• No results found

Poly[di­aqua­di μ3 malonato μ pyrazine dinickel(II)]

N/A
N/A
Protected

Academic year: 2020

Share "Poly[di­aqua­di μ3 malonato μ pyrazine dinickel(II)]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Retraction of articles

This article reports the retraction of articles published inActa Crystallographica Section Ebetween 2005 and 2009.

After further thorough investigation (see Harrison et al., 2010), articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

addenda and errata

e14

#2012 International Union of Crystallography doi:10.1107/S1600536811037603 Acta Cryst.(2012). E68, e14–e15

Acta Crystallographica Section E

Structure Reports Online

[image:1.610.53.567.311.738.2]

ISSN 1600-5368

Table 1

Details of articles to be retracted, in order of publication.

Title Reference DOI Refcode

Poly[diaquadi-3-malonato--pyrazine-dinickel(II)] Liuet al.(2005) 10.1107/S1600536805026358 GATWAA

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)samarium(II)]- -pyridine-2,6-dicarboxylato] tetrahydrate]

Liuet al.(2006) 10.1107/S1600536806038141 FONCUH03

Poly[[[4-4,40

-carbonylbis(benzene-3,4-dicarboxylato)]tetrakis(1,10-phenanthroline)-dipalladium(II)] dihydrate]

Li, Wang, Zhang & Yu (2007e)

10.1107/S1600536807039050 AFELAZ

Poly[diaqua-3-malonato--pyrazine-diiron(II)] Li, Liuet al.(2007) 10.1107/S1600536807038743 AFELON

Poly[diaqua-di-3-malonato--pyrazine-dimanganese(II)] Li, Wang, Zhang & Yu (2007f)

10.1107/S1600536807039773 VIJZAQ

Poly[[aqua(2,2-bipyridine)(3-pyridine-3,4-dicarboxylato)cobalt(II)] monohydrate] Li, Wang, Zhang & Yu (2007g)

10.1107/S1600536807040275 VIKCIC

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)holmium(III)]- -pyridine-2,6-dicarboxylato] tetrahydrate]

Li, Wang, Zhang & Yu (2007a)

10.1107/S1600536807041657 DILGEL

catena-Poly[[(2,20

2N,N0

4N3,O4:N1,O5]

Li, Wang, Zhang & Yu (2007h)

10.1107/S1600536807042122 XIKWAQ

Poly[[aqua(2,20-bipyridine)(

3-pyridine-3,4-dicarboxylato)nickel(II)] monohydrate] Li, Wang, Zhang & Yu (2007b)

10.1107/S1600536807046466 LEVZAO01

2-(Benzyliminomethyl)-6-methoxyphenol Li, Wang, Zhang & Yu (2007i)

10.1107/S1600536807042134 SILDEX

Poly[aqua(2,20-bipyridine)(

3-pyridine-2,4-dicarboxylato)palladium(II)] Li, Wang, Zhang & Yu (2007c)

10.1107/S1600536807047575 SILXAN

-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]iron(III)} bis(hexafluoridophosphate) Liu, Dou, Li & Zhang (2007)

10.1107/S1600536807049665 TINRIS

-Oxido-bis({4,40-dibromo-2,20

-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}-manganese(III))

Liu, Dou, Niu & Zhang (2007a)

10.1107/S1600536807051008 GIMZAE

Bis[N-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate Li, Wang, Zhang & Yu (2007d)

10.1107/S1600536807048556 WIMZIC

-Oxido-bis({4,40-dibromo-2,20

-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}-chromium(III))

Liu, Dou, Niu & Zhang (2007b)

10.1107/S1600536807057996 HIQFIX

-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]chromium(III)} bis(hexafluorido-phosphate)

Li, Wanget al.(2008) 10.1107/S1600536807061296 MIRNAD

-Oxido-bis({4,40-dibromo-2,20

-ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}-iron(III))

Menget al.(2008a) 10.1107/S1600536807063143 MIRWUG

catena-Poly[[bis(1H-benzimidazole-N3

2O1:O4]

Menget al.(2008b) 10.1107/S1600536807065051 XISCAE

Oxalatobis(propane-1,3-diamine)manganese(II) chloride monohydrate Menget al.(2008e) 10.1107/S1600536807065361 SISWIB

-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]manganese(III)} bis(hexafluorido-phosphate)

