• No results found

Dieth­yl 2,6 dibenz­yl 4,8 dioxo­tetra­hydro 2,3a,4a,6,7a,8a hexa­aza­cyclo­penta­[def]fluorene 8b,8c di­carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "Dieth­yl 2,6 dibenz­yl 4,8 dioxo­tetra­hydro 2,3a,4a,6,7a,8a hexa­aza­cyclo­penta­[def]fluorene 8b,8c di­carboxyl­ate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2187–o2188 doi:10.1107/S1600536805018775 Liet al. C

28H32N6O6

o2187

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diethyl

2,6-dibenzyl-4,8-dioxotetrahydro-2,3a,4a,6,7a,8a-hexaazacyclopenta[

def

]-fluorene-8b,8c-dicarboxylate

Yi-Tao Li, Zhiguo Wang, Guodong Yin and An-Xin Wu*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China

Correspondence e-mail: chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T= 292 K

Mean(C–C) = 0.007 A˚ Disorder in main residue Rfactor = 0.072 wRfactor = 0.204

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecule of the title compound, C28H32N6O6, shows

normal geometrical parameters. The crystal packing is stabilized by a C—H O interaction.

Comment

Glycoluril derivatives have many areas of applications, such as explosives, slow-release fertilizers, cross-linkers, iodogens, stabilizers of organic compounds against photodegradation, and reagents in combinatorial chemistry (Wuet al., 2002). In this paper, we present the structure of the title compound, (I) (Fig. 1), as a continuation of our previous studies in this area (Wei & Wu, 2005).

All the geometrical parameters for (I) are normal. The crystal packing is stabilized by a C—H O interaction (Table 1 and Fig. 2), leading to chains of (I) along [100]. The shortest distance between ring centroids of 4.38 A˚ indicates that any–effects are very weak.

[image:1.610.241.421.323.401.2] [image:1.610.207.459.490.712.2]

Received 10 June 2005 Accepted 13 June 2005 Online 17 June 2005

Figure 1

(2)

Experimental

Benzylamine (1.07 g, 10 mmol) and formaldehyde (2.4 g, 40 mmol) were added to a stirred solution of diethyl 2,5-dioxotetrahydro-imidazo[4,5-d]imidazole-3a,6a-dicarboxylate (1.43 g, 5 mmol) in acetonitrile (50 ml) under a nitrogen atmosphere. The mixture was stirred overnight at room temperature. The solvent was evaporated to dryness and the compound was purified by column chromatography to yield (I) (2.46 g, 90%) as a colorless solid. Colorless block-like crystals of (I) suitable for data collection were obtained by slow evaporation of a solution in ethyl acetate at 283 K.

Crystal data

C28H32N6O6

Mr= 548.60

Triclinic,P1

a= 7.6177 (6) A˚

b= 12.2882 (9) A˚

c= 14.9197 (11) A˚

= 95.008 (1)

= 101.415 (1)

= 92.755 (1)

V= 1360.69 (18) A˚3

Z= 2

Dx= 1.339 Mg m

3 MoKradiation Cell parameters from 4320

reflections

= 2.7–26.4

= 0.10 mm1

T= 292 (2) K Block, colorless 0.300.200.20 mm

Data collection

Bruker SMART CCD diffract-ometer

!and’scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.972,Tmax= 0.981 9666 measured reflections

4689 independent reflections 3734 reflections withI> 2(I)

Rint= 0.021

max= 25.0

h=8!9

k=14!13

l=17!17

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.072

wR(F2) = 0.204

S= 1.04 4689 reflections 359 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1005P)2 + 1.0611P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.002

max= 0.76 e A˚

3 min=0.42 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C8—H8A O1i

0.97 2.44 3.261 (3) 142

Symmetry codes: (i)xþ1;y;z.

The C14/C15 ethyl group is disordered over two positions in a 0.657 (6):0.343 (6) ratio. All H atoms were positioned geometrically

(C—H = 0.93–0.97 A˚ ) and refined as riding, allowing for free rotation of methyl groups. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2000); software used to prepare material for publication:SHELXTL.

The authors are grateful to the Central China Normal University, the National Natural Science Foundation of China (No. 20472022), and the Hubei Province Natural Science Fund (No. 2004ABA085 and No. 2004ABC002) for financial support.

