• No results found

gem Chloro­nitro­so­cyclo­do­decane, (CH2)n–1CNOCl, with n = 12

N/A
N/A
Protected

Academic year: 2020

Share "gem Chloro­nitro­so­cyclo­do­decane, (CH2)n–1CNOCl, with n = 12"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1764

C. R. Girijaet al. C12H22ClNO DOI: 10.1107/S1600536804022068 Acta Cryst.(2004). E60, o1764±o1766 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

gem

-Chloronitrosocyclododecane,

(CH

2

)

n±1

CNOCl, with

n

= 12

C. R. Girija, Noor Shahina Begum,* H. A. M A. Karim and Gopalpur Nagendrappa

Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560 001, India

Correspondence e-mail: noorsb@rediffmail.com

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ Disorder in main residue

Rfactor = 0.054

wRfactor = 0.155

Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C12H22ClNO, adopts the square

conform-ation [3333] observed in other known saturated twelve-membered rings. Disorder is observed, resulting from exchange of the chloro and nitroso substituents.

Comment

gem-Chloronitroso compounds are used in organic syntheses and mechanistic studies, particularly as precursors of aliphatic nitro derivatives (Marchand & Suri, 1984; Marchand et al., 1988) and of vicinal dinitro compounds (Wade et al., 1987; Paquetteet al., 1988).

The molecular structure of the title compound, (I), is shown in Fig. 1. The torsion angles (Table 1) indicate that the cyclododecane ring is in a square conformation [3333], as in other saturated twelve-membered rings reported previously (Groth, 1979a,b, 1980). Although the skeleton of the cyclo-dodecane ring does not exhibit any observable disorder, the chloro and nitroso groups are disordered (Fig. 2). There are two possible orientations, Cl1/N1/O1 and Cl2/N2/O2, each with 50% occupancy. This can be explained as an orientational

Received 9 August 2004 Accepted 7 September 2004 Online 18 September 2004

Figure 1

(2)

disorder of the molecule around the local pseudo-twofold axis passing through atoms C1 and C7, exchanging the two substituents. Fig. 3 shows the packing of the molecules, which is stabilized by CÐH O interactions (Table 2) and van der Waals forces.

Experimental

The title compound, (I), was synthesized by a reported procedure (Karim, 2003). In a 100 ml two-necked ¯ask, 10 mmol of cyclodode-canoneoxime in 10 ml of dry diethyl ether was cooled to 263 K in an ice±salt bath; chlorotrimethylsilane (12 mmol) was introduced through a dropping funnel. The mixture was stirred magnetically, and isoamyl nitrite (12 mmol) was slowly introduced through a dropping funnel over 15 min. The reaction mixture was left to stir for 1.5 h. Water (10 ml) was added. The organic layer, after separation, was washed with water (20 ml) twice and dried over Na2SO4. The solvent

was removed on a rotary evaporator under reduced pressure, and the residue was chromatographed on silica gel (60±120 mesh). Elution with petroleum ether (b.p. 313±333 K) moved down a blue band, which was identi®ed as (I). Single crystals of (I) were grown from a chloroform solution by slow evaporation.

Crystal data

C12H22ClNO

Mr= 231.76

Orthorhombic,P212121

a= 8.3801 (19) AÊ

b= 9.543 (2) AÊ

c= 16.348 (4) AÊ

V= 1307.4 (5) AÊ3

Z= 4

Dx= 1.177 Mg mÿ3

MoKradiation Cell parameters from 600

re¯ections

= 2.5±28.1

= 0.27 mmÿ1

T= 293 (2) K Block, blue

0.300.200.15 mm

Data collection

Bruker SMART APEX diffractometer

'±!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.821,Tmax= 0.960

11 518 measured re¯ections

3072 independent re¯ections 1998 re¯ections withI> 2(I)

Rint= 0.055

max= 28.1

h=ÿ10!10

k=ÿ12!11

l=ÿ21!21

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.054

wR(F2) = 0.155

S= 0.95 3072 re¯ections 163 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0985P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.29 e AÊÿ3

min=ÿ0.25 e AÊÿ3

Absolute structure: Flack (1983), 1239 Friedel pairs

Flack parameter = 0.00 (10)

Table 1

Selected torsion angles ().