Menget al.(2008c) 10.1107/S1600536807066512 RISRIV

Bis[N-(8-quinolyl)pyridine-2-carboxamidato-3

N,N0,N0 0]manganese(III) perchlorate

monohydrate

Menget al.(2008d) 10.1107/S1600536808000287 GISLEA

Diaquabis(pyridine-2-carboxylato-2N,O)cobalt(II)

Huang (2008) 10.1107/S1600536808010507 WIZPOL

Tetra--2,5-difluorobenzoato-bis[(2,20-bipyridine)(2,5-difluorobenzoato)gadolinium(III)]

Li, Zhanget al.(2008) 10.1107/S1600536808023507 BOFQIX

catena-Poly[[(2,20-bipyridine-2N,N0)nickel(II)]--oxalato-4O1,O2:O10

,O20

] Li, Yanet al.(2008) 10.1107/S1600536808028389 NOHYUF

catena-Poly[[aqua(2,20

-5-nitroisophthlalato] Liuet al.(2008) 10.1107/S1600536808038178 AFIREN

Diaquabis(pyridine-2-carboxylato-2N,O)iron(II)

Xia & Sun (2009) 10.1107/S1600536809005765 RONFEG

catena-Poly[[[diaquathulium(III)]--6-carboxynicotinato--pyridine-2,5-dicarboxylato] dihydrate]

Liet al.(2009) 10.1107/S1600536809008836 NOQNIR

(2)

Acta Cryst.(2012). E68, e14–e15 IUCr Editorial Office Retraction

e15

References

Harrison, W. T. A., Simpson, J. & Weil, M. (2010).Acta Cryst.E66, e1–e2. Huang, G. S. (2008).Acta Cryst.E64, m685–m686.

Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009).Acta Cryst.E65, m411. Li, S., Wang, S.-B., Zhang, F.-L. & Tang, K. (2008).Acta Cryst.E64, m2. Li, S., Yan, X.-L., Wang, S.-B. & Ma, Y.-F. (2008).Acta Cryst.E64, m1258. Li, S., Zhang, F.-L., Tang, K. & Ma, Y.-F. (2008).Acta Cryst.E64, m1142. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007a).Acta Cryst.E63, m2438–m2439. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007b).Acta Cryst.E63, m2604. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007c).Acta Cryst.E63, m2642. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007d).Acta Cryst.E63, m2781. Li, Z.-F., Liu, Y., Zhang, Q. & Yu, X.-J. (2007).Acta Cryst.E63, m2315. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007e).Acta Cryst.E63, m2312. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007f).Acta Cryst.E63, m2360. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007g).Acta Cryst.E63, m2373. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007h). Acta Cryst. E63,

m2445.

Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007i).Acta Cryst.E63, o3930. Liu, Y., Dou, J., Li, D. & Zhang, X. (2007).Acta Cryst.E63, m2722. Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007a).Acta Cryst.E63, m2771. Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007b).Acta Cryst.E63, m3032. Liu, Y., Dou, J., Wang, D., Ma, G. & Li, D. (2005).Acta Cryst.E61, m1834–

m1836.

Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006).Acta Cryst.

E62, m2794–m2795.

Liu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008).Acta Cryst.E64, m1605– m1606.

Liu, Y., Zhang, X., Xue, Z. & Lv, C. (2009).Acta Cryst.E65, o2724. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008a).Acta Cryst.E64, m63. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008b).Acta Cryst.E64, m133. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008c).Acta Cryst.E64, m204. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008d).Acta Cryst.E64, m332. Meng, Q.-G., Wang, L.-T., Liu, Y.-Z. & Pang, Y. (2008e).Acta Cryst.E64,

m170–m171.

(3)

Article

retracted

metal-organic papers

m1834

Liuet al. [Ni

2(C3H2O4)2(C4H4N2)(H2O)2] doi:10.1107/S1600536805026358 Acta Cryst.(2005). E61, m1834–m1836

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Poly[diaquadi-

l

3

-malonato-

l

-pyrazine-dinickel(II)]

Ying Liu,* Jianmin Dou, Daqi Wang, Guolin Ma and Dacheng Li

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People’s Republic of China

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.033 wRfactor = 0.089

Data-to-parameter ratio = 10.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The title compound, [Ni2(C3H2O4)2(C4H4N2)(H2O)2]n, has

been prepared from the hydrothermal reaction of nickel(II) chloride, malonic acid and pyrazine. The NiIIatoms are linked

via coordinated malonates, forming a two-dimensional network with cavities of 6.145.60 A˚ . These sheet structures are further connected into a three-dimensional network by bridging pyrazine ligands which have inversion symmetry, the mean distance between the layers being 7.39 A˚ . The coordination geometry around the NiIIatom is a tetragonally elongated octahedron, with pyrazine N and aqua O atoms at the apical positions.