References

Bruker (2000).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. .

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Wei, F. & Wu, A. (2005).Acta Cryst.E61, o1453–o1455.

[image:2.610.314.568.72.268.2]

Wu, A., Fettinger, J. C. & Isaacs, L. (2002).Tetrahedron,58, 9769–9777. Figure 2

The C—H O interaction (dashed lines) in (I). [Symmetry code: (a) 1 +

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o2187–o2188

supporting information

Acta Cryst. (2005). E61, o2187–o2188 [https://doi.org/10.1107/S1600536805018775]

Diethyl

2,6-dibenzyl-4,8-dioxotetrahydro-2,3a,4a,6,7a,8a-hexaazacyclo-penta[def]fluorene-8b,8c-dicarboxylate

Yi-Tao Li, Zhiguo Wang, Guodong Yin and An-Xin Wu

2,6-Dibenzyl-4,8-dioxo-tetrahydro-2,3a,4a,6,7a,8a-hexaaza-cyclopenta[def] fluorene-8 b,8c-dicarboxylic acid

diethyl ester

Crystal data

C28H32N6O6 Mr = 548.60 Triclinic, P1 Hall symbol: -P 1

a = 7.6177 (6) Å

b = 12.2882 (9) Å

c = 14.9197 (11) Å

α = 95.008 (1)°

β = 101.415 (1)°

γ = 92.755 (1)°

V = 1360.69 (18) Å3

Z = 2

F(000) = 580

Dx = 1.339 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 4320 reflections

θ = 2.7–26.4°

µ = 0.10 mm−1

T = 292 K

Block, colorless 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω and φ scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.972, Tmax = 0.981

9666 measured reflections 4689 independent reflections 3734 reflections with I > 2σ(I)

Rint = 0.021

θmax = 25.0°, θmin = 1.7°

h = −8→9

k = −14→13

l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.072 wR(F2) = 0.204

S = 1.04

4689 reflections 359 parameters 14 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.1005P)2 + 1.0611P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.76 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

C1 −0.0943 (6) 0.6194 (3) −0.1051 (3) 0.0821 (12)

H1 0.0222 0.6322 −0.1138 0.099*

C2 −0.2342 (7) 0.5842 (4) −0.1814 (3) 0.0920 (14)

H2 −0.2112 0.5737 −0.2404 0.110*

C3 −0.4033 (7) 0.5661 (4) −0.1662 (4) 0.0945 (15)

H3 −0.4975 0.5422 −0.2149 0.113*

C4 −0.4334 (7) 0.5831 (4) −0.0799 (4) 0.1072 (16)

H4 −0.5495 0.5709 −0.0705 0.129*

C5 −0.3001 (6) 0.6176 (4) −0.0062 (3) 0.0891 (13)

H5 −0.3260 0.6292 0.0521 0.107*

C6 −0.1303 (5) 0.6347 (3) −0.0181 (2) 0.0642 (9)

C7 0.0193 (5) 0.6695 (3) 0.0649 (2) 0.0634 (9)

H7A −0.0333 0.6845 0.1184 0.076*

H7B 0.0959 0.6092 0.0761 0.076*

C8 0.2878 (4) 0.7873 (3) 0.1252 (2) 0.0502 (7)

H8A 0.3737 0.8322 0.1020 0.060*

H8B 0.3412 0.7190 0.1388 0.060*

C9 0.0317 (4) 0.8614 (2) 0.03958 (18) 0.0447 (7)

H9A −0.0809 0.8420 −0.0035 0.054*

H9B 0.1021 0.9119 0.0121 0.054*

C10 −0.1640 (3) 0.8962 (2) 0.15436 (18) 0.0408 (6)

C11 0.2147 (3) 0.7853 (2) 0.28057 (19) 0.0422 (6)

C12 0.1466 (3) 0.9374 (2) 0.20090 (18) 0.0377 (6)

C13 0.2473 (4) 1.0457 (2) 0.19003 (19) 0.0476 (5)

C14 0.5397 (10) 1.1343 (6) 0.2004 (5) 0.091 (2) 0.657 (6)

