• No results found

4 [4,5 Bis(4 meth­oxy­phenyl) 1H imidazol 2 yl]­benzo­nitrile

N/A
N/A
Protected

Academic year: 2020

Share "4 [4,5 Bis(4 meth­oxy­phenyl) 1H imidazol 2 yl]­benzo­nitrile"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1976

Liu, Zhong and Xu C

24H19N3O2 doi:10.1107/S1600536805016946 Acta Cryst.(2005). E61, o1976–o1977 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4-[4,5-Bis(4-methoxyphenyl)-1

H

-imidazol-2-yl]-benzonitrile

Xu-Feng Liu, Zeng-Pei Zhong* and Zun-Le Xu

School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

Correspondence e-mail: ceszzp@zsu.edu.cn

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.003 A˚ Disorder in main residue

Rfactor = 0.054

wRfactor = 0.130

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C24H19N3O2, is an analogue of lophine

and exhibits two-photon induced blue fluorescent emission. It adopts a distorted T-shape.

Comment

Heterocyclic imidazoles based on a non-linear optical (NLO) chromophore have received increasing interest due to their excellent thermal stability in guest–host systems (Santoset al., 2001). Previously, we found this type of compound to exhibit two-photon induced blue fluorescent emission (Huang et al., 2002, 2003). In our recent research, the title compound, (I), was found to have the same property.

Compound (I) was obtained in high yield by refluxing a mixture of 4-cyanobenzaldehyde, 4,40-dimethoxybenzil and

ammonium acetate in acetic acid for 3 h (Nakashima et al., 1998). The structure of (I) was also confirmed by 1H NMR, elemental analysis and FAB–MS spectroscopic analysis.

Compound (I) has a distorted T-shaped molecule (Fig. 1). Adjacent molecules are arrangement in a staggered manner (Fig. 2).

[image:1.610.207.460.530.705.2]

Received 15 April 2005 Accepted 27 May 2005 Online 10 June 2005

Figure 1

(2)

Experimental

Compound (I) was obtained, in 91% yield, by refluxing 4-cyano-benzaldehyde, 4,40-dimethoxybenzil and ammonium acetate in acetic acid for 3 h. A single crystal suitable for X-ray analysis was obtained from ethanol (m.p. 504 K).1H NMR (500 MHz in DMSO/TMS):

3.79 (s, 6H), 6.93–6.96 (m, 2H), 6.99–7.02 (m, 2H), 7.40–7.45 (m, 4H), 7.90 (d, J= 10.0 Hz, 2H), 8.21 (d, J= 10.0 Hz, 2H). Elemental analysis (%) calculated for C24H19N3O2: C 75.57, H 5.02, N 11.02; found C 75.69, H 11.11, N 10.94. FAB–MSm/z(%): 382 (M++ H, 8).

Crystal data

C24H19N3O2 Mr= 381.42 Orthorhombic,Pbca a= 9.801 (3) A˚

b= 15.549 (4) A˚

c= 26.142 (7) A˚

V= 3984.1 (19) A˚3 Z= 8

Dx= 1.272 Mg m3

MoKradiation Cell parameters from 4326

reflections = 2.6–27.0

= 0.08 mm1 T= 273 (2) K Block, colorless 0.480.370.32 mm

Data collection

Bruker SMART CCD 1K area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.961,Tmax= 0.974

17659 measured reflections

4326 independent reflections 2563 reflections withI> 2(I)

Rint= 0.041

max= 27.1 h=12!12

k=19!19

l=33!18

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.054 wR(F2) = 0.130 S= 1.02 4326 reflections 261 parameters Only H-atomU’s refined

w= 1/[2(Fo2) + (0.0634P)2

+ 2.2522P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.38 e A˚

3

min=0.56 e A˚

3

All H atoms were included as riding atoms (C—H = 0.96 A˚ ) and their isotropic displacement parameters were refined. One of the methoxy groups (atoms C24A/C24Band O2A/O2B) exhibits twofold disorder and these atoms were refined isotropically with site-occu-pancy factors 0.453 (10) and 0.547 (10).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTLandPLATON(Spek, 2003).

This project is supported by the Guangdong Provincial Natural Science Foundation of China.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1998).SMART(Version 5.625) andSAINT(Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, Z. L., Lei, H., Li, N., Qiu, Z. R., Wang, H. Z., Guo, J. D., Luo, Y., Zhong, Z. P., Liu, X. F. & Zhou, Z. H. (2003).J. Mater. Chem.13, 1–5. Huang, Z. L., Li, N., Lei, H., Qiu, Z. R., Wang, H. Z., Zhong, Z. P. & Zhou, Z.