C12ÐC1ÐC2ÐC3 ÿ62.1 (3) C1ÐC2ÐC3ÐC4 156.64 (19) C2ÐC3ÐC4ÐC5 ÿ74.4 (3) C3ÐC4ÐC5ÐC6 ÿ73.1 (3) C4ÐC5ÐC6ÐC7 162.5 (2) C5ÐC6ÐC7ÐC8 ÿ64.3 (3)

C6ÐC7ÐC8ÐC9 ÿ63.5 (3) C7ÐC8ÐC9ÐC10 158.4 (2) C8ÐC9ÐC10ÐC11 ÿ72.5 (3) C9ÐC10ÐC11ÐC12 ÿ74.4 (3) C10ÐC11ÐC12ÐC1 161.1 (2) C2ÐC1ÐC12ÐC11 ÿ64.1 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C2ÐH2B O1i 0.97 2.69 3.533 (8) 145

C3ÐH3B O2i 0.97 2.71 3.467 (8) 135

C4ÐH4A O2ii 0.97 2.91 3.511 (8) 121

Symmetry codes: (i)1

2‡x;12ÿy;ÿz; (ii) 1‡x;y;z.

The chloro and nitroso groups show disorder and there are two possible orientations, Cl1/N1/O1 and Cl2/N2/O2, each with 50% occupancy. Fitting the light atoms of the nitroso group near the heavier Cl atom yielded large displacement parameters. Restraints were applied for CÐN and NÐO bond distances to give reasonable values. The N and O atoms were re®ned anisotropically with restraints for approximate isotropy. H atoms were positioned geometrically and treated as riding, with CÐH distances of 0.97 AÊ andUiso(H) = 1.2Ueq(parent).

Data collection:SMART(Bruker, 1998); cell re®nement:SAINT (Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SIR92 (Altomareet al., 1993); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:SHELXL97.

organic papers

Acta Cryst.(2004). E60, o1764±o1766 C. R. Girijaet al. C12H22ClNO

o1765

Figure 2

The disorder of the chloro and nitroso groups.

Figure 3

(3)

CRG thanks UGC±FIP for a Teacher fellowship. The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRPHA DST program. They also thank Professor K. Siva-kumar, Department of Physics, Anna University, Chennai, for useful suggestions and discussions.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).J. Appl. Cryst.26, 343±350.

Bruker (1998).SMART(Version 5.628) andSAINT(Version 6.02). Bruker Axs Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Flack, H. D. (1983).Acta Cryst.A39, 876±881. Groth, P. (1979a).Acta Chem. Scand. A,33, 203±205. Groth, P. (1979b).Acta Chem. Scand. A,33, 503±513. Groth, P. (1980).Acta Chem. Scand. A,34, 609±620.

Karim, H. A. M. A. (2003). PhD thesis, p. 79. Bangalore University, India. Marchand, A. P., Arney, B. E. & Dave, P. R. (1988).J. Org. Chem.53, 443±445. Marchand, A. P. & Suri, S. C. (1984).J. Org. Chem.49, 2041±2042.

Paquette, L. A., Waykole, L. M. & Shen, C. J. (1988).J. Org. Chem.53, 4969± 4970.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Wade, P. A., Dailey, W. P. & Carroll, P. J. (1987).J. Am. Chem. Soc.109, 5452±

5453.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o1764–o1766

supporting information

Acta Cryst. (2004). E60, o1764–o1766 [https://doi.org/10.1107/S1600536804022068]

gem

-Chloronitrosocyclododecane, (CH

2

)

n–1

CNOCl, with

n

= 12

C. R. Girija, Noor Shahina Begum, H. A. M A. Karim and Gopalpur Nagendrappa

1,1-chloronitroso-cyclododecane

Crystal data

C12H22ClNO Mr = 231.76

Orthorhombic, P212121 a = 8.3801 (19) Å b = 9.543 (2) Å c = 16.348 (4) Å V = 1307.4 (5) Å3 Z = 4

F(000) = 504

Dx = 1.177 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 600 reflections θ = 2.5–28.1°