H14A 0.4803 1.1999 0.2144 0.109* 0.657 (6)

H14B 0.6419 1.1281 0.2496 0.109* 0.657 (6)

C15 0.5946 (11) 1.1350 (6) 0.1105 (5) 0.0940 (19) 0.657 (6)

H15A 0.6547 1.0699 0.0990 0.141* 0.657 (6)

H15B 0.6744 1.1982 0.1116 0.141* 0.657 (6)

H15C 0.4903 1.1374 0.0628 0.141* 0.657 (6)

C16 0.0558 (3) 0.9435 (2) 0.28596 (18) 0.0389 (6)

C17 0.1019 (4) 1.0491 (2) 0.3524 (2) 0.0476 (5)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o2187–o2188

H18B 0.2774 1.1781 0.4864 0.082*

C19 0.5332 (6) 1.1602 (4) 0.4762 (3) 0.0957 (14)

H19A 0.5477 1.1035 0.5169 0.144*

H19B 0.5807 1.2291 0.5098 0.144*

H19C 0.5965 1.1440 0.4276 0.144*

C20 −0.2471 (4) 0.8884 (3) 0.3078 (2) 0.0507 (7)

H20A −0.2509 0.9453 0.3566 0.061*

H20B −0.3685 0.8725 0.2727 0.061*

C21 0.0062 (4) 0.8060 (3) 0.3914 (2) 0.0514 (7)

H21A 0.0482 0.7362 0.4092 0.062*

H21B 0.0203 0.8558 0.4469 0.062*

C22 −0.2325 (4) 0.6909 (3) 0.2856 (2) 0.0558 (8)

H22A −0.1584 0.6904 0.2397 0.067*

H22B −0.3566 0.6918 0.2539 0.067*

C23 −0.2101 (5) 0.5876 (3) 0.3323 (2) 0.0605 (9)

C24 −0.1078 (7) 0.5094 (4) 0.3041 (5) 0.1110 (18)

H24 −0.0443 0.5239 0.2587 0.133*

C25 −0.0935 (10) 0.4105 (5) 0.3390 (5) 0.1365 (17)

H25 −0.0277 0.3573 0.3153 0.164*

C26 −0.1749 (9) 0.3913 (5) 0.4074 (5) 0.126 (2)

H26 −0.1584 0.3264 0.4349 0.152*

C27 −0.2819 (10) 0.4653 (5) 0.4375 (5) 0.1365 (17)

H27 −0.3408 0.4501 0.4844 0.164*

C28 −0.3045 (9) 0.5664 (4) 0.3977 (3) 0.1105 (18)

H28 −0.3817 0.6163 0.4160 0.133*

C14′ 0.4697 (18) 1.1383 (12) 0.1335 (11) 0.091 (2) 0.343 (6)

H14C 0.4949 1.1156 0.0737 0.109* 0.343 (6)

H14D 0.3804 1.1924 0.1278 0.109* 0.343 (6)

C15′ 0.6365 (18) 1.1771 (11) 0.2032 (10) 0.0940 (19) 0.343 (6)

H15D 0.6039 1.2080 0.2585 0.141* 0.343 (6)

H15E 0.7033 1.2318 0.1791 0.141* 0.343 (6)

H15F 0.7088 1.1165 0.2166 0.141* 0.343 (6)

N1 0.1270 (3) 0.7640 (2) 0.05421 (18) 0.0525 (6)

N2 −0.0060 (3) 0.91654 (18) 0.12427 (14) 0.0387 (5)

N3 0.2545 (3) 0.84417 (18) 0.21138 (15) 0.0392 (5)

N4 −0.1339 (3) 0.92994 (18) 0.24737 (15) 0.0405 (5)

N5 0.1182 (3) 0.84929 (18) 0.33161 (15) 0.0414 (5)

N6 −0.1848 (3) 0.7908 (2) 0.34832 (16) 0.0512 (6)

O1 −0.3045 (3) 0.85985 (19) 0.10672 (14) 0.0564 (6)

O2 0.2626 (3) 0.69531 (17) 0.29667 (15) 0.0583 (6)

O3 0.1732 (4) 1.12802 (19) 0.18676 (19) 0.0740 (7)