H. (2002).Chem Commun.pp. 2400–2401.

Nakashima, K., Fukuzaki, Y., Nomura, R., Shimoda, R., Nakamura, Y., Kuroda, N., Akiyama, S. & Irgum, K. (1998).Dyes Pigments,38, 127–136. Santos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Gunter, P.

(2001).Tetrahedron Lett.42, 805–808.

[image:2.610.316.564.75.228.2]

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o1976–o1977

supporting information

Acta Cryst. (2005). E61, o1976–o1977 [https://doi.org/10.1107/S1600536805016946]

4-[4,5-Bis(4-methoxyphenyl)-1

H

-imidazol-2-yl]benzonitrile

Xu-Feng Liu, Zeng-Pei Zhong and Zun-Le Xu

4-[4,5-Bis(4-methoxyphenyl)-1H-imidazol-2-yl]benzonitrile

Crystal data C24H19N3O2

Mr = 381.42

Orthorhombic, Pbca Hall symbol: -P 2ac 2ab a = 9.801 (3) Å

b = 15.549 (4) Å c = 26.142 (7) Å V = 3984.1 (19) Å3

Z = 8

F(000) = 1600 Dx = 1.272 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4326 reflections θ = 2.6–27.0°

µ = 0.08 mm−1

T = 273 K Block, colorless 0.48 × 0.37 × 0.32 mm

Data collection

Bruker SMART CCD 1K area-detector diffractometer

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.961, Tmax = 0.974

17659 measured reflections

4326 independent reflections 2563 reflections with I > 2σ(I) Rint = 0.041

θmax = 27.1°, θmin = 2.6°

h = −12→12 k = −19→19 l = −33→18

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.054

wR(F2) = 0.130

S = 1.02 4326 reflections 261 parameters

4 restraints

Only H-atom displacement parameters refined w = 1/[σ2(F

o2) + (0.0634P)2 + 2.2522P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.38 e Å−3

Δρmin = −0.56 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

O1 −0.1756 (2) 0.30445 (13) 0.00221 (6) 0.0669 (6)

(4)

O2B 0.5977 (3) 0.4568 (2) 0.1741 (2) 0.0599 (14)* 0.547 (10) N1 −0.03100 (18) 0.16509 (12) 0.22640 (6) 0.0365 (4)

H1A −0.1083 0.1414 0.2198 0.044* N2 0.15676 (18) 0.19979 (12) 0.26803 (6) 0.0375 (4) N3 −0.2246 (3) −0.02281 (18) 0.48686 (10) 0.0870 (9) C1 0.0502 (2) 0.12506 (16) 0.36298 (8) 0.0426 (6) H1 0.1312 0.1561 0.3647 0.051* C2 −0.0146 (2) 0.11409 (14) 0.31590 (7) 0.0342 (5) C3 0.0395 (2) 0.15785 (14) 0.27065 (8) 0.0344 (5) C4 0.1590 (2) 0.23811 (14) 0.22041 (8) 0.0357 (5) C5 0.0422 (2) 0.21675 (14) 0.19388 (8) 0.0343 (5) C6 −0.1337 (2) 0.06622 (15) 0.31409 (9) 0.0434 (6) H6 −0.1770 0.0572 0.2829 0.052* C7 −0.1890 (3) 0.03175 (16) 0.35818 (9) 0.0477 (6) H7 −0.2695 0.0003 0.3565 0.057* C8 −0.1246 (3) 0.04394 (15) 0.40491 (8) 0.0436 (6) C9 −0.0042 (3) 0.09058 (16) 0.40698 (9) 0.0467 (6) H9 0.0398 0.0986 0.4381 0.056* C10 −0.1822 (3) 0.00799 (18) 0.45080 (10) 0.0578 (7) C11 0.2726 (2) 0.29387 (15) 0.20442 (8) 0.0386 (5) C12 0.3309 (3) 0.35160 (17) 0.23854 (10) 0.0514 (6) H12 0.2973 0.3551 0.2718 0.062* C13 0.4376 (3) 0.40379 (18) 0.22395 (12) 0.0629 (8) H13 0.4748 0.4419 0.2476 0.076* C14 0.4902 (2) 0.40073 (16) 0.17515 (13) 0.0615 (8) C15 0.4324 (3) 0.34407 (18) 0.14061 (11) 0.0585 (8) H15 0.4656 0.3414 0.1073 0.070* C16 0.3252 (2) 0.29106 (16) 0.15525 (10) 0.0456 (6) H16 0.2880 0.2530 0.1316 0.055* C17 −0.0113 (2) 0.23867 (14) 0.14317 (8) 0.0353 (5) C18 −0.0015 (2) 0.32100 (15) 0.12327 (8) 0.0412 (5) H18 0.0428 0.3636 0.1419 0.049* C19 −0.0565 (2) 0.34054 (16) 0.07613 (9) 0.0452 (6) H19 −0.0481 0.3959 0.0631 0.054* C20 −0.1239 (2) 0.27831 (17) 0.04820 (8) 0.0441 (6) C21 −0.1337 (3) 0.19588 (17) 0.06687 (8) 0.0482 (6) H21 −0.1776 0.1534 0.0480 0.058* C22 −0.0774 (2) 0.17702 (16) 0.11402 (8) 0.0435 (6) H22 −0.0840 0.1212 0.1266 0.052* C23 −0.2822 (4) 0.2570 (2) −0.01908 (11) 0.0846 (11) H23A −0.3084 0.2821 −0.0511 0.127* H23B −0.3587 0.2573 0.0038 0.127* H23C −0.2527 0.1988 −0.0246 0.127*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o1976–o1977