Comment

In recent years, dicarboxylic acids have been widely used as polydentate ligands, which undergo various metal chelation reactions to form transition or rare earth metal complexes with interesting properties in materials science (Church & Halvorson, 1959; Chunget al., 1971) and in biological systems (Okabe & Oya, 2000; Serreet al., 2005; Pocker & Fong, 1980; Scapinet al., 1997). For example, Kimet al.(2001) focused on the syntheses of transition metal complexes containing benzene dicarboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes in materials science and biological systems prompted us to pursue synthetic strategies for these compounds, using malonate as a polydentate ligand and pyrazine as a rigid aromatic ligand. In this paper, we report the synthesis and X-ray crystal structure analysis of the title compound, [Ni2(malonate)2(pyrazine)(H2O)2]n, (I).

The NiIIatom of (I) has sixfold coordination, chelated by two O atoms from one malonate ligand to form a six-membered boat-type ring, and by two O atoms from two neighbouring malonates, one aqua molecule and one N atom

(4)

Article

retracted

from the bridging pyrazine ligand (Fig. 1). The coordinating atoms around the NiIIatom exhibit a tetragonally elongated octahedral geometry, the equatorial plane of which is composed of atoms O1/O2/O4/O5, with the deviations for these four atoms and for Ni1 being less than 0.05 A˚ . The apical positions are occupied by aqua O3 and pyrazine N1 atoms. The Ni—O(carboxylate) bond lengths are in the range 2.050 (2)–2.079 (2) A˚ (Table 1), whereas the Ni—O3 and Ni— N distances in the axial direction are much longer [2.205 (3) and 2.266 (3) A˚ , respectively].

The packing diagram for (I) is shown in Fig. 2. If the pyrazine bridges are neglected, a two-dimensional network is formed by the [Ni(malonate)(H2O)] moieties parallel to the

(010) plane. There are hydrogen bonds (Table 2) between the aqua and malonate ligands in this network. The bridging mode of the malonate is similar to those observed in other nickel compounds (Gil de Muroet al., 1999; Xiaoet al., 2004; Deigado

et al., 2004; Ruiz-Perezet al., 2000; Zheng & Xie, 2004).

Experimental

A mixture of nickel(II) chloride (0.5 mmol), malonic acid (0.5 mmol), sodium hydroxide (1 mmol), pyrazine (1 mmol) and H2O (8 ml) in a

25 ml Teflon-lined stainless steel autoclave was heated at 443 K for 2 d and then cooled to room temperature. Green columnar crystals of (I) were obtained with a yield of 35%. Analysis, calculated for C10H12N2Ni2O10: C 27.42, N 6.40, Ni 13.41%; found: C 27.45, N 6.38,

Ni 13.38%.

Crystal data

[Ni2(C3H2O4)2(C4H4N2)(H2O)2]

Mr= 437.6

Monoclinic, P21=n

a= 6.9783 (5) A˚

b= 14.5612 (9) A˚

c= 7.3348 (5) A˚

= 92.181 (2) V= 744.77 (9) A˚3

Z= 2

Dx= 1.951 Mg m

3

MoKradiation Cell parameters from 1338

reflections

= 1.7–25.2

= 2.59 mm1

T= 293 (2) K Column, green 0.420.370.33 mm

Data collection

Siemens SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.375,Tmax= 0.426

2429 measured reflections

1338 independent reflections 1118 reflections withI> 2(I)

Rint= 0.023

max= 25.2

h=8!3

k=13!17

l=8!8

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.033

wR(F2) = 0.089

S= 1.00 1338 reflections 123 parameters

Only H-atomUisovalues refined

w= 1/[2(F

o2) + (0.0643P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.60 e A˚

3 min=0.40 e A˚

3

Extinction correction:SHELXL97

(Sheldrick, 1997a)

[image:4.610.68.270.72.256.2]

Extinction coefficient: 0.018 (3)

Table 1

Selected geometric parameters (A˚ ,).