O4 0.4137 (4) 1.0353 (2) 0.1858 (3) 0.1027 (12)

O5 −0.0072 (3) 1.1066 (2) 0.37490 (18) 0.0745 (7)

(6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.065 (2) 0.065 (2) 0.112 (3) 0.0057 (19) 0.010 (2) 0.000 (2)

C2 0.112 (4) 0.080 (3) 0.074 (3) 0.013 (3) 0.000 (2) −0.012 (2)

C3 0.088 (3) 0.072 (3) 0.099 (4) −0.011 (2) −0.029 (3) −0.010 (2)

C4 0.083 (3) 0.096 (4) 0.130 (5) −0.029 (3) 0.001 (3) 0.008 (3)

C5 0.082 (3) 0.088 (3) 0.089 (3) −0.020 (2) 0.005 (2) 0.005 (2)

C6 0.081 (3) 0.0390 (17) 0.062 (2) −0.0016 (16) −0.0070 (18) −0.0041 (14)

C7 0.065 (2) 0.059 (2) 0.062 (2) −0.0012 (16) 0.0076 (16) 0.0049 (16)

C8 0.0367 (15) 0.0535 (18) 0.0567 (17) 0.0044 (13) 0.0054 (13) −0.0056 (14)

C9 0.0444 (15) 0.0468 (16) 0.0394 (14) −0.0012 (12) 0.0031 (12) −0.0002 (12)

C10 0.0355 (14) 0.0399 (14) 0.0440 (14) 0.0073 (11) 0.0002 (11) 0.0028 (11)

C11 0.0318 (13) 0.0398 (15) 0.0480 (15) −0.0019 (11) −0.0074 (11) 0.0033 (12)

C12 0.0339 (13) 0.0348 (13) 0.0410 (14) −0.0015 (10) 0.0009 (11) 0.0015 (11)

C13 0.0499 (12) 0.0443 (12) 0.0453 (11) −0.0042 (9) 0.0047 (9) 0.0012 (9)

C14 0.078 (4) 0.088 (4) 0.110 (5) −0.037 (4) 0.031 (4) 0.019 (5)

C15 0.109 (5) 0.070 (4) 0.115 (5) 0.007 (3) 0.038 (4) 0.038 (4)

C16 0.0344 (13) 0.0385 (14) 0.0404 (14) 0.0000 (11) 0.0000 (11) 0.0028 (11)

C17 0.0499 (12) 0.0443 (12) 0.0453 (11) −0.0042 (9) 0.0047 (9) 0.0012 (9)

C18 0.071 (2) 0.059 (2) 0.064 (2) −0.0137 (17) 0.0001 (17) −0.0186 (16)

C19 0.078 (3) 0.076 (3) 0.109 (3) −0.023 (2) −0.021 (2) −0.014 (2)

C20 0.0402 (16) 0.0619 (19) 0.0492 (16) 0.0006 (13) 0.0104 (13) −0.0007 (14)

C21 0.0530 (17) 0.0582 (18) 0.0400 (15) −0.0064 (14) 0.0027 (13) 0.0083 (13)

C22 0.0545 (18) 0.061 (2) 0.0474 (16) −0.0087 (15) 0.0039 (14) 0.0048 (14)

C23 0.0967 (19) 0.090 (2) 0.0979 (19) −0.0178 (16) −0.0018 (15) 0.0085 (15)

C24 0.096 (3) 0.090 (3) 0.168 (5) 0.022 (3) 0.055 (4) 0.059 (3)

C25 0.168 (5) 0.099 (3) 0.158 (4) −0.012 (3) 0.061 (4) 0.051 (3)

C26 0.132 (5) 0.096 (4) 0.141 (5) −0.009 (4) −0.013 (4) 0.064 (4)

C27 0.168 (5) 0.099 (3) 0.158 (4) −0.012 (3) 0.061 (4) 0.051 (3)

C28 0.173 (5) 0.072 (3) 0.098 (3) −0.025 (3) 0.062 (4) 0.010 (2)

C14′ 0.078 (4) 0.088 (4) 0.110 (5) −0.037 (4) 0.031 (4) 0.019 (5)

C15′ 0.109 (5) 0.070 (4) 0.115 (5) 0.007 (3) 0.038 (4) 0.038 (4)

