• No results found

Di μ iodo bis­­[(aceto­nitrile κN)(tri­phenyl­phosphite κP)copper(I)]

N/A
N/A
Protected

Academic year: 2020

Share "Di μ iodo bis­­[(aceto­nitrile κN)(tri­phenyl­phosphite κP)copper(I)]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, m1041±m1043 DOI: 10.1107/S1600536803023304 Christian NaÈtheret al. [Cu2I2(C2H3N)2(C18H15O3P)2]

m1041

metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-

l

-iodo-bis[(acetonitrile-

j

N

)(triphenyl-phosphite-

j

P

)copper(I)]

Christian NaÈther,* Tobias Steinhoff and Inke Jeû

Institut fuÈr Anorganische Chemie, Christian-Albrechts-UniversitaÈt Kiel, Olshausenstraûe 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.026

wRfactor = 0.066

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, [Cu2I2(C2H3N)2(C18H15O3P)2], (CuI)2

rings are found in which each Cu atom is coordinated by one triphenylphosphite ligand and one acetonitrile ligand within a slightly distorted tetrahedron. All atoms are located in general positions and the (CuI)2 rings are located on centres of

inversion. In the crystal structure, the Cu and I atoms are packed in a layer-like arrangement.

Comment

We are interested in the synthesis, crystal structure and thermal properties of coordination polymers built up of copper(I) halides and aromatic N-donor ligands. For one speci®c copper(I) halide and one speci®c N-donor ligand several compounds of different stoichiometry are observed. We have found that most of the amine-rich coordination polymers can be transformed into new amine-poorer coord-ination polymers by a well directed thermal decomposition (NaÈther & Jeû, 2002, 2003; NaÈther, Greve & Jeû, 2002; NaÈther, Wriedt & Jeû, 2002). To continue this work, we have started investigations on ternary coordination polymers based on copper(I) halides, N-donor ligands and triphenylphosphite. Some of these compounds with CuCl and CuBr have been investigated (Grahamet al., 2000; Pikeet al., 1999, 2002), but with copper(I) iodide, no compounds have been structurally characterized. During our own investigations on such coord-ination polymers we have isolated crystals of the title compound, (I).

In the structure of (I), (CuI)2-four-membered coplanar

rings are found in which the copper cations are connected by the iodide anions via 2 coordination. Each Cu atom is

coordinated by two I atoms, one P atom of the triphenyl-phosphite ligand and one N atom of the acetonitrile ligand, forming discrete molecular complexes. All atoms are located in general positions and the (CuI)2rings are located on centres

of inversion. The CuÐI bond lengths of 2.6427 (4) and 2.6477 (4) AÊ, the CuÐN bond length of 2.018 (2) AÊ and the

(2)

metal-organic papers

m1042

Christian NaÈtheret al. [Cu2I2(C2H3N)2(C18H15O3P)2] Acta Cryst.(2003). E59, m1041±m1043

CuÐP bond length of 2.2011 (7) AÊ are in the normal ranges for related compounds retrieved from the Cambridge Struc-tural Database (Allen, 2002). The coordination of the Cu atoms can be described as slightly distorted tetrahedra, with

XÐCuÐX angles (X = I, N, P) between 106.68 (8) and 113.93 (2).

In the crystal structure, the (CuI)2rings are stacked in the

direction of the crystallographiccaxis. The Cu and I atoms are arranged in layers, which are parallel to the ac plane. In contrast to the previously reported compounds with CuBr, and 4,40-bipyridine or pyrazine (Grahamet al., 2000), which

are polymeric, the title compound forms only discrete mole-cular complexes because the acetonitrile ligand cannot bridge different Cu atoms.

Experimental

The title compound was prepared by the reaction of 189.9 mg (1 mmol) CuI and 0.263 ml (1 mmol) triphenylphosphite in about 2 ml acetonitrile in a glass container. After about 4 d, large colourless crystals had grown which decompose in air within a few hours.