Ni1—O5 2.050 (2)

Ni1—O1 2.066 (2)

Ni1—O2 2.076 (2)

Ni1—O4 2.079 (2)

Ni1—O3 2.205 (3)

Ni1—N1 2.266 (3)

O5—Ni1—O1 97.24 (10) O5—Ni1—O2 173.93 (9) O1—Ni1—O2 88.19 (10) O5—Ni1—O4 90.12 (10) O1—Ni1—O4 172.21 (9) O2—Ni1—O4 84.35 (9) O5—Ni1—O3 90.76 (9) O1—Ni1—O3 95.62 (10)

O2—Ni1—O3 91.43 (10) O4—Ni1—O3 86.81 (11) O5—Ni1—N1 84.79 (9) O1—Ni1—N1 90.39 (9) O2—Ni1—N1 92.46 (10) O4—Ni1—N1 87.72 (10) O3—Ni1—N1 172.94 (10)

Acta Cryst.(2005). E61, m1834–m1836 Liuet al. [Ni

2(C3H2O4)2(C4H4N2)(H2O)2]

m1835

Figure 1

A view of the structure of (I), showing 50% probability displacement ellipsoids. Atoms labelled with the suffix A or B are at the symmetry positions (1

2 +x,

3

2y,z

1 2) and (

1

2+ x,

3

2y,z+

1

2), respectively.

[image:4.610.43.568.179.582.2]

Unlabelled atoms are at the symmetry position ? [Please provide symmetry code]

Figure 2

[image:4.610.313.565.622.730.2]
(5)

Article

retracted

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H5 O2i

0.86 (2) 1.91 (4) 2.693 (3) 151 (4) O3—H6 O4ii

0.85 (2) 1.82 (5) 2.623 (3) 155 (7)

Symmetry codes: (i)x1 2;yþ

3 2;zþ

1 2; (ii)x

1 2;yþ

3 2;z

1 2.

H atoms were located in difference density maps and refined isotropically with restrained bond distances [O3—H5/H6 = 0.85 (2) A˚ , H5 H6 = 1.38 (2) A˚ and Ni1 H6 = 2.5 (5) A˚ for the water molecule; C—H = 0.85 (2) A˚ ].

Data collection:SMART(Siemens, 1996); cell refinement:SMART

[or SAINT?]; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97(Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank Liaocheng University for financial support and Professor Jianmin Dou for his help.

References

Church, B. S. & Halvorson, H. (1959).Nature,183, 124–125.

Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971).Biophys. J.11, 469– 475.

Deigado, F. S., Hemandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lioret, F. & Julve, M. (2004).CrystEngComm,6, 106– 109.

Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999).Eur. J. Inorg. Chem.pp. 935–939.

Kim, Y., Lee, E. & Jung, D. Y. (2001).Chem. Mater.13, 2684–2699. Okabe, N. & Oya, N. (2000).Acta Cryst.C56, 1416–1417. Pocker, Y. & Fong, C. T. O. (1980).Biochemistry,19, 2045–2049.

Ruiz-Perez, C., Hemandez-Molina, M., Sanchiz, J., Lopez, T., Lioret, F. & Julve, M. (2000).Inorg. Chim. Acta,298, 245–249.

Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997).Biochemistry,36, 15081–15088.

Serre, C., Marrot, J. & Ferey, G. (2005).Inorg. Chem.44, 654–658. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Xiao, X. W., Xu, W., Li, Y., Zhang, B. & Zhu, D. B. (2004).Acta Cryst.E60, m48–m49.

Zheng, Y. Q. & Xie, H. Z. (2004).J. Coord. Chem.57, 1537–1541.

metal-organic papers

m1836

Liuet al. [Ni

(6)

Article

retracted

sup-1

Acta Cryst. (2005). E61, m1834–m1836

supporting information

Acta Cryst. (2005). E61, m1834–m1836 [https://doi.org/10.1107/S1600536805026358]

Poly[diaquadi-

µ

3-malonato-

µ

-pyrazine-dinickel(II)]

Ying Liu, Jianmin Dou, Daqi Wang, Guolin Ma and Dacheng Li

Poly[diaquabis(µ3-malonato)(µ-pyrazine)dinickel(II)]

Crystal data

[Ni2(C3H2O4)2(C4H4N2)(H2O)2]