N1 0.0468 (14) 0.0444 (14) 0.0583 (15) 0.0010 (11) −0.0026 (11) −0.0072 (11)

N2 0.0353 (12) 0.0405 (12) 0.0371 (11) 0.0015 (9) 0.0003 (9) 0.0031 (9)

N3 0.0301 (11) 0.0396 (12) 0.0449 (12) 0.0013 (9) 0.0015 (9) 0.0014 (10)

N4 0.0335 (12) 0.0446 (13) 0.0415 (12) 0.0024 (9) 0.0032 (9) 0.0033 (10)

N5 0.0382 (12) 0.0432 (13) 0.0396 (12) −0.0004 (10) −0.0003 (9) 0.0068 (10)

N6 0.0450 (14) 0.0621 (16) 0.0447 (13) −0.0062 (12) 0.0069 (11) 0.0062 (12)

O1 0.0318 (11) 0.0740 (15) 0.0558 (12) 0.0017 (10) −0.0047 (9) −0.0044 (10)

O2 0.0573 (13) 0.0448 (12) 0.0695 (14) 0.0121 (10) −0.0007 (11) 0.0140 (10)

O3 0.0782 (17) 0.0416 (13) 0.0966 (19) −0.0021 (12) 0.0015 (14) 0.0159 (12)

O4 0.0722 (18) 0.0540 (15) 0.155 (4) −0.0157 (13) 0.071 (2) −0.0018 (18)

O5 0.0609 (15) 0.0684 (16) 0.0875 (18) 0.0064 (12) 0.0142 (13) −0.0290 (13)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o2187–o2188

Geometric parameters (Å, º)

C1—C6 1.378 (6) C16—N4 1.442 (3)

C1—C2 1.417 (6) C16—N5 1.446 (3)

C1—H1 0.9300 C16—C17 1.545 (4)

C2—C3 1.363 (7) C17—O5 1.195 (4)

C2—H2 0.9300 C17—O6 1.320 (4)

C3—C4 1.352 (7) C18—C19 1.455 (6)

C3—H3 0.9300 C18—O6 1.459 (4)

C4—C5 1.362 (7) C18—H18A 0.9700

C4—H4 0.9300 C18—H18B 0.9700

C5—C6 1.350 (6) C19—H19A 0.9600

C5—H5 0.9300 C19—H19B 0.9600

C6—C7 1.522 (5) C19—H19C 0.9600

C7—N1 1.428 (4) C20—N6 1.449 (4)

C7—H7A 0.9700 C20—N4 1.470 (4)

C7—H7B 0.9700 C20—H20A 0.9700

C8—N1 1.451 (4) C20—H20B 0.9700

C8—N3 1.482 (4) C21—N6 1.465 (4)

C8—H8A 0.9700 C21—N5 1.466 (4)

C8—H8B 0.9700 C21—H21A 0.9700

C9—N1 1.440 (4) C21—H21B 0.9700

C9—N2 1.467 (3) C22—N6 1.462 (4)

C9—H9A 0.9700 C22—C23 1.502 (5)

C9—H9B 0.9700 C22—H22A 0.9700

C10—O1 1.203 (3) C22—H22B 0.9700

C10—N4 1.384 (3) C23—C24 1.356 (6)

C10—N2 1.385 (4) C23—C28 1.357 (6)

C11—O2 1.210 (3) C24—C25 1.365 (7)

C11—N5 1.382 (4) C24—H24 0.9300

C11—N3 1.383 (4) C25—C26 1.326 (9)

C12—N3 1.443 (3) C25—H25 0.9300

C12—N2 1.455 (3) C26—C27 1.356 (9)

C12—C13 1.541 (4) C26—H26 0.9300

C12—C16 1.559 (4) C27—C28 1.427 (8)

C13—O3 1.182 (4) C27—H27 0.9300

C13—O4 1.293 (4) C28—H28 0.9300

C14—C15 1.483 (7) C14′—C15′ 1.502 (10)

C14—O4 1.486 (7) C14′—O4 1.627 (14)

