• No results found

1 Oxo 6 (2 phenyl­acetyl­amino) 1 penicillanic acid

N/A
N/A
Protected

Academic year: 2020

Share "1 Oxo 6 (2 phenyl­acetyl­amino) 1 penicillanic acid"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o3249–o3250 doi:10.1107/S1600536806025219 Duanet al. C

16H18N2O5S

o3249

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

1-Oxo-6-(2-phenylacetylamino)-1-penicillanic acid

Er-Hong Duan,aDi-Shun Zhao,b* Juan Wangaand Mei-Ling Lia

a

School of Chemical Engineering and Technology of Tianjin University, Tianjin 300072, People’s Republic of China, and bSchool of Chemical and Pharmaceutical

Engineering, Hebei University of Science and Technology, Shijiazhuang Hebei 050018, People’s Republic of China

Correspondence e-mail: dandinlion@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.038

wRfactor = 0.082

Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 8 June 2006 Accepted 29 June 2006

#2006 International Union of Crystallography

All rights reserved

The crystal structure of the title compound (CAS: 4052–54-4), C16H18N2O5S, contains O—H O and N—H O hydrogen

bonds. The four-membered ring is folded and the five-membered ring has an envelope conformation.

Comment

The title compound, (I), is an early derivative of penicillin which was prepared by Rogers & Folkers (1946). Penicillin G sulfoxide, which is the common name of 1-oxo-6-(2-phenyl-acetylamino)-1-penicillanic acid, decomposes at higher temperatures (>333 K), because it has an unsaturated S O bond. It is an important intermediate in the synthesis of 7-aminodeacetoxy-cefalosporanic acid (7-ADCA) (Pan et al.

2001).

Selected bond lengths and angles are listed in Table 1. The four-membered ring (C9–C11,N2) is folded and the five-membered ring (C10,N2,C12,S1,C14) has an envelope conformation. The crystal structure contains intermolecular O—H O and N—H O hydrogen bonds (Table 2), giving an infinite three-dimensional network. An intramolecular N— H O interaction forms a six-membered ring, which also has an envelope conformation, with atom N2 as the flap.

Experimental

1-Oxo-6-(2-phenylacetylamino)-1-penicillanic acid was synthesized according to the method described by Chowet al.(1962). Colorless single crystals of (I) were grown by slow evaporation of a methanol solution.

Crystal data

C16H18N2O5S

Mr= 350.38 Trigonal,P32

a= 11.6285 (12) A˚

c= 10.894 (2) A˚

V= 1275.7 (3) A˚3

Z= 3

Dx= 1.368 Mg m

3

MoKradiation

= 0.22 mm1

(2)

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1997)

Tmin= 0.943,Tmax= 0.974

6825 measured reflections 2703 independent reflections 1994 reflections withI> 2(I)

Rint= 0.043

max= 25.5

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.039

wR(F2) = 0.082

S= 1.01 2703 reflections 220 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0359P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.003

max= 0.18 e A˚

3

min=0.16 e A˚

3

Absolute structure: Flack (1983), 1116 Freidel pairs

Flack parameter:0.04 (8)

Table 1

Selected geometric parameters (A˚ ,).

O1—C8 1.223 (4) O4—C13 1.182 (4) C1—C2 1.371 (5)

C7—C8 1.504 (4) C12—C13 1.512 (4) C14—C16 1.520 (5)

O3—S1—C10 103.47 (13) O3—S1—C14 105.21 (15) C10—S1—C14 89.03 (14)

C11—N2—C12 124.2 (2) C10—N2—C12 116.6 (2) C3—C2—C1 119.1 (5)

C4—C5—C6—C7 179.3 (4) C1—C6—C7—C8 99.7 (4) C9—N1—C8—O1 2.7 (4)

C6—C7—C8—O1 36.7 (5) C8—N1—C9—C10 105.6 (3) C10—N2—C12—C14 3.1 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O5—H5 O1i

0.82 1.79 2.597 (3) 166 N1—H1 O2ii

0.86 2.33 3.142 (3) 157 N1—H1 O3 0.86 2.40 2.844 (3) 113

Symmetry codes: (i)xþyþ1;xþ1;zþ1

3; (ii)yþ1;xyþ1;z 1 3.

The H atom of the OH group was initially located in a difference Fourier map, but subsequently the O—H distance was constrained to 0.82 A˚ and theUiso(H) value set equal to 1.2Ueq(O). All other H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93– 0.98 A˚ ) and refined as riding, withUiso(H) = 1.2 or 1.5 times

Ueq(parent atom).

Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

References

Bruker (1997).SADABS,SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chow, A. W., Hall, N. M. & Hoover, J. R. E. (1962).J. Org. Chem.27, 1381– 1383.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Pan, X. J., Liu, H. Z., An, Z. T., Wang, J. & Niu, G. G. (2001).Int. J. Pharm.220, 33–41.

Rogers, E. F. & Folkers, K. (1946). US Patent No. 2 483 235.

[image:2.610.319.566.73.169.2]

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 2

Packing diagram for (I), with hydrogen bonds shown as dashed lines.

Figure 1

[image:2.610.325.547.227.505.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o3249–o3250

supporting information

Acta Cryst. (2006). E62, o3249–o3250 [https://doi.org/10.1107/S1600536806025219]

1-Oxo-6-(2-phenylacetylamino)-1-penicillanic acid

Er-Hong Duan, Di-Shun Zhao, Juan Wang and Mei-Ling Li

1-oxo-6-(2-phenylacetylamino)-1-penicillanic acid

Crystal data

C16H18N2O5S

Mr = 350.38 Trigonal, P32

a = 11.6285 (12) Å c = 10.894 (2) Å V = 1275.7 (3) Å3

Z = 3 F(000) = 552

Dx = 1.368 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1894 reflections θ = 2.8–21.2°

µ = 0.22 mm−1

T = 294 K Block, colourless 0.22 × 0.16 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1997) Tmin = 0.943, Tmax = 0.974

6825 measured reflections 2703 independent reflections 1994 reflections with I > 2σ(I) Rint = 0.043

θmax = 25.5°, θmin = 2.0°

h = −14→12 k = −11→14 l = −8→13

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.039

wR(F2) = 0.082

S = 1.01 2703 reflections 220 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0359P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.003

Δρmax = 0.18 e Å−3

Δρmin = −0.16 e Å−3

Absolute structure: Flack (1983), 1116 Freidel pairs

Absolute structure parameter: −0.04 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o3249–o3250

H16B 0.7965 0.6057 0.2869 0.092* H16C 0.9360 0.7352 0.2889 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0469 (5) 0.0523 (5) 0.0350 (4) 0.0250 (5) −0.0026 (4) 0.0060 (4) O1 0.0548 (15) 0.0416 (14) 0.0703 (18) 0.0253 (12) −0.0005 (13) −0.0168 (12) O2 0.0510 (14) 0.0750 (16) 0.0383 (15) 0.0354 (13) 0.0005 (11) −0.0030 (13) O3 0.0521 (14) 0.0490 (13) 0.0605 (16) 0.0317 (12) −0.0049 (11) 0.0078 (12) O4 0.0548 (16) 0.0560 (16) 0.078 (2) 0.0307 (13) −0.0184 (13) 0.0052 (13) O5 0.0534 (16) 0.0490 (16) 0.135 (3) 0.0265 (14) −0.0441 (17) −0.0151 (15) N1 0.0350 (15) 0.0381 (15) 0.0475 (18) 0.0186 (13) −0.0077 (13) 0.0012 (12) N2 0.0360 (14) 0.0446 (16) 0.0361 (15) 0.0228 (13) −0.0043 (12) 0.0020 (12) C1 0.060 (3) 0.070 (3) 0.060 (3) 0.037 (2) −0.007 (2) 0.004 (2) C2 0.063 (3) 0.127 (5) 0.096 (4) 0.058 (3) 0.015 (3) 0.040 (3) C3 0.049 (3) 0.116 (5) 0.164 (7) 0.021 (3) −0.009 (4) 0.052 (5) C4 0.066 (4) 0.075 (3) 0.185 (7) 0.010 (3) −0.062 (4) −0.032 (4) C5 0.063 (3) 0.091 (3) 0.090 (3) 0.027 (3) −0.034 (2) −0.042 (3) C6 0.0394 (19) 0.052 (2) 0.046 (2) 0.0203 (17) −0.0138 (17) 0.0018 (18) C7 0.0450 (19) 0.062 (2) 0.047 (2) 0.0190 (18) −0.0099 (16) 0.0089 (18) C8 0.0387 (19) 0.048 (2) 0.0274 (18) 0.0207 (17) 0.0033 (15) −0.0062 (15) C9 0.0353 (17) 0.0349 (18) 0.046 (2) 0.0173 (15) −0.0011 (15) 0.0069 (15) C10 0.0394 (18) 0.0365 (18) 0.043 (2) 0.0211 (15) −0.0001 (14) −0.0009 (14) C11 0.0367 (19) 0.050 (2) 0.0343 (19) 0.0232 (16) 0.0050 (15) 0.0121 (16) C12 0.0356 (18) 0.0380 (18) 0.047 (2) 0.0209 (15) −0.0081 (15) −0.0051 (15) C13 0.045 (2) 0.050 (2) 0.046 (2) 0.0289 (19) −0.0107 (16) −0.0092 (18) C14 0.0395 (19) 0.049 (2) 0.046 (2) 0.0196 (17) 0.0027 (16) 0.0055 (16) C15 0.054 (2) 0.059 (2) 0.086 (3) 0.016 (2) 0.001 (2) 0.016 (2) C16 0.049 (2) 0.086 (3) 0.054 (2) 0.038 (2) 0.0113 (19) 0.001 (2)