Mr = 437.6 Monoclinic, P21/n

a = 6.9783 (5) Å

b = 14.5612 (9) Å

c = 7.3348 (5) Å

β = 92.181 (2)°

V = 744.77 (9) Å3

Z = 2

F(000) = 444

Dx = 1.951 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1338 reflections

θ = 1.7–25.2°

µ = 2.59 mm−1

T = 293 K Column, green 0.42 × 0.37 × 0.33 mm

Data collection

Siemens SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.375, Tmax = 0.426

2429 measured reflections 1338 independent reflections 1118 reflections with I > 2σ(I)

Rint = 0.023

θmax = 25.2°, θmin = 2.8°

h = −8→3

k = −13→17

l = −8→8

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.033

wR(F2) = 0.089

S = 1.00 1338 reflections 123 parameters 9 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0643P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.60 e Å−3

Δρmin = −0.40 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.018 (3)

Special details

(7)

Article

retracted

supporting information

sup-2

Acta Cryst. (2005). E61, m1834–m1836

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.66238 (5) 0.69131 (3) −0.08101 (5) 0.0187 (2)

C1 0.4150 (5) 0.6682 (2) 0.2436 (4) 0.0262 (7)

C2 0.3873 (6) 0.6085 (3) 0.4106 (5) 0.0337 (8)

C3 0.9173 (5) 0.8403 (2) 0.0878 (4) 0.0260 (7)

C4 1.0475 (5) 0.5745 (3) −0.0907 (6) 0.0415 (10)

C5 0.8212 (5) 0.4954 (3) 0.0546 (5) 0.0382 (9)

N1 0.8671 (4) 0.57184 (19) −0.0373 (4) 0.0293 (6) O1 0.5251 (3) 0.62248 (17) −0.2949 (3) 0.0330 (6) O2 0.8363 (3) 0.75257 (17) −0.2697 (3) 0.0328 (6) O3 0.4672 (4) 0.81041 (18) −0.0870 (3) 0.0371 (6)

O4 0.8300 (3) 0.7640 (2) 0.1097 (3) 0.0362 (6)

O5 0.5142 (3) 0.63277 (17) 0.1252 (3) 0.0334 (6)

H1 1.074 (6) 0.622 (2) −0.156 (5) 0.059 (13)*

H2 0.703 (3) 0.495 (3) 0.096 (4) 0.039 (10)*

H3 0.465 (4) 0.5595 (19) 0.408 (5) 0.042 (11)*

H4 0.271 (3) 0.584 (3) 0.407 (7) 0.070 (16)*

H5 0.388 (5) 0.797 (3) −0.004 (5) 0.055 (14)*

H6 0.409 (8) 0.802 (5) −0.190 (4) 0.059 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni1 0.0229 (3) 0.0177 (3) 0.0157 (3) −0.00064 (15) 0.00199 (16) 0.00056 (15) C1 0.0295 (16) 0.0246 (19) 0.0246 (16) −0.0007 (14) 0.0019 (13) −0.0041 (14) C2 0.053 (2) 0.024 (2) 0.0239 (17) 0.0054 (18) 0.0030 (15) 0.0010 (15) C3 0.0305 (16) 0.0230 (19) 0.0247 (16) −0.0020 (15) 0.0032 (13) −0.0051 (14) C4 0.038 (2) 0.034 (2) 0.054 (2) 0.0056 (17) 0.0166 (17) 0.0159 (19) C5 0.0317 (18) 0.029 (2) 0.055 (2) 0.0014 (16) 0.0129 (17) 0.0089 (18) N1 0.0305 (14) 0.0263 (16) 0.0312 (15) 0.0016 (12) 0.0016 (11) 0.0009 (13) O1 0.0423 (13) 0.0255 (13) 0.0306 (12) 0.0016 (11) −0.0055 (10) 0.0028 (11) O2 0.0448 (14) 0.0288 (15) 0.0256 (12) −0.0079 (11) 0.0105 (10) −0.0027 (10) O3 0.0398 (14) 0.0416 (17) 0.0303 (14) 0.0022 (11) 0.0046 (11) 0.0016 (11) O4 0.0469 (15) 0.0352 (16) 0.0261 (12) −0.0122 (12) −0.0048 (10) 0.0040 (11) O5 0.0395 (12) 0.0294 (14) 0.0324 (13) 0.0033 (11) 0.0149 (10) −0.0003 (11)

Geometric parameters (Å, º)

Ni1—O5 2.050 (2) C3—O1ii 1.245 (4)