C14—H14A 0.9700 C14′—H14C 0.9700

C14—H14B 0.9700 C14′—H14D 0.9700

C15—H15A 0.9600 C15′—H15D 0.9600

C15—H15B 0.9600 C15′—H15E 0.9600

C15—H15C 0.9600 C15′—H15F 0.9600

C6—C1—C2 120.2 (4) H19A—C19—H19B 109.5

C6—C1—H1 119.9 C18—C19—H19C 109.5

(8)

C3—C2—C1 118.4 (5) H19B—C19—H19C 109.5

C3—C2—H2 120.8 N6—C20—N4 113.5 (2)

C1—C2—H2 120.8 N6—C20—H20A 108.9

C4—C3—C2 119.6 (4) N4—C20—H20A 108.9

C4—C3—H3 120.2 N6—C20—H20B 108.9

C2—C3—H3 120.2 N4—C20—H20B 108.9

C3—C4—C5 122.5 (5) H20A—C20—H20B 107.7

C3—C4—H4 118.7 N6—C21—N5 113.5 (2)

C5—C4—H4 118.7 N6—C21—H21A 108.9

C6—C5—C4 119.7 (5) N5—C21—H21A 108.9

C6—C5—H5 120.2 N6—C21—H21B 108.9

C4—C5—H5 120.2 N5—C21—H21B 108.9

C5—C6—C1 119.6 (4) H21A—C21—H21B 107.7

C5—C6—C7 119.5 (4) N6—C22—C23 113.8 (3)

C1—C6—C7 120.9 (4) N6—C22—H22A 108.8

N1—C7—C6 113.5 (3) C23—C22—H22A 108.8

N1—C7—H7A 108.9 N6—C22—H22B 108.8

C6—C7—H7A 108.9 C23—C22—H22B 108.8

N1—C7—H7B 108.9 H22A—C22—H22B 107.7

C6—C7—H7B 108.9 C24—C23—C28 118.7 (4)

H7A—C7—H7B 107.7 C24—C23—C22 120.5 (4)

N1—C8—N3 113.5 (2) C28—C23—C22 120.6 (4)

N1—C8—H8A 108.9 C23—C24—C25 123.1 (5)

N3—C8—H8A 108.9 C23—C24—H24 118.5

N1—C8—H8B 108.9 C25—C24—H24 118.5

N3—C8—H8B 108.9 C26—C25—C24 119.0 (7)

H8A—C8—H8B 107.7 C26—C25—H25 120.5

N1—C9—N2 113.3 (2) C24—C25—H25 120.5

N1—C9—H9A 108.9 C25—C26—C27 120.6 (6)

N2—C9—H9A 108.9 C25—C26—H26 119.7

N1—C9—H9B 108.9 C27—C26—H26 119.7

N2—C9—H9B 108.9 C26—C27—C28 120.4 (6)

H9A—C9—H9B 107.7 C26—C27—H27 119.8

O1—C10—N4 126.2 (3) C28—C27—H27 119.8

O1—C10—N2 125.6 (3) C23—C28—C27 118.0 (5)

N4—C10—N2 108.1 (2) C23—C28—H28 121.0

O2—C11—N5 125.5 (3) C27—C28—H28 121.0

O2—C11—N3 126.2 (3) C15′—C14′—O4 96.4 (10)

N5—C11—N3 108.2 (2) C15′—C14′—H14C 112.5

N3—C12—N2 111.9 (2) O4—C14′—H14C 112.5

N3—C12—C13 115.6 (2) C15′—C14′—H14D 112.5

N2—C12—C13 108.1 (2) O4—C14′—H14D 112.5

N3—C12—C16 104.3 (2) H14C—C14′—H14D 110.0

N2—C12—C16 102.7 (2) C14′—C15′—H15D 109.5

C13—C12—C16 113.5 (2) C14′—C15′—H15E 109.5

O3—C13—O4 125.9 (3) H15D—C15′—H15E 109.5

(9)

supporting information

sup-7 Acta Cryst. (2005). E61, o2187–o2188

C15—C14—O4 102.4 (6) H15E—C15′—H15F 109.5

C15—C14—H14A 111.3 C7—N1—C9 115.1 (3)

O4—C14—H14A 111.3 C7—N1—C8 114.3 (3)

C15—C14—H14B 111.3 C9—N1—C8 110.7 (2)

