Retraction of articles
This article reports the retraction of articles published inActa Crystallographica Section Ebetween 2005 and 2009.
After further thorough investigation (see Harrison et al., 2010), articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.
addenda and errata
e14
#2012 International Union of Crystallography doi:10.1107/S1600536811037603 Acta Cryst.(2012). E68, e14–e15Acta Crystallographica Section E
Structure Reports Online
[image:1.610.53.567.311.738.2]ISSN 1600-5368
Table 1
Details of articles to be retracted, in order of publication.
Title Reference DOI Refcode
Poly[diaquadi-3-malonato--pyrazine-dinickel(II)] Liuet al.(2005) 10.1107/S1600536805026358 GATWAA
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)samarium(II)]- -pyridine-2,6-dicarboxylato] tetrahydrate]
Liuet al.(2006) 10.1107/S1600536806038141 FONCUH03
Poly[[[4-4,40
-carbonylbis(benzene-3,4-dicarboxylato)]tetrakis(1,10-phenanthroline)-dipalladium(II)] dihydrate]
Li, Wang, Zhang & Yu (2007e)
10.1107/S1600536807039050 AFELAZ
Poly[diaqua-3-malonato--pyrazine-diiron(II)] Li, Liuet al.(2007) 10.1107/S1600536807038743 AFELON
Poly[diaqua-di-3-malonato--pyrazine-dimanganese(II)] Li, Wang, Zhang & Yu (2007f)
10.1107/S1600536807039773 VIJZAQ
Poly[[aqua(2,2-bipyridine)(3-pyridine-3,4-dicarboxylato)cobalt(II)] monohydrate] Li, Wang, Zhang & Yu (2007g)
10.1107/S1600536807040275 VIKCIC
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)holmium(III)]- -pyridine-2,6-dicarboxylato] tetrahydrate]
Li, Wang, Zhang & Yu (2007a)
10.1107/S1600536807041657 DILGEL
catena-Poly[[(2,20
2N,N0
4N3,O4:N1,O5]
Li, Wang, Zhang & Yu (2007h)
10.1107/S1600536807042122 XIKWAQ
Poly[[aqua(2,20-bipyridine)(
3-pyridine-3,4-dicarboxylato)nickel(II)] monohydrate] Li, Wang, Zhang & Yu (2007b)
10.1107/S1600536807046466 LEVZAO01
2-(Benzyliminomethyl)-6-methoxyphenol Li, Wang, Zhang & Yu (2007i)
10.1107/S1600536807042134 SILDEX
Poly[aqua(2,20-bipyridine)(
3-pyridine-2,4-dicarboxylato)palladium(II)] Li, Wang, Zhang & Yu (2007c)
10.1107/S1600536807047575 SILXAN
-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]iron(III)} bis(hexafluoridophosphate) Liu, Dou, Li & Zhang (2007)
10.1107/S1600536807049665 TINRIS
-Oxido-bis({4,40-dibromo-2,20
-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}-manganese(III))
Liu, Dou, Niu & Zhang (2007a)
10.1107/S1600536807051008 GIMZAE
Bis[N-(8-quinolyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate Li, Wang, Zhang & Yu (2007d)
10.1107/S1600536807048556 WIMZIC
-Oxido-bis({4,40-dibromo-2,20
-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}-chromium(III))
Liu, Dou, Niu & Zhang (2007b)
10.1107/S1600536807057996 HIQFIX
-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]chromium(III)} bis(hexafluorido-phosphate)
Li, Wanget al.(2008) 10.1107/S1600536807061296 MIRNAD
-Oxido-bis({4,40-dibromo-2,20
-ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}-iron(III))
Menget al.(2008a) 10.1107/S1600536807063143 MIRWUG
catena-Poly[[bis(1H-benzimidazole-N3
2O1:O4]
Menget al.(2008b) 10.1107/S1600536807065051 XISCAE
Oxalatobis(propane-1,3-diamine)manganese(II) chloride monohydrate Menget al.(2008e) 10.1107/S1600536807065361 SISWIB