Ni1—O1 2.066 (2) C3—O4 1.280 (5)

(8)

Article

retracted

sup-3

Acta Cryst. (2005). E61, m1834–m1836

Ni1—O4 2.079 (2) C4—N1 1.334 (4)

Ni1—O3 2.205 (3) C4—C5iv 1.388 (5)

Ni1—N1 2.266 (3) C4—H1 0.87 (2)

Ni1—H6 2.50 (5) C5—N1 1.346 (5)

C1—O5 1.243 (4) C5—C4iv 1.388 (5)

C1—O2i 1.280 (4) C5—H2 0.890 (19)

C1—C2 1.520 (5) O1—C3v 1.245 (4)

C2—C3i 1.506 (5) O2—C1iii 1.280 (4)

C2—H3 0.896 (18) O3—H6 0.85 (2)

C2—H4 0.886 (19) O3—H5 0.86 (2)

O5—Ni1—O1 97.24 (10) C3i—C2—H3 110 (2)

O5—Ni1—O2 173.93 (9) C1—C2—H3 110 (2)

O1—Ni1—O2 88.19 (10) C3i—C2—H4 109 (3)

O5—Ni1—O4 90.12 (10) C1—C2—H4 110 (3)

O1—Ni1—O4 172.21 (9) H3—C2—H4 104 (2)

O2—Ni1—O4 84.35 (9) O1ii—C3—O4 124.6 (3)

O5—Ni1—O3 90.76 (9) O1ii—C3—C2iii 116.2 (3)

O1—Ni1—O3 95.62 (10) O4—C3—C2iii 119.1 (3)

O2—Ni1—O3 91.43 (10) N1—C4—C5iv 123.1 (3)

O4—Ni1—O3 86.81 (11) N1—C4—H1 114 (3)

O5—Ni1—N1 84.79 (9) C5iv—C4—H1 123 (3)

O1—Ni1—N1 90.39 (9) N1—C5—C4iv 122.3 (3)

O2—Ni1—N1 92.46 (10) N1—C5—H2 115 (3)

O4—Ni1—N1 87.72 (10) C4iv—C5—H2 123 (3)

O3—Ni1—N1 172.94 (10) C4—N1—C5 114.6 (3)

O5—Ni1—H6 97.6 (16) C4—N1—Ni1 122.2 (2)

O1—Ni1—H6 76.6 (11) C5—N1—Ni1 123.1 (2)

O2—Ni1—H6 86.3 (17) C3v—O1—Ni1 124.3 (2)

O4—Ni1—H6 105.0 (13) C1iii—O2—Ni1 126.6 (2)

O3—Ni1—H6 19.6 (9) Ni1—O3—H6 100 (4)

N1—Ni1—H6 167.0 (11) Ni1—O3—H5 103 (3)

O5—C1—O2i 124.7 (3) H6—O3—H5 107 (4)

O5—C1—C2 114.7 (3) C3—O4—Ni1 128.0 (2)

O2i—C1—C2 120.6 (3) C1—O5—Ni1 130.8 (2)

C3i—C2—C1 113.3 (3)

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) −x+2, −y+1, −z; (v) x−1/2, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H5···O2i 0.86 (2) 1.91 (4) 2.693 (3) 151 (4)

O3—H6···O4v 0.85 (2) 1.82 (5) 2.623 (3) 155 (7)

Figure

Table 1
Figure 1

References

Related documents

International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison

To sum up, rather than framing every event related with journalists and media houses, as the violation of press freedom, performing the journalistic duty ho- nestly will

The Productive Sector Operational Programme refers to the ‘ the insufficient investment in RTDI as a constraint to the sustainable growth of indigenous industry which must move

Mathematics Trajectories and Risk Factors During Childhood. LEBIHAN, Laetitia and MAO TAKONGMO,

a real GDP per capita measure of economic growth, a real gross fixed capital formation per capita proxy for capitalization, biomass energy consumption, real domestic credit to

At once the Alingham – Sandmo model does not uses at all a parameter “the cost of taxpayer’s activity”, despite the fact that the principle of taking into account

In order to attain good construct validity, the typically developing adolescents were compared with 60 age matched adolescents with language disorders (10 adolescents with

However, if the goal is to help a speech retrieval system de- tect content-rich (and presumably infrequent) key- words, then using word co-occurrence informa- tion (i.e. topic