Geometric parameters (Å, º)

(6)

C1—C6 1.372 (5) C14—C16 1.520 (5) C1—H1A 0.9300 C15—H15A 0.9600 C2—C3 1.364 (9) C15—H15B 0.9600 C2—H2 0.9300 C15—H15C 0.9600 C3—C4 1.352 (8) C16—H16A 0.9600 C3—H3 0.9300 C16—H16B 0.9600 C4—C5 1.373 (7) C16—H16C 0.9600

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o3249–o3250

C6—C1—C2—C3 0.0 (7) C10—N2—C11—O2 −164.2 (4) C1—C2—C3—C4 1.2 (8) C12—N2—C11—O2 −39.3 (5) C2—C3—C4—C5 −2.7 (9) C10—N2—C11—C9 15.4 (2) C3—C4—C5—C6 2.8 (9) C12—N2—C11—C9 140.3 (3) C4—C5—C6—C1 −1.5 (6) N1—C9—C11—O2 41.8 (5) C4—C5—C6—C7 179.3 (4) C10—C9—C11—O2 165.1 (4) C2—C1—C6—C5 0.1 (6) N1—C9—C11—N2 −137.7 (3) C2—C1—C6—C7 179.4 (3) C10—C9—C11—N2 −14.4 (2) C5—C6—C7—C8 −81.1 (4) C11—N2—C12—C13 125.7 (3) C1—C6—C7—C8 99.7 (4) C10—N2—C12—C13 −120.6 (3) C9—N1—C8—O1 2.7 (4) C11—N2—C12—C14 −110.6 (3) C9—N1—C8—C7 −178.2 (3) C10—N2—C12—C14 3.1 (3) C6—C7—C8—O1 36.7 (5) N2—C12—C13—O4 16.7 (5) C6—C7—C8—N1 −142.3 (3) C14—C12—C13—O4 −104.1 (4) C8—N1—C9—C11 −151.6 (3) N2—C12—C13—O5 −165.3 (3) C8—N1—C9—C10 105.6 (3) C14—C12—C13—O5 73.8 (3) C11—N2—C10—C9 −15.0 (2) N2—C12—C14—C15 143.0 (3) C12—N2—C10—C9 −145.8 (2) C13—C12—C14—C15 −92.7 (3) C11—N2—C10—S1 98.3 (2) N2—C12—C14—C16 −88.3 (3) C12—N2—C10—S1 −32.4 (3) C13—C12—C14—C16 36.1 (4) N1—C9—C10—N2 136.6 (3) N2—C12—C14—S1 27.5 (3) C11—C9—C10—N2 13.8 (2) C13—C12—C14—S1 151.9 (2) N1—C9—C10—S1 33.9 (4) O3—S1—C14—C15 −55.2 (3) C11—C9—C10—S1 −89.0 (2) C10—S1—C14—C15 −158.9 (3) O3—S1—C10—N2 −64.5 (2) O3—S1—C14—C16 −176.1 (2) C14—S1—C10—N2 40.9 (2) C10—S1—C14—C16 80.2 (2) O3—S1—C10—C9 28.8 (2) O3—S1—C14—C12 63.8 (2) C14—S1—C10—C9 134.2 (2) C10—S1—C14—C12 −39.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O5—H5···O1i 0.82 1.79 2.597 (3) 166

N1—H1···O2ii 0.86 2.33 3.142 (3) 157

N1—H1···O3 0.86 2.40 2.844 (3) 113

Figure

Figure 2Packing diagram for (I), with hydrogen bonds shown as dashed lines.

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical