• No results found

N {(Amino­carbon­yl)[(S) 4 nitro­benz­yl]meth­yl} N {[(R) cyclo­hexyl](cyclo­hexylamino­carbon­yl)meth­yl}propanamide methanol solvate

N/A
N/A
Protected

Academic year: 2020

Share "N {(Amino­carbon­yl)[(S) 4 nitro­benz­yl]meth­yl} N {[(R) cyclo­hexyl](cyclo­hexylamino­carbon­yl)meth­yl}propanamide methanol solvate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1892

Guzeiet al. C

26H38N4O5CH4O doi:10.1107/S1600536807012299 Acta Cryst.(2007). E63, o1892–o1894

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N

-{(Aminocarbonyl)[(

S

)-4-nitrobenzyl]-methyl}-

N

-{[(

R

)-cyclohexyl](cyclohexyl-aminocarbonyl)methyl}propanamide

methanol solvate

Ilia A. Guzei,* Lara C. Spencer, Qi Lin and Helen E. Blackwell

Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA

Correspondence e-mail: iguzei@chem.wisc.edu

Key indicators Single-crystal X-ray study

T= 100 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.036

wRfactor = 0.096

Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 28 February 2007 Accepted 15 March 2007

#2007 International Union of Crystallography All rights reserved

The title compound, C26H38N4O5CH4O, shows typical

geometric parameters, and four types of hydrogen bonds form a three-dimensional framework.

Comment

Our laboratory is engaged in developing the small molecule macroarray as a general approach for the synthesis and screening of organic compound libraries (Blackwell, 2006). This method entails the spatially addressed solid-phase synthesis of discrete compounds on planar polymeric supports and the title compound, (I), was isolated during this work. We recently reported that our macroarray platform is compatible with the Ugi four-component reaction and have synthesized several libraries using this versatile transformation (Linet al., 2005; Lin & Blackwell, 2006). In each of these libraries, the amine component was l-4-nitrophenylalanine and this

component was attached to the planar solid support through one of two linker systems, either the acid-cleavable Rink linker or the photo-cleavable -methyl-6-nitroveratrylamine linker. While studying this reaction, we observed that the different linker systems gave major products with opposite stereochemistries at the stereogenic center, atom C13 (Fig. 1).

The asymmetric unit consists of one main molecule and one methanol molecule (Fig. 1). The absolute configuration of atom C8 is known to be S from the synthetic procedure, allowing the absolute configuration of atom C13, R, to be determined. The bond distances and angles are within the range of those for similar compounds in the Cambridge Structural Database (CSD; Version 5.28, January 2007 release; Allen, 2002). The two cyclohexane rings are in the chair conformation.

(2)

one intramolecular hydrogen bond between atoms N2 and O4 of (I). From this arrangement, a seven-membered ring is formed which can be classified as anS(7) motif according to graph-set analysis (Bernstein et al., 1995). There is an inter-molecular hydrogen bond between atom N2 of (I) and atom O5 of a symmetry-related molecule of (I). Each methanol solvent molecule forms two hydrogen bonds, one between methanol atom O6 and atom O3 of (I), and one between atom N4 of a symmetry-related molecule of (I) and methanol atom O6. These four types of hydrogen bond form a three-dimen-sional network.

Experimental

In an aluminium foil-wrapped Micro Bio-Spin Column (Bio-Rad, No. 732–6204), Fmoc-aminoethyl-photolinker AM resin (201.6 mg, 151.2 mmol; 0.75 mmol g 1) was agitated in 20% piperidine in dimethylformamide (DMF) (3.0 ml) at 298 K for 20 min, twice, followed by washing with DMF and MeOH. The resin was driedin vacuo for 1 h. Five equivalents of Fmoc-l-Nph-OH (N

-fluorenyl-methoxycarbonyl-l-p-nitrophenylalanine) (328.1 mg, 756.0mmol)

and the coupling reagent 2-(1H -benzotriazole-1-yl)-1,1,3,3-tetra-methyluronium hexafluorophosphate (HTBU) (287.3 mg, 756.0mmol) were dissolved in dry DMF (1 ml), to which N,N -diisopropylethylamine (DIPEA) (263.2ml, 1.51mmol) in dry DMF (756ml) was added. The dark-yellow mixture was allowed to stand at 298 K for 5 min before being added to the Micro Bio-Spin Column with the above resin. The column then was agitated for 4 h. The resulting resin was washed with DMF, CH2Cl2and MeOH, followed by subjection to vacuum overnight. The resin tested negative for free amines using a Kaiser colorimetric test. The resin was placed in an aluminium foil-wrapped fritted extract clean reservoir (Alltech, No.