H24D 0.7534 0.4805 0.1305 0.117* 0.547 (10) H24E 0.6227 0.4514 0.1006 0.117* 0.547 (10) H24F 0.7091 0.3836 0.1309 0.117* 0.547 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0731 (13) 0.0811 (14) 0.0465 (10) −0.0207 (11) −0.0216 (9) 0.0206 (10) N1 0.0314 (9) 0.0441 (11) 0.0341 (10) −0.0072 (8) −0.0013 (7) −0.0002 (8) N2 0.0312 (10) 0.0452 (11) 0.0362 (10) −0.0021 (9) −0.0015 (8) 0.0025 (8) N3 0.123 (3) 0.0772 (19) 0.0605 (16) −0.0118 (17) 0.0285 (16) 0.0173 (14) C1 0.0370 (12) 0.0502 (14) 0.0406 (12) −0.0026 (11) −0.0040 (10) 0.0034 (11) C2 0.0306 (11) 0.0363 (12) 0.0357 (11) 0.0029 (10) 0.0005 (9) 0.0023 (9) C3 0.0312 (11) 0.0390 (12) 0.0330 (11) 0.0004 (10) −0.0004 (9) −0.0003 (9) C4 0.0319 (11) 0.0400 (13) 0.0350 (11) −0.0009 (10) 0.0026 (9) −0.0004 (9) C5 0.0313 (11) 0.0388 (12) 0.0330 (11) −0.0023 (10) 0.0031 (9) −0.0008 (9) C6 0.0443 (14) 0.0446 (14) 0.0412 (13) −0.0043 (11) −0.0032 (10) 0.0023 (10) C7 0.0472 (14) 0.0429 (14) 0.0531 (15) −0.0111 (12) 0.0033 (11) 0.0063 (11) C8 0.0549 (15) 0.0368 (13) 0.0393 (12) 0.0024 (12) 0.0084 (11) 0.0053 (10) C9 0.0529 (15) 0.0514 (15) 0.0358 (12) 0.0000 (13) −0.0041 (11) 0.0038 (11) C10 0.0739 (19) 0.0497 (16) 0.0499 (15) −0.0016 (15) 0.0118 (13) 0.0092 (13) C11 0.0295 (11) 0.0409 (13) 0.0455 (13) 0.0006 (10) −0.0027 (9) 0.0063 (10) C12 0.0471 (14) 0.0529 (16) 0.0543 (15) −0.0068 (13) −0.0078 (12) 0.0037 (12) C13 0.0485 (16) 0.0516 (17) 0.089 (2) −0.0145 (14) −0.0167 (15) 0.0069 (15) C14 0.0297 (13) 0.0402 (15) 0.115 (3) −0.0059 (12) 0.0046 (15) 0.0234 (16) C15 0.0431 (14) 0.0549 (17) 0.0774 (19) 0.0078 (14) 0.0225 (13) 0.0215 (14) C16 0.0369 (13) 0.0468 (14) 0.0531 (14) 0.0026 (11) 0.0057 (11) 0.0059 (11) C17 0.0312 (11) 0.0434 (13) 0.0313 (11) −0.0017 (10) 0.0018 (9) −0.0004 (9) C18 0.0389 (12) 0.0427 (13) 0.0419 (12) −0.0048 (11) −0.0024 (10) −0.0030 (10) C19 0.0457 (13) 0.0436 (14) 0.0462 (13) −0.0021 (12) −0.0017 (11) 0.0087 (11) C20 0.0416 (13) 0.0569 (16) 0.0337 (12) −0.0058 (12) −0.0014 (10) 0.0070 (10) C21 0.0547 (15) 0.0542 (16) 0.0357 (12) −0.0168 (13) −0.0063 (11) −0.0017 (11) C22 0.0502 (14) 0.0429 (14) 0.0375 (12) −0.0103 (12) −0.0003 (10) 0.0046 (10) C23 0.091 (2) 0.106 (3) 0.0569 (18) −0.024 (2) −0.0336 (17) 0.0160 (18)

Geometric parameters (Å, º)

(6)

N3—C10 1.136 (3) C18—C19 1.379 (3) C1—C9 1.377 (3) C18—H18 0.9300 C1—C2 1.395 (3) C19—C20 1.381 (3) C1—H1 0.9300 C19—H19 0.9300 C2—C6 1.386 (3) C20—C21 1.375 (3) C2—C3 1.464 (3) C21—C22 1.382 (3) C4—C5 1.380 (3) C21—H21 0.9300 C4—C11 1.472 (3) C22—H22 0.9300 C5—C17 1.466 (3) C23—H23A 0.9600 C6—C7 1.381 (3) C23—H23B 0.9600 C6—H6 0.9300 C23—H23C 0.9600 C7—C8 1.388 (3) C24A—H24A 0.9600 C7—H7 0.9300 C24A—H24B 0.9600 C8—C9 1.386 (3) C24A—H24C 0.9600 C8—C10 1.439 (3) C24B—H24D 0.9600 C9—H9 0.9300 C24B—H24E 0.9600 C11—C16 1.386 (3) C24B—H24F 0.9600

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o1976–o1977

C7—C8—C10 120.1 (2) O1—C23—H23C 109.5 C1—C9—C8 120.1 (2) H23A—C23—H23C 109.5 C1—C9—H9 120.0 H23B—C23—H23C 109.5 C8—C9—H9 120.0 O2A—C24A—H24A 109.5 N3—C10—C8 177.5 (3) O2A—C24A—H24B 109.5 C16—C11—C12 117.6 (2) H24A—C24A—H24B 109.5 C16—C11—C4 121.8 (2) O2A—C24A—H24C 109.5 C12—C11—C4 120.6 (2) H24A—C24A—H24C 109.5 C13—C12—C11 121.0 (3) H24B—C24A—H24C 109.5 C13—C12—H12 119.5 O2B—C24B—H24D 109.5 C11—C12—H12 119.5 O2B—C24B—H24E 109.5 C14—C13—C12 121.4 (3) H24D—C24B—H24E 109.5 C14—C13—H13 119.3 O2B—C24B—H24F 109.5 C12—C13—H13 119.3 H24D—C24B—H24F 109.5 O2A—C14—C13 129.4 (4) H24E—C24B—H24F 109.5 O2B—C14—C13 106.5 (3)

(8)

Figure

Figure 1View of the title molecule, showing the atom-labelling scheme.Displacement ellipsoids are drawn at the 30% probability level
Figure 2

References

Related documents

conclusion: CDX2 expression has inverse relation with tumour grade and is an independent marker of clinical outcome in gallbladder adenocarcinoma.... A 3-4µ thin section

To investigate the transferability of adversarial examples in image captioning, we first use the tar- geted caption method to find adversarial examples for 1,000 images in model A

We ad- dress this problem by using several novel encoder-decoder architectures, including a multi-task learning (MTL) architecture us- ing a grapheme-to-phoneme dictionary as

The study therefore considers seven states, namely Kerala, Punjab, West Bengal, Uttar Pradesh, Orissa, Madhya Pradesh and Tamil Nadu for comparative analysis of long run

To further assess our ASL synthesis approach, we conducted a user study where ASL signers watched short animations of ASL sentences with identical hand movements but differing in

Cuadro 3. Carácter de los sectores de actividad por género, salario medio y valor mediano.. Si adoptamos ahora la perspectiva de los sectores de actividad, las pautas

34 Each state is classified according to the legal status of branching in 1931 (Federal Reserve 1937). The few branches in states where branching was illegal were likely

The toolkit in- cludes two standalone command-line tools that do not require any knowledge of the Python pro- gramming language: one that can be used for automatically obtaining