Crystal data

[Cu2I2(C2H3N)2(C18H15O3P)2]

Mr= 1083.53 Monoclinic,P21=c

a= 9.0239 (6) AÊ

b= 30.1204 (16) AÊ

c= 8.4220 (5) AÊ

= 112.139 (7)

V= 2120.4 (2) AÊ3

Z= 2

Dx= 1.697 Mg mÿ3 MoKradiation Cell parameters from 8000

re¯ections

= 14±23 = 2.58 mmÿ1

T= 293 (2) K Block, colourless 0.10.10.1 mm

Data collection

Stoe IPDS diffractometer

'scans

Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998)

Tmin= 0.760,Tmax= 0.771 17645 measured re¯ections 4082 independent re¯ections

3559 re¯ections withI> 2(I)

Rint= 0.031

max= 25.9

h=ÿ11!11

k=ÿ36!37

l=ÿ10!9

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.026

wR(F2) = 0.066

S= 1.04 4082 re¯ections 246 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0453P)2 + 0.0308P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.65 e AÊÿ3

min=ÿ0.66 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0043 (3)

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐN1 2.018 (2)

Cu1ÐP1 2.2011 (7) Cu1ÐI1

i 2.6427 (4)

Cu1ÐI1 2.6477 (4)

N1ÐCu1ÐP1 109.56 (7) N1ÐCu1ÐI1i 108.07 (8) P1ÐCu1ÐI1i 113.93 (2) N1ÐCu1ÐI1 106.68 (8)

P1ÐCu1ÐI1 112.24 (2) I1iÐCu1ÐI1 106.011 (12) Cu1iÐI1ÐCu1 73.989 (12)

Symmetry code: (i)ÿx;ÿy;1ÿz.

The aromatic H atoms were positioned with idealized geometry (CÐH = 0.93 AÊ) and re®ned with ®xed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)], using a riding model. The positions

of the methyl H atoms were idealized (CÐH = 0.96 AÊ), then re®ned with ®xed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C)] as

rigid groups allowed to rotate but not tip.

Data collection:IPDS(Stoe & Cie, 1998); cell re®nement:IPDS; data reduction: IPDS; program(s) used to solve structure:

SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:

SHELXL97 (Sheldrick, 1997); molecular graphics:XPinSHELXTL

(Bruker, 1998); software used to prepare material for publication:

CIFTABinSHELXTL.

This work is supported by the State of Schleswig-Holstein. We are very thankful to Professor Dr Wolfgang Bensch for ®nancial support and the opportunity to use his experimental equipment.

Figure 2

The crystal structure of the title compound, viewed along the crystal-lographiccaxis.

Figure 1

(3)

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000).

Inorg. Chem.39, 5121±5132.

NaÈther, C., Greve, J. & Jeû, I. (2002).Solid State Sci.4, 813±820. NaÈther, C. & Jeû, I. (2002).J. Solid State Chem.169, 103±112.

NaÈther, C. & Jeû, I. (2003).Inorg. Chem.42, 2968±2976.

NaÈther, C., Wriedt, M. & Jeû, I. (2002).Z. Anorg. Allg. Chem. 628, 394± 400.

Pike, R. D., Borne, B. D., Maeyer, J. T. & Rheingold, A. L. (2002).Inorg. Chem.

41, 631±633.

Pike, R. D., Starnes, W. H. & Carpenter, G. B. (1999).Acta Cryst.C55, 162±165. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Stoe & Cie (1998).IPDS(Version 2.89) andX-SHAPE(Version 1.03). Stoe & Cie, Darmstadt, Germany.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, m1041–m1043

supporting information

Acta Cryst. (2003). E59, m1041–m1043 [https://doi.org/10.1107/S1600536803023304]

Di-

µ

-iodo-bis[(acetonitrile-

κ

N

)(triphenylphosphite-

κ

P

)copper(I)]

Christian N

ä

ther, Tobias Steinhoff and Inke Je

ß

Di-µ-iodo-bis[(acetonitrile-κN)(triphenylphosphite-κP)copper(I)]

Crystal data

[Cu2I2(C2H3N)2(C18H15O3P)2] Mr = 1083.53

Monoclinic, P21/c a = 9.0239 (6) Å b = 30.1204 (16) Å c = 8.4220 (5) Å β = 112.139 (7)° V = 2120.4 (2) Å3 Z = 2

F(000) = 1064 Dx = 1.697 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 8000 reflections θ = 14–23°

µ = 2.58 mm−1 T = 293 K Block, colourless 0.1 × 0.1 × 0.1 mm

Data collection Stoe IPDS

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans

Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) Tmin = 0.760, Tmax = 0.771

17645 measured reflections 4082 independent reflections 3559 reflections with I > 2σ(I) Rint = 0.031

θmax = 25.9°, θmin = 2.5° h = −11→11

k = −36→37 l = −10→9

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.026 wR(F2) = 0.066 S = 1.04 4082 reflections 246 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0453P)2 + 0.0308P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.65 e Å−3