-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]manganese(III)} bis(hexafluorido-phosphate)
Menget al.(2008c) 10.1107/S1600536807066512 RISRIV
Bis[N-(8-quinolyl)pyridine-2-carboxamidato-3
N,N0,N0 0]manganese(III) perchlorate
monohydrate
Menget al.(2008d) 10.1107/S1600536808000287 GISLEA
Diaquabis(pyridine-2-carboxylato-2N,O)cobalt(II)
Huang (2008) 10.1107/S1600536808010507 WIZPOL
Tetra--2,5-difluorobenzoato-bis[(2,20-bipyridine)(2,5-difluorobenzoato)gadolinium(III)]
Li, Zhanget al.(2008) 10.1107/S1600536808023507 BOFQIX
catena-Poly[[(2,20-bipyridine-2N,N0)nickel(II)]--oxalato-4O1,O2:O10
,O20
] Li, Yanet al.(2008) 10.1107/S1600536808028389 NOHYUF
catena-Poly[[aqua(2,20
-5-nitroisophthlalato] Liuet al.(2008) 10.1107/S1600536808038178 AFIREN
Diaquabis(pyridine-2-carboxylato-2N,O)iron(II)
Xia & Sun (2009) 10.1107/S1600536809005765 RONFEG
catena-Poly[[[diaquathulium(III)]--6-carboxynicotinato--pyridine-2,5-dicarboxylato] dihydrate]
Liet al.(2009) 10.1107/S1600536809008836 NOQNIR
Acta Cryst.(2012). E68, e14–e15 IUCr Editorial Office Retraction
e15
References
Harrison, W. T. A., Simpson, J. & Weil, M. (2010).Acta Cryst.E66, e1–e2. Huang, G. S. (2008).Acta Cryst.E64, m685–m686.
Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009).Acta Cryst.E65, m411. Li, S., Wang, S.-B., Zhang, F.-L. & Tang, K. (2008).Acta Cryst.E64, m2. Li, S., Yan, X.-L., Wang, S.-B. & Ma, Y.-F. (2008).Acta Cryst.E64, m1258. Li, S., Zhang, F.-L., Tang, K. & Ma, Y.-F. (2008).Acta Cryst.E64, m1142. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007a).Acta Cryst.E63, m2438–m2439. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007b).Acta Cryst.E63, m2604. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007c).Acta Cryst.E63, m2642. Li, Z., Wang, S., Zhang, Q. & Yu, X. (2007d).Acta Cryst.E63, m2781. Li, Z.-F., Liu, Y., Zhang, Q. & Yu, X.-J. (2007).Acta Cryst.E63, m2315. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007e).Acta Cryst.E63, m2312. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007f).Acta Cryst.E63, m2360. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007g).Acta Cryst.E63, m2373. Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007h). Acta Cryst. E63,
m2445.
Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007i).Acta Cryst.E63, o3930. Liu, Y., Dou, J., Li, D. & Zhang, X. (2007).Acta Cryst.E63, m2722. Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007a).Acta Cryst.E63, m2771. Liu, Y., Dou, J., Niu, M. & Zhang, X. (2007b).Acta Cryst.E63, m3032. Liu, Y., Dou, J., Wang, D., Ma, G. & Li, D. (2005).Acta Cryst.E61, m1834–
m1836.
Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006).Acta Cryst.
E62, m2794–m2795.
Liu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008).Acta Cryst.E64, m1605– m1606.
Liu, Y., Zhang, X., Xue, Z. & Lv, C. (2009).Acta Cryst.E65, o2724. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008a).Acta Cryst.E64, m63. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008b).Acta Cryst.E64, m133. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008c).Acta Cryst.E64, m204. Meng, Q., Wang, L., Liu, Y. & Pang, Y. (2008d).Acta Cryst.E64, m332. Meng, Q.-G., Wang, L.-T., Liu, Y.-Z. & Pang, Y. (2008e).Acta Cryst.E64,
m170–m171.