210208), to which a solution containing water (1.33 ml), cyclohexane carboxaldehyde (133ml) and propionic acid (533ml) was added. An aliquot of cyclohexyl isocyanide (333ml) then was added. The vessel was agitated for 45 min at 298 K, and the resin was washed with DMF, MeOH and CH2Cl2, and dried overnight in vacuo. The resin was divided into two portions, placed in glass vials (20 ml) containing MeOH (3 ml), and subjected to photo-cleavage at 365 nm for 16 h. The beads were filtered off and the solution was concentrated to give a colorless oily product. The crude product was subjected to flash silica-gel column chromatography (CH2Cl2–MeOH, 240:1v/vto 60:1

v/v) to yield the product, (I), and its stereoisomer as white solids (overall yield 21%). Crystallization of the major isomer from a solution in methanol gave colorless crystals, which proved to be the title compound, (I).

Crystal data

C26H38N4O5CH4O

Mr= 518.65 Tetragonal,P43

a= 13.1585 (5) A˚

c= 15.8470 (13) A˚

V= 2743.8 (3) A˚3

Z= 4

Mo-Kradiation = 0.09 mm 1

T= 100 (2) K 0.500.400.40 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Absorption correction: multi-scan

(SADABS; Bruker, 2003)

Tmin= 0.88,Tmax= 1.00

48333 measured reflections 3786 independent reflections 3564 reflections withI> 2(I)

Rint= 0.035

Refinement

R[F2> 2(F2)] = 0.036

wR(F2) = 0.096

S= 1.00 3786 reflections 343 parameters

H atoms treated by a mixture of independent and constrained refinement

max= 0.33 e A˚ 3 min= 0.14 e A˚ 3

organic papers

Acta Cryst.(2007). E63, o1892–o1894 Guzeiet al. C

[image:2.610.313.563.69.262.2]

26H38N4O5CH4O

o1893

Figure 1

The molecular structure of (I), drawn with 50% probability displacement ellipsoids. All H atoms attached to C atoms have been omitted for clarity. Two hydrogen bonds are shown as dashed lines.

Figure 2

Each main molecule forms five hydrogen bonds, shown as dashed lines: one is intramolecular, two are with two symmetry-related main molecules, and two are with two molecules of the methanol solvent. Each methanol forms two hydrogen bonds to two different molecules. All H atoms attached to C atoms have been omitted. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i)y, x+ 2,z+1

4; (ii) x+ 1, y+ 2,z 1

2; (iii) y+ 2,x,z 1

[image:2.610.45.296.72.308.2]
(3)
[image:3.610.44.297.137.193.2]

Table 1

Hydrogen bonds for compound (I) compared with those for similar compounds in the CSD (A˚ ,).

Xis the number of relevant reference compounds in the CSD.Yis the average

D—H Adistance for relevant reference compounds in the CSD.

D—H A D—H H A D A D—H A X Y

N2—H2A O5i

0.83 (2) 2.23 (2) 3.0040 (19) 156 (2) 16 2.92 (9) N2—H2B O4 0.83 (2) 2.05 (3) 2.735 (2) 139 (2) 32 2.87 (7) N4—H4 O6ii

0.87 (2) 2.00 (3) 2.8597 (16) 171 (3) 56 2.89 (9) O6—H6 O3 0.77 (4) 2.06 (4) 2.8287 (17) 176 (3) 30 2.79 (6)

In the absence of significant anomalous scattering effects, Friedel pairs were merged. All H atoms attached to C atoms were placed in idealized locations and refined as riding, with C—H = 0.95 A˚ for aromatic H, 0.98 A˚ for methyl H, 0.99 A˚ for CH2and 1.00 A˚ for CH, and withUiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H. H atoms attached to O and N atoms were refined freely.

Data collection:SMART(Bruker, 2003); cell refinement:SAINT

(Bruker, 2003); data reduction: SAINT; program(s) used to solve

structure: SHELXTL (Bruker, 2003); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The authors thank the National Science Foundation (grant No. CHE-0449959) for financial support of this work. The manuscript was prepared using the beta test version 1.0.0. of the programpublCIF, to be released by the IUCr, and the program modiCIFer, to be released by the University of Wisconsin-Madison.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Blackwell, H. E. (2006).Curr. Opin. Chem. Biol.10, 203–212.