O4—C14—H14B 111.3 C10—N2—C12 111.4 (2)

H14A—C14—H14B 109.2 C10—N2—C9 123.0 (2)

N4—C16—N5 111.5 (2) C12—N2—C9 115.8 (2)

N4—C16—C17 111.0 (2) C11—N3—C12 110.7 (2)

N5—C16—C17 110.6 (2) C11—N3—C8 120.7 (2)

N4—C16—C12 104.5 (2) C12—N3—C8 115.9 (2)

N5—C16—C12 103.0 (2) C10—N4—C16 110.7 (2)

C17—C16—C12 115.9 (2) C10—N4—C20 122.4 (2)

O5—C17—O6 125.9 (3) C16—N4—C20 115.6 (2)

O5—C17—C16 124.2 (3) C11—N5—C16 111.8 (2)

O6—C17—C16 109.8 (2) C11—N5—C21 124.0 (2)

C19—C18—O6 108.5 (3) C16—N5—C21 116.2 (2)

C19—C18—H18A 110.0 C20—N6—C22 113.4 (2)

O6—C18—H18A 110.0 C20—N6—C21 110.9 (2)

C19—C18—H18B 110.0 C22—N6—C21 114.0 (3)

O6—C18—H18B 110.0 C13—O4—C14 119.4 (4)

H18A—C18—H18B 108.4 C13—O4—C14′ 105.2 (6)

C18—C19—H19A 109.5 C17—O6—C18 116.3 (2)

C18—C19—H19B 109.5

C6—C1—C2—C3 0.0 (6) C16—C12—N2—C9 −154.9 (2)

C1—C2—C3—C4 0.7 (7) N1—C9—N2—C10 −92.6 (3)

C2—C3—C4—C5 −0.3 (8) N1—C9—N2—C12 50.4 (3)

C3—C4—C5—C6 −0.7 (8) O2—C11—N3—C12 168.5 (3)

C4—C5—C6—C1 1.4 (6) N5—C11—N3—C12 −14.6 (3)

C4—C5—C6—C7 −178.0 (4) O2—C11—N3—C8 28.3 (4)

C2—C1—C6—C5 −1.0 (6) N5—C11—N3—C8 −154.8 (2)

C2—C1—C6—C7 178.3 (3) N2—C12—N3—C11 −99.9 (2)

C5—C6—C7—N1 −128.9 (4) C13—C12—N3—C11 135.7 (2)

C1—C6—C7—N1 51.8 (4) C16—C12—N3—C11 10.4 (3)

N3—C12—C13—O3 −175.3 (3) N2—C12—N3—C8 42.3 (3)

N2—C12—C13—O3 58.4 (3) C13—C12—N3—C8 −82.1 (3)

C16—C12—C13—O3 −54.8 (4) C16—C12—N3—C8 152.6 (2)

N3—C12—C13—O4 4.3 (4) N1—C8—N3—C11 90.3 (3)

N2—C12—C13—O4 −122.0 (3) N1—C8—N3—C12 −47.9 (3)

C16—C12—C13—O4 124.8 (3) O1—C10—N4—C16 166.1 (3)

N3—C12—C16—N4 −119.1 (2) N2—C10—N4—C16 −16.8 (3)

N2—C12—C16—N4 −2.2 (2) O1—C10—N4—C20 24.2 (4)

C13—C12—C16—N4 114.3 (2) N2—C10—N4—C20 −158.7 (2)

N3—C12—C16—N5 −2.5 (2) N5—C16—N4—C10 −99.0 (2)

N2—C12—C16—N5 114.4 (2) C17—C16—N4—C10 137.2 (2)

C13—C12—C16—N5 −129.2 (2) C12—C16—N4—C10 11.5 (3)

N3—C12—C16—C17 118.4 (2) N5—C16—N4—C20 45.7 (3)

(10)

C13—C12—C16—C17 −8.2 (3) C12—C16—N4—C20 156.2 (2)

N4—C16—C17—O5 6.1 (4) N6—C20—N4—C10 89.7 (3)

N5—C16—C17—O5 −118.2 (3) N6—C20—N4—C16 −50.5 (3)