Article
retracted
metal-organic papers
m1834
Liuet al. [Ni2(C3H2O4)2(C4H4N2)(H2O)2] doi:10.1107/S1600536805026358 Acta Cryst.(2005). E61, m1834–m1836
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Poly[diaquadi-
l
3-malonato-
l
-pyrazine-dinickel(II)]
Ying Liu,* Jianmin Dou, Daqi Wang, Guolin Ma and Dacheng Li
College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People’s Republic of China
Correspondence e-mail: [email protected]
Key indicators
Single-crystal X-ray study T= 293 K
Mean(C–C) = 0.005 A˚ Rfactor = 0.033 wRfactor = 0.089
Data-to-parameter ratio = 10.9
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2005 International Union of Crystallography
Printed in Great Britain – all rights reserved
The title compound, [Ni2(C3H2O4)2(C4H4N2)(H2O)2]n, has
been prepared from the hydrothermal reaction of nickel(II) chloride, malonic acid and pyrazine. The NiIIatoms are linked
via coordinated malonates, forming a two-dimensional network with cavities of 6.145.60 A˚ . These sheet structures are further connected into a three-dimensional network by bridging pyrazine ligands which have inversion symmetry, the mean distance between the layers being 7.39 A˚ . The coordination geometry around the NiIIatom is a tetragonally elongated octahedron, with pyrazine N and aqua O atoms at the apical positions.
Comment
In recent years, dicarboxylic acids have been widely used as polydentate ligands, which undergo various metal chelation reactions to form transition or rare earth metal complexes with interesting properties in materials science (Church & Halvorson, 1959; Chunget al., 1971) and in biological systems (Okabe & Oya, 2000; Serreet al., 2005; Pocker & Fong, 1980; Scapinet al., 1997). For example, Kimet al.(2001) focused on the syntheses of transition metal complexes containing benzene dicarboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes in materials science and biological systems prompted us to pursue synthetic strategies for these compounds, using malonate as a polydentate ligand and pyrazine as a rigid aromatic ligand. In this paper, we report the synthesis and X-ray crystal structure analysis of the title compound, [Ni2(malonate)2(pyrazine)(H2O)2]n, (I).
The NiIIatom of (I) has sixfold coordination, chelated by two O atoms from one malonate ligand to form a six-membered boat-type ring, and by two O atoms from two neighbouring malonates, one aqua molecule and one N atom
Article
retracted
from the bridging pyrazine ligand (Fig. 1). The coordinating atoms around the NiIIatom exhibit a tetragonally elongated octahedral geometry, the equatorial plane of which is composed of atoms O1/O2/O4/O5, with the deviations for these four atoms and for Ni1 being less than 0.05 A˚ . The apical positions are occupied by aqua O3 and pyrazine N1 atoms. The Ni—O(carboxylate) bond lengths are in the range 2.050 (2)–2.079 (2) A˚ (Table 1), whereas the Ni—O3 and Ni— N distances in the axial direction are much longer [2.205 (3) and 2.266 (3) A˚ , respectively].
The packing diagram for (I) is shown in Fig. 2. If the pyrazine bridges are neglected, a two-dimensional network is formed by the [Ni(malonate)(H2O)] moieties parallel to the
(010) plane. There are hydrogen bonds (Table 2) between the aqua and malonate ligands in this network. The bridging mode of the malonate is similar to those observed in other nickel compounds (Gil de Muroet al., 1999; Xiaoet al., 2004; Deigado
et al., 2004; Ruiz-Perezet al., 2000; Zheng & Xie, 2004).
Experimental
A mixture of nickel(II) chloride (0.5 mmol), malonic acid (0.5 mmol), sodium hydroxide (1 mmol), pyrazine (1 mmol) and H2O (8 ml) in a
25 ml Teflon-lined stainless steel autoclave was heated at 443 K for 2 d and then cooled to room temperature. Green columnar crystals of (I) were obtained with a yield of 35%. Analysis, calculated for C10H12N2Ni2O10: C 27.42, N 6.40, Ni 13.41%; found: C 27.45, N 6.38,
Ni 13.38%.
Crystal data
[Ni2(C3H2O4)2(C4H4N2)(H2O)2]
Mr= 437.6
Monoclinic, P21=n
a= 6.9783 (5) A˚
b= 14.5612 (9) A˚
c= 7.3348 (5) A˚
= 92.181 (2) V= 744.77 (9) A˚3
Z= 2
Dx= 1.951 Mg m
3
MoKradiation Cell parameters from 1338
reflections
= 1.7–25.2
= 2.59 mm1
T= 293 (2) K Column, green 0.420.370.33 mm
Data collection
Siemens SMART CCD area-detector diffractometer
’and!scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Tmin= 0.375,Tmax= 0.426
2429 measured reflections
1338 independent reflections 1118 reflections withI> 2(I)
Rint= 0.023
max= 25.2
h=8!3
k=13!17
l=8!8
Refinement
Refinement onF2
R[F2> 2(F2)] = 0.033
wR(F2) = 0.089
S= 1.00 1338 reflections 123 parameters
Only H-atomUisovalues refined
w= 1/[2(F
o2) + (0.0643P)2]
whereP= (Fo2+ 2Fc2)/3
(/)max< 0.001 max= 0.60 e A˚
3 min=0.40 e A˚
3
Extinction correction:SHELXL97
(Sheldrick, 1997a)
[image:4.610.68.270.72.256.2]Extinction coefficient: 0.018 (3)
Table 1
Selected geometric parameters (A˚ ,).