Bruker (2003).SADABS(Version 2.05),SAINT(Version 6.22),SHELXTL

(Version 6.10) andSMART(Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.

Lin, Q. & Blackwell, H. E. (2006).Chem. Commun.pp. 2884–2886. Lin, Q., O’Neill, J. C. & Blackwell, H. E. (2005).Org. Lett.7, 4455–4458.

organic papers

o1894

Guzeiet al. C

(4)

supporting information

sup-1

Acta Cryst. (2007). E63, o1892–o1894

supporting information

Acta Cryst. (2007). E63, o1892–o1894 [https://doi.org/10.1107/S1600536807012299]

N

-{(Aminocarbonyl)[(

S

)-4-nitrobenzyl]methyl}-

N

-{[(

R

)-cyclohexyl](cyclohexyl-aminocarbonyl)methyl}propanamide methanol solvate

Ilia A. Guzei, Lara C. Spencer, Qi Lin and Helen E. Blackwell

N-{(Aminocarbonyl)[(S)-4-nitrobenzyl]methyl}-N-{[(R)- cyclohexyl]

(cyclohexylaminocarbonyl)methyl}propanamide methanol solvate

Crystal data

C26H38N4O5·CH4O

Mr = 518.65

Tetragonal, P43

Hall symbol: P 4cw

a = 13.1585 (5) Å

c = 15.8470 (13) Å

V = 2743.8 (3) Å3

Z = 4

F(000) = 1120

Dx = 1.256 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 8641 reflections

θ = 2.2–28.7°

µ = 0.09 mm−1

T = 100 K

Block, colorless 0.50 × 0.40 × 0.40 mm

Data collection

Bruker SMART1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

0.30° ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2003)

Tmin = 0.88, Tmax = 1.00

48333 measured reflections 3786 independent reflections 3564 reflections with I > 2σ(I)

Rint = 0.035

θmax = 29.1°, θmin = 2.0°

h = −17→17

k = −17→17

l = −21→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.036

wR(F2) = 0.096

S = 1.00

3786 reflections 343 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0733P)2 + 0.3284P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.007

Δρmax = 0.33 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2007). E63, o1892–o1894

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 1.20267 (12) 0.92796 (17) 0.13752 (13) 0.0505 (5)

O2 1.21398 (11) 1.09261 (17) 0.13973 (12) 0.0473 (5)

O3 0.71139 (10) 1.03642 (10) 0.25459 (8) 0.0222 (3)

O4 0.56771 (9) 1.17929 (9) 0.04743 (8) 0.0188 (2)

O5 0.65987 (8) 0.80631 (9) 0.03406 (8) 0.0177 (2)

N1 1.16702 (13) 1.01335 (18) 0.12702 (12) 0.0376 (5)

N2 0.70357 (12) 1.18116 (11) 0.17807 (10) 0.0201 (3)

H2A 0.7202 (19) 1.217 (2) 0.2185 (18) 0.027 (6)*

H2B 0.6801 (17) 1.2066 (18) 0.1342 (17) 0.020 (5)*

N3 0.57060 (9) 1.01182 (9) 0.08022 (8) 0.0130 (2)

N4 0.51247 (10) 0.80583 (10) −0.04134 (9) 0.0155 (3)

H4 0.4532 (19) 0.8335 (18) −0.0474 (18) 0.025 (6)*

C1 1.06038 (13) 1.02118 (17) 0.09961 (12) 0.0261 (4)

C2 1.00595 (13) 0.93285 (15) 0.08435 (13) 0.0250 (4)

H2C 1.0369 0.8679 0.0897 0.030*

C3 0.90445 (12) 0.94259 (13) 0.06089 (11) 0.0203 (3)

H3 0.8657 0.8834 0.0491 0.024*

C4 0.85879 (12) 1.03807 (12) 0.05447 (10) 0.0169 (3)

C5 0.91712 (13) 1.12492 (13) 0.06896 (11) 0.0218 (3)

H5 0.8868 1.1901 0.0636 0.026*

C6 1.01903 (13) 1.11728 (15) 0.09112 (12) 0.0259 (4)

H6A 1.0591 1.1763 0.1002 0.031*

C7 0.74792 (12) 1.04609 (12) 0.03126 (10) 0.0159 (3)

H7A 0.7335 1.0005 −0.0170 0.019*

H7B 0.7327 1.1166 0.0134 0.019*

C8 0.67844 (11) 1.01710 (11) 0.10623 (10) 0.0134 (3)

H8 0.6977 0.9459 0.1213 0.016*

C9 0.69766 (11) 1.08048 (12) 0.18697 (10) 0.0152 (3)

C10 0.52272 (12) 1.09721 (11) 0.05049 (10) 0.0144 (3)

C11 0.41259 (12) 1.08962 (12) 0.02302 (11) 0.0180 (3)

H11A 0.3713 1.0637 0.0706 0.022*

H11B 0.4071 1.0404 −0.0240 0.022*

C12 0.37028 (14) 1.19195 (14) −0.00541 (13) 0.0236 (3)

H12A 0.3741 1.2405 0.0414 0.035*

(6)

supporting information

sup-3

Acta Cryst. (2007). E63, o1892–o1894

H12C 0.4103 1.2174 −0.0531 0.035*

C13 0.52007 (11) 0.91109 (11) 0.08418 (10) 0.0126 (3)

H13 0.4483 0.9203 0.0650 0.015*

C14 0.51695 (11) 0.86840 (11) 0.17426 (10) 0.0137 (3)

H14 0.5883 0.8619 0.1954 0.016*

C15 0.46690 (13) 0.76271 (12) 0.17594 (11) 0.0184 (3)

H15A 0.3971 0.7674 0.1529 0.022*

H15B 0.5062 0.7154 0.1399 0.022*

C16 0.46295 (14) 0.72153 (13) 0.26629 (12) 0.0234 (3)

H16A 0.4279 0.6549 0.2664 0.028*

H16B 0.5331 0.7109 0.2872 0.028*

C17 0.40711 (14) 0.79450 (14) 0.32561 (12) 0.0249 (4)

H17A 0.3348 0.7991 0.3088 0.030*

H17B 0.4100 0.7679 0.3840 0.030*

C18 0.45525 (14) 0.90026 (14) 0.32269 (11) 0.0220 (3)

H18A 0.4153 0.9473 0.3584 0.026*

H18B 0.5251 0.8969 0.3458 0.026*

C19 0.45908 (12) 0.94118 (12) 0.23258 (11) 0.0170 (3)

H19A 0.4929 1.0084 0.2324 0.020*

H19B 0.3890 0.9504 0.2112 0.020*

C20 0.57173 (11) 0.83634 (11) 0.02258 (10) 0.0135 (3)

C21 0.54836 (12) 0.73827 (11) −0.10837 (10) 0.0148 (3)

H21 0.6071 0.6980 −0.0863 0.018*

C22 0.58437 (13) 0.80033 (13) −0.18362 (11) 0.0209 (3)

H22A 0.6403 0.8458 −0.1656 0.025*

H22B 0.5278 0.8434 −0.2041 0.025*

C23 0.62157 (14) 0.73262 (16) −0.25562 (12) 0.0268 (4)

H23A 0.6831 0.6953 −0.2373 0.032*

H23B 0.6402 0.7754 −0.3046 0.032*

C24 0.53947 (14) 0.65675 (15) −0.28192 (12) 0.0254 (4)

H24A 0.4815 0.6938 −0.3073 0.030*

H24B 0.5672 0.6100 −0.3251 0.030*

C25 0.50243 (15) 0.59549 (13) −0.20609 (13) 0.0271 (4)

H25A 0.5587 0.5527 −0.1848 0.032*

H25B 0.4466 0.5499 −0.2241 0.032*

C26 0.46455 (7) 0.66475 (7) −0.13489 (6) 0.0200 (3)

H26A 0.4045 0.7035 −0.1544 0.024*

H26B 0.4438 0.6229 −0.0859 0.024*

O6 0.68356 (7) 1.11280 (7) 0.41983 (6) 0.0255 (3)

H6 0.6930 1.0941 0.3745 0.041 (8)*

C27 0.75769 (7) 1.18107 (7) 0.45291 (6) 0.0297 (4)

H27A 0.7348 1.2067 0.5078 0.045*

H27B 0.7667 1.2381 0.4139 0.045*

(7)

supporting information

sup-4

Acta Cryst. (2007). E63, o1892–o1894

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0249 (7) 0.0756 (13) 0.0509 (11) 0.0195 (8) −0.0132 (7) −0.0228 (10)

O2 0.0174 (6) 0.0879 (14) 0.0367 (9) −0.0161 (7) 0.0029 (6) −0.0198 (9)

O3 0.0257 (6) 0.0243 (6) 0.0167 (6) −0.0064 (5) −0.0041 (5) 0.0024 (5)

O4 0.0214 (5) 0.0151 (5) 0.0198 (6) −0.0003 (4) −0.0013 (4) 0.0019 (4)

O5 0.0137 (5) 0.0199 (5) 0.0196 (6) 0.0030 (4) −0.0015 (4) −0.0054 (4)

N1 0.0170 (7) 0.0697 (13) 0.0261 (9) 0.0014 (8) 0.0005 (6) −0.0182 (9)

N2 0.0268 (7) 0.0164 (6) 0.0170 (7) 0.0005 (5) −0.0058 (6) −0.0034 (6)

N3 0.0120 (5) 0.0128 (5) 0.0143 (6) −0.0010 (4) −0.0010 (5) −0.0001 (5)

N4 0.0140 (6) 0.0171 (6) 0.0155 (6) 0.0016 (5) −0.0017 (5) −0.0046 (5)

C1 0.0144 (7) 0.0464 (11) 0.0174 (8) −0.0011 (7) 0.0024 (6) −0.0094 (7)

C2 0.0182 (7) 0.0314 (9) 0.0254 (9) 0.0055 (6) −0.0003 (7) −0.0025 (7)

C3 0.0165 (7) 0.0219 (7) 0.0226 (8) −0.0002 (6) 0.0002 (6) −0.0025 (6)

C4 0.0143 (6) 0.0215 (7) 0.0147 (7) −0.0015 (5) 0.0024 (5) −0.0015 (6)

C5 0.0206 (7) 0.0214 (7) 0.0235 (9) −0.0045 (6) 0.0048 (6) −0.0053 (6)

C6 0.0209 (8) 0.0348 (9) 0.0220 (9) −0.0093 (7) 0.0050 (7) −0.0105 (7)

C7 0.0143 (6) 0.0186 (7) 0.0148 (7) 0.0003 (5) 0.0011 (5) 0.0002 (5)

C8 0.0105 (6) 0.0161 (6) 0.0135 (7) 0.0005 (5) −0.0008 (5) 0.0000 (5)

C9 0.0107 (6) 0.0197 (7) 0.0152 (7) −0.0013 (5) −0.0008 (5) −0.0017 (6)

C10 0.0167 (6) 0.0158 (6) 0.0107 (6) 0.0023 (5) 0.0008 (5) 0.0000 (5)

C11 0.0164 (7) 0.0196 (7) 0.0182 (7) 0.0043 (5) −0.0017 (6) 0.0018 (6)

C12 0.0220 (8) 0.0235 (8) 0.0254 (9) 0.0097 (6) −0.0021 (7) 0.0036 (7)

C13 0.0117 (6) 0.0129 (6) 0.0131 (6) −0.0010 (5) −0.0002 (5) −0.0016 (5)

C14 0.0146 (6) 0.0148 (6) 0.0116 (6) −0.0007 (5) 0.0004 (5) −0.0003 (5)

C15 0.0219 (7) 0.0155 (7) 0.0177 (8) −0.0032 (5) 0.0014 (6) −0.0001 (6)

C16 0.0294 (9) 0.0190 (7) 0.0218 (8) −0.0036 (6) 0.0026 (7) 0.0043 (6)

C17 0.0306 (9) 0.0255 (8) 0.0186 (8) −0.0069 (7) 0.0053 (7) 0.0010 (7)

C18 0.0279 (8) 0.0243 (8) 0.0139 (7) −0.0050 (6) 0.0030 (6) −0.0019 (6)

C19 0.0204 (7) 0.0164 (7) 0.0144 (7) −0.0006 (5) 0.0030 (6) −0.0017 (5)

C20 0.0143 (6) 0.0130 (6) 0.0132 (7) −0.0010 (5) 0.0012 (5) −0.0011 (5)

C21 0.0167 (7) 0.0142 (6) 0.0136 (7) 0.0014 (5) −0.0024 (5) −0.0031 (5)

C22 0.0219 (7) 0.0220 (7) 0.0188 (8) −0.0007 (6) 0.0035 (6) −0.0008 (6)

C23 0.0242 (8) 0.0398 (10) 0.0163 (8) 0.0043 (7) 0.0023 (6) −0.0050 (7)

C24 0.0273 (8) 0.0322 (9) 0.0167 (8) 0.0098 (7) −0.0060 (7) −0.0087 (7)

C25 0.0372 (10) 0.0198 (8) 0.0243 (9) 0.0024 (7) −0.0098 (8) −0.0080 (7)

C26 0.0239 (8) 0.0192 (7) 0.0169 (8) −0.0044 (6) −0.0040 (6) −0.0020 (6)

O6 0.0210 (6) 0.0278 (6) 0.0275 (7) −0.0008 (5) 0.0088 (5) 0.0001 (5)

C27 0.0240 (8) 0.0431 (11) 0.0220 (9) −0.0015 (7) −0.0004 (7) 0.0029 (8)

Geometric parameters (Å, º)

O1—N1 1.229 (3) C13—H13 1.0000

O2—N1 1.229 (3) C14—C19 1.533 (2)

O3—C9 1.232 (2) C14—C15 1.539 (2)

O4—C10 1.233 (2) C14—H14 1.0000

(8)

supporting information

sup-5

Acta Cryst. (2007). E63, o1892–o1894

N1—C1 1.472 (2) C15—H15A 0.9900

N2—C9 1.335 (2) C15—H15B 0.9900

N2—H2A 0.83 (3) C16—C17 1.532 (3)

N2—H2B 0.83 (3) C16—H16A 0.9900

N3—C10 1.3717 (19) C16—H16B 0.9900

N3—C8 1.4793 (19) C17—C18 1.530 (2)

N3—C13 1.4842 (18) C17—H17A 0.9900

N4—C20 1.340 (2) C17—H17B 0.9900

N4—C21 1.463 (2) C18—C19 1.527 (2)

N4—H4 0.87 (2) C18—H18A 0.9900

C1—C6 1.383 (3) C18—H18B 0.9900

C1—C2 1.387 (3) C19—H19A 0.9900

C2—C3 1.392 (2) C19—H19B 0.9900

C2—H2C 0.9500 C21—C22 1.521 (2)

C3—C4 1.396 (2) C21—C26 1.5260 (17)

C3—H3 0.9500 C21—H21 1.0000

C4—C5 1.396 (2) C22—C23 1.528 (2)

C4—C7 1.508 (2) C22—H22A 0.9900

C5—C6 1.390 (2) C22—H22B 0.9900

C5—H5 0.9500 C23—C24 1.529 (3)

C6—H6A 0.9500 C23—H23A 0.9900

C7—C8 1.547 (2) C23—H23B 0.9900

C7—H7A 0.9900 C24—C25 1.527 (3)

C7—H7B 0.9900 C24—H24A 0.9900

C8—C9 1.548 (2) C24—H24B 0.9900

C8—H8 1.0000 C25—C26 1.534 (2)

C10—C11 1.516 (2) C25—H25A 0.9900

C11—C12 1.525 (2) C25—H25B 0.9900

C11—H11A 0.9900 C26—H26A 0.9900

C11—H11B 0.9900 C26—H26B 0.9900

C12—H12A 0.9800 O6—C27 1.4259

C12—H12B 0.9800 O6—H6 0.7695

C12—H12C 0.9800 C27—H27A 0.9800

C13—C14 1.535 (2) C27—H27B 0.9800

C13—C20 1.544 (2) C27—H27C 0.9800

O2—N1—O1 124.18 (19) C14—C15—H15A 109.5

O2—N1—C1 117.9 (2) C16—C15—H15B 109.5

O1—N1—C1 117.9 (2) C14—C15—H15B 109.5

C9—N2—H2A 120.3 (18) H15A—C15—H15B 108.1

C9—N2—H2B 117.8 (17) C17—C16—C15 111.61 (14)

H2A—N2—H2B 121 (2) C17—C16—H16A 109.3

C10—N3—C8 119.85 (12) C15—C16—H16A 109.3

C10—N3—C13 122.71 (12) C17—C16—H16B 109.3

C8—N3—C13 117.38 (12) C15—C16—H16B 109.3

C20—N4—C21 122.88 (13) H16A—C16—H16B 108.0

C20—N4—H4 118.8 (18) C18—C17—C16 110.68 (14)

(9)

supporting information

sup-6

Acta Cryst. (2007). E63, o1892–o1894

C6—C1—C2 123.11 (17) C16—C17—H17A 109.5

C6—C1—N1 117.87 (18) C18—C17—H17B 109.5

C2—C1—N1 119.01 (18) C16—C17—H17B 109.5

C1—C2—C3 117.70 (17) H17A—C17—H17B 108.1

C1—C2—H2C 121.1 C19—C18—C17 111.27 (14)

C3—C2—H2C 121.1 C19—C18—H18A 109.4

C2—C3—C4 121.00 (16) C17—C18—H18A 109.4

C2—C3—H3 119.5 C19—C18—H18B 109.4

C4—C3—H3 119.5 C17—C18—H18B 109.4

C5—C4—C3 119.21 (15) H18A—C18—H18B 108.0

C5—C4—C7 120.99 (15) C18—C19—C14 111.09 (13)

C3—C4—C7 119.80 (14) C18—C19—H19A 109.4

C6—C5—C4 120.86 (16) C14—C19—H19A 109.4

C6—C5—H5 119.6 C18—C19—H19B 109.4

C4—C5—H5 119.6 C14—C19—H19B 109.4

C1—C6—C5 118.05 (16) H19A—C19—H19B 108.0

C1—C6—H6A 121.0 O5—C20—N4 124.08 (14)

C5—C6—H6A 121.0 O5—C20—C13 121.52 (14)

C4—C7—C8 111.54 (13) N4—C20—C13 114.38 (13)

C4—C7—H7A 109.3 N4—C21—C22 110.09 (13)

C8—C7—H7A 109.3 N4—C21—C26 110.59 (12)

C4—C7—H7B 109.3 C22—C21—C26 110.46 (12)

C8—C7—H7B 109.3 N4—C21—H21 108.5

H7A—C7—H7B 108.0 C22—C21—H21 108.5

N3—C8—C7 111.38 (12) C26—C21—H21 108.5

N3—C8—C9 114.35 (12) C21—C22—C23 111.85 (14)

C7—C8—C9 113.92 (12) C21—C22—H22A 109.2

N3—C8—H8 105.4 C23—C22—H22A 109.2

C7—C8—H8 105.4 C21—C22—H22B 109.2

C9—C8—H8 105.4 C23—C22—H22B 109.2

O3—C9—N2 123.42 (15) H22A—C22—H22B 107.9

O3—C9—C8 119.30 (14) C22—C23—C24 110.97 (15)

N2—C9—C8 117.19 (14) C22—C23—H23A 109.4

O4—C10—N3 120.71 (14) C24—C23—H23A 109.4

O4—C10—C11 120.36 (13) C22—C23—H23B 109.4

N3—C10—C11 118.92 (13) C24—C23—H23B 109.4

C10—C11—C12 112.05 (14) H23A—C23—H23B 108.0

C10—C11—H11A 109.2 C25—C24—C23 110.84 (15)

C12—C11—H11A 109.2 C25—C24—H24A 109.5

C10—C11—H11B 109.2 C23—C24—H24A 109.5

C12—C11—H11B 109.2 C25—C24—H24B 109.5

H11A—C11—H11B 107.9 C23—C24—H24B 109.5

C11—C12—H12A 109.5 H24A—C24—H24B 108.1

C11—C12—H12B 109.5 C24—C25—C26 111.66 (13)

H12A—C12—H12B 109.5 C24—C25—H25A 109.3

C11—C12—H12C 109.5 C26—C25—H25A 109.3

H12A—C12—H12C 109.5 C24—C25—H25B 109.3

(10)

supporting information

sup-7

Acta Cryst. (2007). E63, o1892–o1894

N3—C13—C14 112.23 (12) H25A—C25—H25B 107.9

N3—C13—C20 110.18 (12) C21—C26—C25 110.15 (11)

C14—C13—C20 111.52 (12) C21—C26—H26A 109.6

N3—C13—H13 107.6 C25—C26—H26A 109.6

C14—C13—H13 107.6 C21—C26—H26B 109.6

C20—C13—H13 107.6 C25—C26—H26B 109.6

C19—C14—C13 110.21 (12) H26A—C26—H26B 108.1

C19—C14—C15 109.97 (12) C27—O6—H6 115.7

C13—C14—C15 110.99 (12) O6—C27—H27A 109.5

C19—C14—H14 108.5 O6—C27—H27B 109.5

C13—C14—H14 108.5 H27A—C27—H27B 109.5

C15—C14—H14 108.5 O6—C27—H27C 109.5

C16—C15—C14 110.51 (13) H27A—C27—H27C 109.5

C16—C15—H15A 109.5 H27B—C27—H27C 109.5

O2—N1—C1—C6 −1.0 (3) C10—N3—C13—C14 −121.12 (15)

O1—N1—C1—C6 177.42 (19) C8—N3—C13—C14 61.65 (16)

O2—N1—C1—C2 179.59 (19) C10—N3—C13—C20 113.96 (15)

O1—N1—C1—C2 −2.0 (3) C8—N3—C13—C20 −63.26 (17)

C6—C1—C2—C3 −1.2 (3) N3—C13—C14—C19 59.54 (15)

N1—C1—C2—C3 178.17 (17) C20—C13—C14—C19 −176.28 (12)

C1—C2—C3—C4 −1.1 (3) N3—C13—C14—C15 −178.39 (12)

C2—C3—C4—C5 2.3 (3) C20—C13—C14—C15 −54.21 (16)

C2—C3—C4—C7 −178.31 (16) C19—C14—C15—C16 −57.04 (17)

C3—C4—C5—C6 −1.2 (3) C13—C14—C15—C16 −179.25 (13)

C7—C4—C5—C6 179.38 (16) C14—C15—C16—C17 56.57 (18)

C2—C1—C6—C5 2.2 (3) C15—C16—C17—C18 −55.4 (2)

N1—C1—C6—C5 −177.15 (17) C16—C17—C18—C19 55.3 (2)

C4—C5—C6—C1 −1.0 (3) C17—C18—C19—C14 −56.91 (18)

C5—C4—C7—C8 −105.39 (18) C13—C14—C19—C18 −179.87 (13)

C3—C4—C7—C8 75.21 (19) C15—C14—C19—C18 57.46 (17)

C10—N3—C8—C7 −62.27 (18) C21—N4—C20—O5 −4.3 (2)

C13—N3—C8—C7 115.03 (14) C21—N4—C20—C13 177.49 (13)

C10—N3—C8—C9 68.65 (18) N3—C13—C20—O5 67.30 (18)

C13—N3—C8—C9 −114.04 (14) C14—C13—C20—O5 −58.02 (18)

C4—C7—C8—N3 −172.47 (12) N3—C13—C20—N4 −114.45 (14)

C4—C7—C8—C9 56.38 (17) C14—C13—C20—N4 120.23 (14)

N3—C8—C9—O3 101.56 (16) C20—N4—C21—C22 −94.66 (18)

C7—C8—C9—O3 −128.76 (15) C20—N4—C21—C26 142.99 (14)

N3—C8—C9—N2 −81.82 (17) N4—C21—C22—C23 −179.41 (14)

C7—C8—C9—N2 47.86 (18) C26—C21—C22—C23 −56.98 (17)

C8—N3—C10—O4 −2.1 (2) C21—C22—C23—C24 55.6 (2)

C13—N3—C10—O4 −179.26 (14) C22—C23—C24—C25 −54.3 (2)

C8—N3—C10—C11 179.13 (14) C23—C24—C25—C26 55.64 (19)

C13—N3—C10—C11 2.0 (2) N4—C21—C26—C25 179.10 (13)

O4—C10—C11—C12 −0.7 (2) C22—C21—C26—C25 56.96 (15)

(11)

supporting information

sup-8

Acta Cryst. (2007). E63, o1892–o1894

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2A···O5i 0.83 (3) 2.23 (3) 3.0040 (19) 156 (2)

N2—H2B···O4 0.83 (3) 2.05 (3) 2.735 (2) 139 (2)

N4—H4···O6ii 0.87 (2) 2.00 (3) 2.8597 (16) 171 (3)

O6—H6···O3 0.77 2.06 2.8287 (17) 176

Figure

Figure 1
Table 1

References

Related documents

However, op- posite proteins abundance levels were observed, with values equal to −6.32 for BGH-2127 and +1.70 for Santa Clara, evidencing that this protein is not the ma- jor

MATERIALS AND METHODS: Thirteen patients with medically refractory Parkinson disease who qualified for deep brain stimulation were imaged at 1.5T with a fast spin-echo short ␶

A comparison of the average major oxide content of the talc-chlorite schist of the study area with talcose rocks from Esie, Oke-Ila, Iseyin and other parts of southwestern

The approach led to high precision rate of almost 100% in True Negative Rate (TNR) with reduced computing time which equated to an eighth of the previous CPU time by MCA method.

If this is to be be- lieved, such high energy density in the cosmic vacuum should imply (at least according to the curved space-time dogma of general relativity) an extreme de-

Open Access.. From my research, I rea- lized that many articles have responded to this first type of problem in different ways by proposing installing anti-malware software and

We found that in nondisabled elderly sub- jects with very-mild-to-pronounced degrees of leukoaraiosis, there was a highly significant correlation between the total volume of ARWMC

In this section, we show how the economic return on Norwegian road projects depends on the characteristics of the area in which they are located, and discuss the implications