C2—C3 120.0 (2) C9—C8—H12B 109.5 C1—C2—H2 120.0 H12A—C8—H12B 108.1 C3—C2—H2 120.0 C4—C7—H7A 109.5 N2—C13—C12 110.43 (18) C4—C7—H7B 109.5 N2—C13—H11A 109.6 H7A—C7—H7B 109.5 C12—C13—H11A 109.6 C4—C7—H7C 109.5 N2—C13—H11B 109.6 H7A—C7—H7C 109.5 C12—C13—H11B 109.6 H7B—C7—H7C 109.5 H11A—C13—H11B 108.1
supporting information
sup-5 Acta Cryst. (2005). E61, o2826–o2827
O2—S1—C1—C2 −155.37 (18) C5—C4—C3—C2 0.1 (4) N1—S1—C1—C2 90.31 (18) C7—C4—C3—C2 −179.9 (2) C9—N2—C10—C11 −179.78 (19) C1—C2—C3—C4 0.3 (4) C13—N2—C10—C11 56.9 (2) C1—C6—C5—C4 0.4 (4) C11—O3—C12—C13 −58.2 (2) C3—C4—C5—C6 −0.4 (4) C6—C1—C2—C3 −0.3 (3) C7—C4—C5—C6 179.5 (2) S1—C1—C2—C3 −178.63 (18) S1—N1—C8—C9 −144.44 (15) C10—N2—C13—C12 −55.4 (2) N2—C9—C8—N1 −58.1 (2) C9—N2—C13—C12 −178.18 (17)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A N1—H4···O3i 0.86 2.20 2.916 (2) 140
C5—H5···O1ii 0.93 2.55 3.248 (3) 132
N1—H4···N2 0.86 2.61 2.906 (2) 102 C8—H12B···O1 0.97 2.51 2.949 (3) 107