Ni1—O5 2.050 (2)
Ni1—O1 2.066 (2)
Ni1—O2 2.076 (2)
Ni1—O4 2.079 (2)
Ni1—O3 2.205 (3)
Ni1—N1 2.266 (3)
O5—Ni1—O1 97.24 (10) O5—Ni1—O2 173.93 (9) O1—Ni1—O2 88.19 (10) O5—Ni1—O4 90.12 (10) O1—Ni1—O4 172.21 (9) O2—Ni1—O4 84.35 (9) O5—Ni1—O3 90.76 (9) O1—Ni1—O3 95.62 (10)
O2—Ni1—O3 91.43 (10) O4—Ni1—O3 86.81 (11) O5—Ni1—N1 84.79 (9) O1—Ni1—N1 90.39 (9) O2—Ni1—N1 92.46 (10) O4—Ni1—N1 87.72 (10) O3—Ni1—N1 172.94 (10)
Acta Cryst.(2005). E61, m1834–m1836 Liuet al. [Ni
2(C3H2O4)2(C4H4N2)(H2O)2]
m1835
Figure 1
A view of the structure of (I), showing 50% probability displacement ellipsoids. Atoms labelled with the suffix A or B are at the symmetry positions (1
2 +x,
3
2y,z
1 2) and (
1
2+ x,
3
2y,z+
1
2), respectively.
[image:4.610.43.568.179.582.2]Unlabelled atoms are at the symmetry position ? [Please provide symmetry code]
Figure 2
[image:4.610.313.565.622.730.2]Article
retracted
Table 2
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
O3—H5 O2i
0.86 (2) 1.91 (4) 2.693 (3) 151 (4) O3—H6 O4ii
0.85 (2) 1.82 (5) 2.623 (3) 155 (7)
Symmetry codes: (i)x1 2;yþ
3 2;zþ
1 2; (ii)x
1 2;yþ
3 2;z
1 2.
H atoms were located in difference density maps and refined isotropically with restrained bond distances [O3—H5/H6 = 0.85 (2) A˚ , H5 H6 = 1.38 (2) A˚ and Ni1 H6 = 2.5 (5) A˚ for the water molecule; C—H = 0.85 (2) A˚ ].
Data collection:SMART(Siemens, 1996); cell refinement:SMART
[or SAINT?]; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97(Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.
The authors thank Liaocheng University for financial support and Professor Jianmin Dou for his help.
References
Church, B. S. & Halvorson, H. (1959).Nature,183, 124–125.
Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971).Biophys. J.11, 469– 475.
Deigado, F. S., Hemandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lioret, F. & Julve, M. (2004).CrystEngComm,6, 106– 109.
Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999).Eur. J. Inorg. Chem.pp. 935–939.
Kim, Y., Lee, E. & Jung, D. Y. (2001).Chem. Mater.13, 2684–2699. Okabe, N. & Oya, N. (2000).Acta Cryst.C56, 1416–1417. Pocker, Y. & Fong, C. T. O. (1980).Biochemistry,19, 2045–2049.
Ruiz-Perez, C., Hemandez-Molina, M., Sanchiz, J., Lopez, T., Lioret, F. & Julve, M. (2000).Inorg. Chim. Acta,298, 245–249.
Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997).Biochemistry,36, 15081–15088.
Serre, C., Marrot, J. & Ferey, G. (2005).Inorg. Chem.44, 654–658. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of
Go¨ttingen, Germany.
Sheldrick, G. M. (1997b).SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Xiao, X. W., Xu, W., Li, Y., Zhang, B. & Zhu, D. B. (2004).Acta Cryst.E60, m48–m49.
Zheng, Y. Q. & Xie, H. Z. (2004).J. Coord. Chem.57, 1537–1541.
metal-organic papers
m1836
Liuet al. [NiArticle
retracted
sup-1
Acta Cryst. (2005). E61, m1834–m1836
supporting information
Acta Cryst. (2005). E61, m1834–m1836 [https://doi.org/10.1107/S1600536805026358]
Poly[diaquadi-
µ
3-malonato-µ
-pyrazine-dinickel(II)]
Ying Liu, Jianmin Dou, Daqi Wang, Guolin Ma and Dacheng Li
Poly[diaquabis(µ3-malonato)(µ-pyrazine)dinickel(II)]
Crystal data
[Ni2(C3H2O4)2(C4H4N2)(H2O)2]
Mr = 437.6 Monoclinic, P21/n
a = 6.9783 (5) Å
b = 14.5612 (9) Å
c = 7.3348 (5) Å
β = 92.181 (2)°
V = 744.77 (9) Å3
Z = 2
F(000) = 444
Dx = 1.951 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1338 reflections
θ = 1.7–25.2°
µ = 2.59 mm−1
T = 293 K Column, green 0.42 × 0.37 × 0.33 mm
Data collection
Siemens SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Tmin = 0.375, Tmax = 0.426
2429 measured reflections 1338 independent reflections 1118 reflections with I > 2σ(I)
Rint = 0.023
θmax = 25.2°, θmin = 2.8°
h = −8→3
k = −13→17
l = −8→8
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.033
wR(F2) = 0.089
S = 1.00 1338 reflections 123 parameters 9 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001
Δρmax = 0.60 e Å−3
Δρmin = −0.40 e Å−3
Extinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient: 0.018 (3)
Special details
Article
retracted
supporting information
sup-2
Acta Cryst. (2005). E61, m1834–m1836
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Ni1 0.66238 (5) 0.69131 (3) −0.08101 (5) 0.0187 (2)
C1 0.4150 (5) 0.6682 (2) 0.2436 (4) 0.0262 (7)
C2 0.3873 (6) 0.6085 (3) 0.4106 (5) 0.0337 (8)
C3 0.9173 (5) 0.8403 (2) 0.0878 (4) 0.0260 (7)
C4 1.0475 (5) 0.5745 (3) −0.0907 (6) 0.0415 (10)
C5 0.8212 (5) 0.4954 (3) 0.0546 (5) 0.0382 (9)
N1 0.8671 (4) 0.57184 (19) −0.0373 (4) 0.0293 (6) O1 0.5251 (3) 0.62248 (17) −0.2949 (3) 0.0330 (6) O2 0.8363 (3) 0.75257 (17) −0.2697 (3) 0.0328 (6) O3 0.4672 (4) 0.81041 (18) −0.0870 (3) 0.0371 (6)
O4 0.8300 (3) 0.7640 (2) 0.1097 (3) 0.0362 (6)
O5 0.5142 (3) 0.63277 (17) 0.1252 (3) 0.0334 (6)
H1 1.074 (6) 0.622 (2) −0.156 (5) 0.059 (13)*
H2 0.703 (3) 0.495 (3) 0.096 (4) 0.039 (10)*
H3 0.465 (4) 0.5595 (19) 0.408 (5) 0.042 (11)*
H4 0.271 (3) 0.584 (3) 0.407 (7) 0.070 (16)*
H5 0.388 (5) 0.797 (3) −0.004 (5) 0.055 (14)*