Δρmin = −0.66 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0043 (3)

Special details

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, m1041–m1043

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.11001 (3) 0.040175 (10) 0.60058 (4) 0.02639 (10)

I1 −0.00005 (2) 0.025384 (6) 0.26613 (2) 0.03119 (8)

P1 0.04610 (7) 0.10669 (2) 0.66251 (8) 0.02220 (15)

O1 −0.0147 (2) 0.14483 (6) 0.5173 (2) 0.0284 (4)

C1 0.0873 (3) 0.17001 (8) 0.4615 (3) 0.0235 (5)

C2 0.0743 (3) 0.21552 (9) 0.4677 (4) 0.0329 (6)

H2 0.0057 0.2283 0.5139 0.039*

C3 0.1652 (4) 0.24196 (9) 0.4038 (4) 0.0395 (7)

H3 0.1562 0.2727 0.4053 0.047*

C4 0.2684 (4) 0.22281 (10) 0.3383 (4) 0.0383 (7)

H4 0.3294 0.2407 0.2963 0.046*

C5 0.2818 (3) 0.17702 (9) 0.3345 (4) 0.0332 (6)

H5 0.3518 0.1643 0.2901 0.040*

C6 0.1909 (3) 0.15012 (8) 0.3970 (3) 0.0274 (5)

H6 0.1996 0.1194 0.3955 0.033*

O2 0.1801 (2) 0.13650 (6) 0.8069 (2) 0.0256 (4)

C11 0.3018 (3) 0.11841 (8) 0.9511 (3) 0.0223 (5)

C12 0.4532 (3) 0.13632 (10) 0.9948 (4) 0.0328 (6)

H12 0.4724 0.1584 0.9279 0.039*

C13 0.5761 (3) 0.12070 (11) 1.1404 (4) 0.0415 (7)

H13 0.6784 0.1324 1.1706 0.050*

C14 0.5485 (3) 0.08803 (10) 1.2407 (4) 0.0384 (7)

H14 0.6317 0.0776 1.3373 0.046*

C15 0.3958 (3) 0.07098 (9) 1.1963 (4) 0.0323 (6)

H15 0.3763 0.0493 1.2648 0.039*

C16 0.2709 (3) 0.08585 (8) 1.0500 (3) 0.0253 (5)

H16 0.1686 0.0741 1.0195 0.030*

O3 −0.1047 (2) 0.10662 (6) 0.7197 (2) 0.0272 (4)

C21 −0.1642 (3) 0.14504 (8) 0.7717 (3) 0.0241 (5)

C22 −0.1033 (3) 0.15657 (9) 0.9433 (3) 0.0280 (5)

H22 −0.0206 0.1403 1.0219 0.034*

C23 −0.1673 (3) 0.19273 (9) 0.9963 (4) 0.0320 (6)

H23 −0.1271 0.2009 1.1112 0.038*

C24 −0.2907 (3) 0.21681 (9) 0.8794 (4) 0.0324 (6)

H24 −0.3323 0.2413 0.9156 0.039*

C25 −0.3525 (3) 0.20444 (10) 0.7081 (4) 0.0370 (6)

H25 −0.4368 0.2204 0.6299 0.044*

C26 −0.2887 (3) 0.16832 (10) 0.6532 (4) 0.0331 (6)

H26 −0.3292 0.1600 0.5385 0.040*

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, m1041–m1043

C41 0.4840 (3) 0.03922 (10) 0.7510 (4) 0.0330 (6)

C42 0.6553 (4) 0.04523 (12) 0.8394 (6) 0.0614 (11)

H42A 0.6779 0.0760 0.8687 0.092*

H42B 0.7092 0.0361 0.7659 0.092*

H42C 0.6922 0.0276 0.9420 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.02212 (16) 0.02615 (17) 0.02937 (19) 0.00179 (12) 0.00796 (13) −0.00245 (12)

I1 0.04037 (12) 0.03117 (12) 0.02448 (12) −0.00781 (7) 0.01501 (8) −0.00324 (6)

P1 0.0227 (3) 0.0229 (3) 0.0206 (3) 0.0011 (2) 0.0077 (2) −0.0008 (2)

O1 0.0265 (9) 0.0346 (10) 0.0243 (10) 0.0087 (7) 0.0096 (7) 0.0080 (7)

C1 0.0292 (12) 0.0241 (12) 0.0140 (12) 0.0040 (10) 0.0044 (9) 0.0025 (9)

C2 0.0431 (16) 0.0260 (13) 0.0250 (14) 0.0098 (11) 0.0076 (11) −0.0007 (11)

C3 0.0537 (18) 0.0212 (13) 0.0324 (16) 0.0002 (12) 0.0036 (13) 0.0013 (11)

C4 0.0426 (16) 0.0381 (16) 0.0258 (15) −0.0137 (12) 0.0032 (12) 0.0067 (12)

C5 0.0335 (14) 0.0399 (16) 0.0269 (15) −0.0027 (11) 0.0124 (11) −0.0018 (11)

C6 0.0348 (14) 0.0227 (13) 0.0253 (14) 0.0026 (10) 0.0119 (11) −0.0007 (10)

O2 0.0292 (9) 0.0219 (9) 0.0235 (10) −0.0015 (7) 0.0075 (7) 0.0034 (7)

C11 0.0231 (12) 0.0218 (12) 0.0222 (13) 0.0003 (9) 0.0088 (9) −0.0017 (9)

C12 0.0310 (14) 0.0398 (15) 0.0316 (16) −0.0109 (11) 0.0164 (12) −0.0011 (11)

C13 0.0242 (14) 0.0590 (19) 0.0405 (18) −0.0079 (13) 0.0112 (12) −0.0068 (14)

C14 0.0302 (14) 0.0460 (18) 0.0314 (16) 0.0092 (12) 0.0030 (12) −0.0007 (12)

C15 0.0385 (15) 0.0248 (13) 0.0322 (15) 0.0032 (11) 0.0118 (12) 0.0043 (11)

C16 0.0253 (12) 0.0228 (12) 0.0293 (14) −0.0027 (9) 0.0122 (10) 0.0008 (10)

O3 0.0264 (9) 0.0256 (9) 0.0327 (11) −0.0014 (7) 0.0146 (8) −0.0045 (7)

C21 0.0229 (12) 0.0260 (12) 0.0253 (14) −0.0060 (9) 0.0114 (10) −0.0037 (10)

C22 0.0254 (12) 0.0338 (14) 0.0225 (13) −0.0017 (10) 0.0065 (10) 0.0002 (10)

C23 0.0329 (14) 0.0387 (16) 0.0240 (14) −0.0074 (11) 0.0102 (11) −0.0099 (11)

C24 0.0333 (14) 0.0299 (14) 0.0399 (17) −0.0030 (11) 0.0205 (12) −0.0081 (12)

C25 0.0347 (15) 0.0432 (17) 0.0329 (16) 0.0113 (12) 0.0126 (12) 0.0044 (12)

C26 0.0323 (14) 0.0433 (16) 0.0202 (14) 0.0044 (12) 0.0059 (11) −0.0036 (11)

N1 0.0245 (13) 0.0351 (13) 0.0480 (16) 0.0018 (9) 0.0102 (11) −0.0031 (11)

C41 0.0259 (15) 0.0272 (13) 0.0481 (18) 0.0007 (10) 0.0163 (13) −0.0023 (11)

C42 0.0241 (15) 0.049 (2) 0.105 (3) −0.0066 (14) 0.0175 (18) −0.019 (2)

Geometric parameters (Å, º)

Cu1—N1 2.018 (2) C13—C14 1.380 (5)

Cu1—P1 2.2011 (7) C13—H13 0.9300

Cu1—I1i 2.6427 (4) C14—C15 1.383 (4)

Cu1—I1 2.6477 (4) C14—H14 0.9300

I1—Cu1i 2.6427 (4) C15—C16 1.394 (4)

P1—O3 1.6054 (18) C15—H15 0.9300

P1—O1 1.6159 (18) C16—H16 0.9300

P1—O2 1.6247 (18) O3—C21 1.413 (3)

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, m1041–m1043

C1—C2 1.379 (4) C21—C22 1.383 (4)

C1—C6 1.382 (4) C22—C23 1.383 (4)

C2—C3 1.389 (4) C22—H22 0.9300

C2—H2 0.9300 C23—C24 1.382 (4)

C3—C4 1.375 (5) C23—H23 0.9300

C3—H3 0.9300 C24—C25 1.387 (4)

C4—C5 1.386 (4) C24—H24 0.9300

C4—H4 0.9300 C25—C26 1.389 (4)

C5—C6 1.390 (4) C25—H25 0.9300

C5—H5 0.9300 C26—H26 0.9300

C6—H6 0.9300 N1—C41 1.131 (3)

O2—C11 1.404 (3) C41—C42 1.452 (4)

C11—C16 1.381 (3) C42—H42A 0.9600

C11—C12 1.384 (3) C42—H42B 0.9600

C12—C13 1.389 (4) C42—H42C 0.9600

C12—H12 0.9300

N1—Cu1—P1 109.56 (7) C14—C13—C12 120.9 (3)

N1—Cu1—I1i 108.07 (8) C14—C13—H13 119.5

P1—Cu1—I1i 113.93 (2) C12—C13—H13 119.5

N1—Cu1—I1 106.68 (8) C13—C14—C15 119.4 (3)

P1—Cu1—I1 112.24 (2) C13—C14—H14 120.3

I1i—Cu1—I1 106.011 (12) C15—C14—H14 120.3

Cu1i—I1—Cu1 73.989 (12) C14—C15—C16 120.8 (3)

O3—P1—O1 98.26 (9) C14—C15—H15 119.6

O3—P1—O2 104.62 (10) C16—C15—H15 119.6

O1—P1—O2 96.80 (10) C11—C16—C15 118.8 (2)

O3—P1—Cu1 113.40 (7) C11—C16—H16 120.6

O1—P1—Cu1 120.81 (7) C15—C16—H16 120.6

O2—P1—Cu1 119.52 (7) C21—O3—P1 123.79 (15)

C1—O1—P1 124.00 (15) C26—C21—C22 121.5 (2)

C2—C1—C6 121.7 (2) C26—C21—O3 119.5 (2)

C2—C1—O1 116.7 (2) C22—C21—O3 118.8 (2)

C6—C1—O1 121.6 (2) C23—C22—C21 119.0 (2)

C1—C2—C3 119.0 (3) C23—C22—H22 120.5

C1—C2—H2 120.5 C21—C22—H22 120.5

C3—C2—H2 120.5 C24—C23—C22 120.4 (3)

C4—C3—C2 120.2 (3) C24—C23—H23 119.8

C4—C3—H3 119.9 C22—C23—H23 119.8

C2—C3—H3 119.9 C23—C24—C25 120.0 (3)

C3—C4—C5 120.3 (3) C23—C24—H24 120.0

C3—C4—H4 119.8 C25—C24—H24 120.0

C5—C4—H4 119.8 C24—C25—C26 120.1 (3)

C4—C5—C6 120.1 (3) C24—C25—H25 119.9

C4—C5—H5 119.9 C26—C25—H25 119.9

C6—C5—H5 119.9 C21—C26—C25 118.9 (3)

C1—C6—C5 118.6 (2) C21—C26—H26 120.5

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, m1041–m1043

C5—C6—H6 120.7 C41—N1—Cu1 165.8 (2)

C11—O2—P1 123.49 (15) N1—C41—C42 178.2 (4)

C16—C11—C12 121.3 (2) C41—C42—H42A 109.5

C16—C11—O2 121.8 (2) C41—C42—H42B 109.5

C12—C11—O2 116.8 (2) H42A—C42—H42B 109.5

C11—C12—C13 118.9 (3) C41—C42—H42C 109.5

C11—C12—H12 120.6 H42A—C42—H42C 109.5

C13—C12—H12 120.6 H42B—C42—H42C 109.5

References

Related documents

For this study, the instruments used were the Child Behavior Checklist (CBCL) and the Strength and Weakness and ADHD Symp- toms Normal Behavior (SWAN) rating scale, which are

(5) --psnr, calculate the signal and noise ratio. The negative data in the following tables means de- crease after optimization. Positive data means increase after optimization.

One key advantage of this staged design is that through grounding partially the utterance to some entities and predicates in the KB, we make the search far more efficient by focusing

In an experimental inhibition study of c-Met by inhibitor AM7, Val-1092 was located almost directly above the inhibitor AM7 and forms van der Waals contacts with it and

In section 4, we outline the format and contents of the JDMWE, discussing the information on notational variants, syntactic functions, syntactic structures, and the

Given the context an assessment was carried out to understand the health system competency for the maternal health services of Balasore district and Jaleswar block of

Preliminary experimentation analyzing the performance of our example-based incremental translation mechanism leads us to believe that the proposed scheme can be utilized

Organizations hence thrive on operational excellence, and this excellence in service delivery or product quality are not attained overnight, but due to constant