µ = 0.27 mm−1 T = 293 K Cubic, blue

0.3 × 0.2 × 0.15 mm

Data collection

Bruker SMART APEX diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 0.3 pixels mm-1 φω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.821, Tmax = 0.960

11518 measured reflections 3072 independent reflections 1998 reflections with I > 2σ(I) Rint = 0.055

θmax = 28.1°, θmin = 2.5° h = −10→10

k = −12→11 l = −21→21

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.054 wR(F2) = 0.155 S = 0.95 3072 reflections 163 parameters 40 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0985P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.29 e Å−3

Δρmin = −0.25 e Å−3

Absolute structure: Flack (1983), 1239 Friedel pairs

Absolute structure parameter: 0.00 (10)

Special details

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o1764–o1766

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR an goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cl1 0.0234 (3) 0.1355 (2) 0.10869 (13) 0.0858 (5) 0.5

N1 0.1232 (16) 0.4093 (12) 0.0929 (7) 0.160 (7) 0.5

O1 0.0208 (11) 0.4134 (8) 0.0489 (5) 0.140 (3) 0.5

Cl2 0.0912 (4) 0.4096 (3) 0.07133 (18) 0.0882 (5) 0.5

N2 0.0811 (9) 0.1337 (10) 0.1099 (8) 0.201 (8) 0.5

O2 −0.0359 (9) 0.1385 (7) 0.0774 (5) 0.128 (2) 0.5

C1 0.1491 (2) 0.2729 (2) 0.13722 (12) 0.0620 (5)

C2 0.3202 (2) 0.2327 (2) 0.12095 (13) 0.0697 (6)

H2A 0.3469 0.154 0.1559 0.084*

H2B 0.3282 0.2009 0.0648 0.084*

C3 0.4424 (3) 0.3456 (3) 0.13416 (14) 0.0748 (6)

H3A 0.4092 0.4032 0.18 0.09*

H3B 0.4457 0.405 0.086 0.09*

C4 0.6101 (3) 0.2900 (3) 0.15092 (15) 0.0804 (7)

H4A 0.635 0.2178 0.1111 0.096*

H4B 0.6862 0.3655 0.1436 0.096*

C5 0.6295 (3) 0.2298 (3) 0.23611 (16) 0.0818 (7)

H5A 0.5415 0.1664 0.247 0.098*

H5B 0.7273 0.1755 0.238 0.098*

C6 0.6347 (3) 0.3399 (3) 0.30275 (16) 0.0841 (7)

H6A 0.5559 0.4113 0.2903 0.101*

H6B 0.7388 0.3845 0.3017 0.101*

C7 0.6040 (4) 0.2857 (3) 0.38898 (17) 0.0972 (8)

H7A 0.6209 0.3617 0.4274 0.117*

H7B 0.6814 0.2131 0.4012 0.117*

C8 0.4356 (3) 0.2260 (3) 0.40205 (15) 0.0906 (8)

H8A 0.4195 0.1502 0.3634 0.109*

H8B 0.4305 0.1861 0.4566 0.109*

C9 0.2998 (3) 0.3285 (3) 0.39282 (15) 0.0863 (7)

H9A 0.3253 0.3931 0.3489 0.104*

H9B 0.2905 0.3825 0.4429 0.104*

C10 0.1410 (3) 0.2609 (3) 0.37476 (14) 0.0868 (8)

H10A 0.0571 0.3295 0.383 0.104*

H10B 0.1236 0.1851 0.4133 0.104*

C11 0.1287 (3) 0.2029 (3) 0.28785 (14) 0.0765 (6)

H11B 0.2242 0.1496 0.2756 0.092*

H11C 0.0384 0.1395 0.2848 0.092*

C12 0.1087 (3) 0.3166 (3) 0.22430 (12) 0.0715 (6)

H12C 0.1761 0.3952 0.2392 0.086*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o1764–o1766

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0621 (13) 0.1001 (11) 0.0953 (11) −0.0167 (9) −0.0169 (8) −0.0097 (9)

N1 0.153 (8) 0.233 (12) 0.095 (7) 0.010 (7) −0.065 (5) 0.035 (6)