C12—C16—C17—O5 125.1 (3) O2—C11—N5—C16 −170.1 (3)

N4—C16—C17—O6 −175.3 (2) N3—C11—N5—C16 13.0 (3)

N5—C16—C17—O6 60.4 (3) O2—C11—N5—C21 −22.6 (4)

C12—C16—C17—O6 −56.3 (3) N3—C11—N5—C21 160.5 (2)

N6—C22—C23—C24 −125.3 (4) N4—C16—N5—C11 105.4 (2)

N6—C22—C23—C28 60.7 (5) C17—C16—N5—C11 −130.6 (2)

C28—C23—C24—C25 −0.7 (9) C12—C16—N5—C11 −6.2 (3)

C22—C23—C24—C25 −174.8 (5) N4—C16—N5—C21 −44.9 (3)

C23—C24—C25—C26 −3.9 (11) C17—C16—N5—C21 79.1 (3)

C24—C25—C26—C27 5.0 (11) C12—C16—N5—C21 −156.4 (2)

C25—C26—C27—C28 −1.7 (11) N6—C21—N5—C11 −97.9 (3)

C24—C23—C28—C27 3.9 (8) N6—C21—N5—C16 48.3 (3)

C22—C23—C28—C27 178.0 (5) N4—C20—N6—C22 −79.0 (3)

C26—C27—C28—C23 −2.8 (9) N4—C20—N6—C21 50.7 (3)

C6—C7—N1—C9 60.2 (4) C23—C22—N6—C20 −165.7 (3)

C6—C7—N1—C8 −169.9 (3) C23—C22—N6—C21 66.1 (3)

N2—C9—N1—C7 78.6 (3) N5—C21—N6—C20 −49.7 (3)

N2—C9—N1—C8 −52.9 (3) N5—C21—N6—C22 79.8 (3)

N3—C8—N1—C7 −80.3 (3) O3—C13—O4—C14 15.9 (7)

N3—C8—N1—C9 51.7 (3) C12—C13—O4—C14 −163.7 (4)

O1—C10—N2—C12 −167.5 (3) O3—C13—O4—C14′ −23.3 (7)

N4—C10—N2—C12 15.4 (3) C12—C13—O4—C14′ 157.1 (6)

O1—C10—N2—C9 −23.2 (4) C15—C14—O4—C13 −117.0 (6)

N4—C10—N2—C9 159.7 (2) C15—C14—O4—C14′ −39.8 (10)

N3—C12—N2—C10 103.6 (2) C15′—C14′—O4—C13 129.1 (9)

C13—C12—N2—C10 −128.0 (2) C15′—C14′—O4—C14 10.7 (8)

C16—C12—N2—C10 −7.8 (3) O5—C17—O6—C18 −7.4 (5)

N3—C12—N2—C9 −43.6 (3) C16—C17—O6—C18 173.9 (3)

C13—C12—N2—C9 84.9 (3) C19—C18—O6—C17 170.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C8—H8A···O1i 0.97 2.44 3.261 (3) 142

Figure

Figure 1View of (I) showing 30% displacement ellipsoids (arbitrary spheres forthe H atoms)
Figure 2

References

Related documents

Concerning evidence of insulin resistance and the cutaneous proof of dyslipidemia in this study, we did show in similarity to Boza JC et al., that central obesity is associated

In countries in which the dynamic status effect is strong (weak) inequality rises (declines) over time in response to a positive productiv- ity shock.. JEL classification: D11,

The result of the simple model suggests that when the structure of economy changes, the cost of economically motivated crime will also change; thus, affecting the impact of crime

This results in the following chicken and egg problem: it is difficult to produce groundbreaking research within a short time frame but long investments into research are hard to

Ca urmare a aderării României la Pactul Fiscal European, primii pași în aceaste direcții s-au întreprins deja, în Programul de convergenţă 2017-2020 (Guvernul

For instance, Lee (2008) corrects English verb inflection errors, but they do not deal with tense/aspect errors because the choice of tense and aspect highly depends on global

It is shown that TSL languages are necessarily star-free, but are incomparable with other known sub-star-free classes, and that natural groups of languages within the class are

The data further show that even when the correct choice is far from the pronoun, subjects will choose it in preference to ~he nearer condidate, thus