H6 0.409 (8) 0.802 (5) −0.190 (4) 0.059 (13)*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Ni1 0.0229 (3) 0.0177 (3) 0.0157 (3) −0.00064 (15) 0.00199 (16) 0.00056 (15) C1 0.0295 (16) 0.0246 (19) 0.0246 (16) −0.0007 (14) 0.0019 (13) −0.0041 (14) C2 0.053 (2) 0.024 (2) 0.0239 (17) 0.0054 (18) 0.0030 (15) 0.0010 (15) C3 0.0305 (16) 0.0230 (19) 0.0247 (16) −0.0020 (15) 0.0032 (13) −0.0051 (14) C4 0.038 (2) 0.034 (2) 0.054 (2) 0.0056 (17) 0.0166 (17) 0.0159 (19) C5 0.0317 (18) 0.029 (2) 0.055 (2) 0.0014 (16) 0.0129 (17) 0.0089 (18) N1 0.0305 (14) 0.0263 (16) 0.0312 (15) 0.0016 (12) 0.0016 (11) 0.0009 (13) O1 0.0423 (13) 0.0255 (13) 0.0306 (12) 0.0016 (11) −0.0055 (10) 0.0028 (11) O2 0.0448 (14) 0.0288 (15) 0.0256 (12) −0.0079 (11) 0.0105 (10) −0.0027 (10) O3 0.0398 (14) 0.0416 (17) 0.0303 (14) 0.0022 (11) 0.0046 (11) 0.0016 (11) O4 0.0469 (15) 0.0352 (16) 0.0261 (12) −0.0122 (12) −0.0048 (10) 0.0040 (11) O5 0.0395 (12) 0.0294 (14) 0.0324 (13) 0.0033 (11) 0.0149 (10) −0.0003 (11)
Geometric parameters (Å, º)
Ni1—O5 2.050 (2) C3—O1ii 1.245 (4)
Ni1—O1 2.066 (2) C3—O4 1.280 (5)
Article
retracted
sup-3
Acta Cryst. (2005). E61, m1834–m1836
Ni1—O4 2.079 (2) C4—N1 1.334 (4)
Ni1—O3 2.205 (3) C4—C5iv 1.388 (5)
Ni1—N1 2.266 (3) C4—H1 0.87 (2)
Ni1—H6 2.50 (5) C5—N1 1.346 (5)
C1—O5 1.243 (4) C5—C4iv 1.388 (5)
C1—O2i 1.280 (4) C5—H2 0.890 (19)
C1—C2 1.520 (5) O1—C3v 1.245 (4)
C2—C3i 1.506 (5) O2—C1iii 1.280 (4)
C2—H3 0.896 (18) O3—H6 0.85 (2)
C2—H4 0.886 (19) O3—H5 0.86 (2)
O5—Ni1—O1 97.24 (10) C3i—C2—H3 110 (2)
O5—Ni1—O2 173.93 (9) C1—C2—H3 110 (2)
O1—Ni1—O2 88.19 (10) C3i—C2—H4 109 (3)
O5—Ni1—O4 90.12 (10) C1—C2—H4 110 (3)
O1—Ni1—O4 172.21 (9) H3—C2—H4 104 (2)
O2—Ni1—O4 84.35 (9) O1ii—C3—O4 124.6 (3)
O5—Ni1—O3 90.76 (9) O1ii—C3—C2iii 116.2 (3)
O1—Ni1—O3 95.62 (10) O4—C3—C2iii 119.1 (3)
O2—Ni1—O3 91.43 (10) N1—C4—C5iv 123.1 (3)
O4—Ni1—O3 86.81 (11) N1—C4—H1 114 (3)
O5—Ni1—N1 84.79 (9) C5iv—C4—H1 123 (3)
O1—Ni1—N1 90.39 (9) N1—C5—C4iv 122.3 (3)
O2—Ni1—N1 92.46 (10) N1—C5—H2 115 (3)
O4—Ni1—N1 87.72 (10) C4iv—C5—H2 123 (3)
O3—Ni1—N1 172.94 (10) C4—N1—C5 114.6 (3)
O5—Ni1—H6 97.6 (16) C4—N1—Ni1 122.2 (2)
O1—Ni1—H6 76.6 (11) C5—N1—Ni1 123.1 (2)
O2—Ni1—H6 86.3 (17) C3v—O1—Ni1 124.3 (2)
O4—Ni1—H6 105.0 (13) C1iii—O2—Ni1 126.6 (2)
O3—Ni1—H6 19.6 (9) Ni1—O3—H6 100 (4)
N1—Ni1—H6 167.0 (11) Ni1—O3—H5 103 (3)
O5—C1—O2i 124.7 (3) H6—O3—H5 107 (4)
O5—C1—C2 114.7 (3) C3—O4—Ni1 128.0 (2)
O2i—C1—C2 120.6 (3) C1—O5—Ni1 130.8 (2)
C3i—C2—C1 113.3 (3)
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) −x+2, −y+1, −z; (v) x−1/2, −y+3/2, z−1/2.
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
O3—H5···O2i 0.86 (2) 1.91 (4) 2.693 (3) 151 (4)
O3—H6···O4v 0.85 (2) 1.82 (5) 2.623 (3) 155 (7)