O1 0.172 (7) 0.114 (4) 0.134 (5) 0.002 (5) −0.047 (4) 0.029 (4)

Cl2 0.0991 (15) 0.0975 (11) 0.0682 (13) 0.0106 (10) −0.0250 (12) 0.0215 (8)

N2 0.055 (4) 0.202 (10) 0.347 (16) −0.039 (5) −0.089 (6) 0.075 (10)

O2 0.126 (5) 0.118 (4) 0.141 (5) −0.040 (4) −0.018 (4) −0.008 (4)

C1 0.0674 (12) 0.0579 (11) 0.0608 (11) 0.0011 (10) −0.0058 (9) 0.0050 (9)

C2 0.0756 (13) 0.0745 (14) 0.0591 (11) 0.0032 (11) 0.0025 (9) −0.0074 (10)

C3 0.0790 (14) 0.0735 (14) 0.0720 (12) −0.0059 (11) 0.0048 (10) 0.0073 (10)

C4 0.0669 (13) 0.0892 (17) 0.0849 (14) −0.0071 (12) 0.0129 (11) −0.0059 (13)

C5 0.0698 (13) 0.0785 (15) 0.0970 (17) 0.0063 (12) −0.0100 (12) −0.0076 (13)

C6 0.0832 (15) 0.0766 (15) 0.0925 (16) −0.0099 (14) −0.0135 (13) −0.0042 (13)

C7 0.113 (2) 0.0971 (19) 0.0813 (15) −0.0090 (17) −0.0363 (14) 0.0009 (14)

C8 0.118 (2) 0.0896 (18) 0.0639 (12) −0.0041 (17) −0.0146 (13) 0.0114 (12)

C9 0.1150 (19) 0.0819 (15) 0.0620 (12) −0.0046 (15) 0.0011 (12) −0.0116 (12)

C10 0.1085 (19) 0.0904 (17) 0.0613 (13) −0.0043 (16) 0.0188 (12) −0.0016 (11)

C11 0.0916 (15) 0.0695 (13) 0.0683 (12) −0.0158 (12) 0.0014 (11) 0.0059 (10)

C12 0.0706 (12) 0.0773 (14) 0.0665 (12) 0.0031 (11) 0.0075 (10) 0.0006 (10)

Geometric parameters (Å, º)

Cl1—C1 1.746 (3) C6—C7 1.524 (4)

N1—O1 1.121 (7) C6—H6A 0.97

N1—C1 1.505 (9) C6—H6B 0.97

Cl2—C1 1.760 (3) C7—C8 1.537 (4)

N2—O2 1.116 (7) C7—H7A 0.97

N2—C1 1.514 (8) C7—H7B 0.97

C1—C2 1.507 (3) C8—C9 1.507 (4)

C1—C12 1.522 (3) C8—H8A 0.97

C2—C3 1.503 (3) C8—H8B 0.97

C2—H2A 0.97 C9—C10 1.508 (4)

C2—H2B 0.97 C9—H9A 0.97

C3—C4 1.528 (3) C9—H9B 0.97

C3—H3A 0.97 C10—C11 1.528 (3)

C3—H3B 0.97 C10—H10A 0.97

C4—C5 1.515 (4) C10—H10B 0.97

C4—H4A 0.97 C11—C12 1.511 (3)

C4—H4B 0.97 C11—H11B 0.97

C5—C6 1.515 (4) C11—H11C 0.97

C5—H5A 0.97 C12—H12C 0.97

C5—H5B 0.97 C12—H12A 0.97

O1—N1—C1 116.7 (10) C5—C6—H6A 108.5

O2—N2—C1 115.8 (9) C7—C6—H6A 108.5

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o1764–o1766

N1—C1—N2 124.2 (6) C7—C6—H6B 108.5

C2—C1—N2 94.7 (4) H6A—C6—H6B 107.5

N1—C1—C12 100.4 (5) C6—C7—C8 114.2 (2)

C2—C1—C12 116.52 (18) C6—C7—H7A 108.7

N2—C1—C12 115.7 (5) C8—C7—H7A 108.7

N1—C1—Cl1 115.7 (4) C6—C7—H7B 108.7

C2—C1—Cl1 109.59 (17) C8—C7—H7B 108.7

N2—C1—Cl1 15.0 (3) H7A—C7—H7B 107.6

C12—C1—Cl1 108.77 (17) C9—C8—C7 116.0 (2)

N1—C1—Cl2 12.8 (4) C9—C8—H8A 108.3

C2—C1—Cl2 110.05 (18) C7—C8—H8A 108.3

N2—C1—Cl2 111.5 (4) C9—C8—H8B 108.3

C12—C1—Cl2 107.93 (17) C7—C8—H8B 108.3

Cl1—C1—Cl2 103.12 (16) H8A—C8—H8B 107.4

C3—C2—C1 116.1 (2) C8—C9—C10 114.1 (2)

C3—C2—H2A 108.3 C8—C9—H9A 108.7

C1—C2—H2A 108.3 C10—C9—H9A 108.7

C3—C2—H2B 108.3 C8—C9—H9B 108.7

C1—C2—H2B 108.3 C10—C9—H9B 108.7

H2A—C2—H2B 107.4 H9A—C9—H9B 107.6

C2—C3—C4 113.8 (2) C9—C10—C11 113.3 (2)

C2—C3—H3A 108.8 C9—C10—H10A 108.9

C4—C3—H3A 108.8 C11—C10—H10A 108.9

C2—C3—H3B 108.8 C9—C10—H10B 108.9

C4—C3—H3B 108.8 C11—C10—H10B 108.9

H3A—C3—H3B 107.7 H10A—C10—H10B 107.7

C5—C4—C3 113.3 (2) C12—C11—C10 112.7 (2)

C5—C4—H4A 108.9 C12—C11—H11B 109

C3—C4—H4A 108.9 C10—C11—H11B 109

C5—C4—H4B 108.9 C12—C11—H11C 109

C3—C4—H4B 108.9 C10—C11—H11C 109

H4A—C4—H4B 107.7 H11B—C11—H11C 107.8

C6—C5—C4 113.6 (2) C11—C12—C1 114.9 (2)

C6—C5—H5A 108.8 C11—C12—H12C 108.5

C4—C5—H5A 108.8 C1—C12—H12C 108.5

C6—C5—H5B 108.8 C11—C12—H12A 108.5

C4—C5—H5B 108.8 C1—C12—H12A 108.5

H5A—C5—H5B 107.7 H12C—C12—H12A 107.5

C5—C6—C7 115.1 (2)

O1—N1—C1—C2 125.7 (13) C1—C2—C3—C4 156.64 (19)

O1—N1—C1—N2 18.4 (18) C2—C3—C4—C5 −74.4 (3)

O1—N1—C1—C12 −112.7 (13) C3—C4—C5—C6 −73.1 (3)

O1—N1—C1—Cl1 4.2 (16) C4—C5—C6—C7 162.5 (2)

O1—N1—C1—Cl2 14.5 (17) C5—C6—C7—C8 −64.3 (3)

O2—N2—C1—N1 −31.3 (15) C6—C7—C8—C9 −63.5 (3)

O2—N2—C1—C2 −144.0 (11) C7—C8—C9—C10 158.4 (2)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o1764–o1766

O2—N2—C1—Cl1 28.0 (11) C9—C10—C11—C12 −74.4 (3)

O2—N2—C1—Cl2 −30.3 (13) C10—C11—C12—C1 161.1 (2)

N1—C1—C2—C3 48.5 (5) N1—C1—C12—C11 −177.7 (5)

N2—C1—C2—C3 176.1 (5) C2—C1—C12—C11 −64.1 (3)

C12—C1—C2—C3 −62.1 (3) N2—C1—C12—C11 45.9 (4)

Cl1—C1—C2—C3 173.90 (17) Cl1—C1—C12—C11 60.4 (2)

Cl2—C1—C2—C3 61.2 (2) Cl2—C1—C12—C11 171.57 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C2—H2B···O1i 0.97 2.69 3.533 (8) 145

C3—H3B···O2i 0.97 2.71 3.467 (8) 135

C4—H4A···O2ii 0.97 2.91 3.511 (8) 121

References

Related documents