• No results found

Bernoulli Basis and the Product of Several Bernoulli Polynomials

N/A
N/A
Protected

Academic year: 2020

Share "Bernoulli Basis and the Product of Several Bernoulli Polynomials"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2012, Article ID 463659,12pages doi:10.1155/2012/463659

Research Article

Bernoulli Basis and the Product of

Several Bernoulli Polynomials

Dae San Kim

1

and Taekyun Kim

2

1Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

2Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to Dae San Kim,dskim@sogang.ac.kr

Received 25 June 2012; Accepted 9 August 2012

Academic Editor: Yilmaz Simsek

Copyrightq2012 D. S. Kim and T. Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We develop methods for computing the product of several Bernoulli and Euler polynomials by using Bernoulli basis for the vector space of polynomials of degree less than or equal ton.

1. Introduction

It is well known that, thenth Bernoulli and Euler numbers are defined by

n

l0

n l

BlBnδ1,n, n

l0

n l

ElEn2δ0,n, 1.1

whereB0 E01 andδk,nis the Kronecker symbolsee1–20.

The Bernoulli and Euler polynomials are also defined by

Bnx n

l0

n l

Bnlxl, Enx n

l0

n l

Enlxl. 1.2

Note that{B0x, B11, . . . , Bnx}forms a basis for the spacePn {px∈Qx|degpx

(2)

So, for a givenpx∈Pn, we can write

px

n

k0

akBkx, 1.3

see8–12for uniquely determinedak∈Q.

Further,

ak

1

k!

pk−11−pk−10, wherepkx d

kpx

dxk ,

a0

1

0

ptdt, wherek1,2, . . . , n.

1.4

Probably,{1, x, . . . , xn}is the most natural basis for the spacePn. But{B0x, B1x, . . . , Bnx}

is also a good basis for the space Pn, for our purpose of arithmetical and combinatorial

applications.

What are common to Bnx, Enx, xn? A few proportion common to them are as

follows:

ithey are all monic polynomials of degreenwith rational coefficients;

ii BnxnBn−1x,EnxnEn−1x,xnnxn−1;

iiiBnxdxBn1x/n1 c,

EnxdxEn1x/n1 c,

xndxxn1/n

1 c.

In5,6, Carlitz introduced the identities of the product of several Bernoulli polynomials:

BmxBnx

r0

m

2r

n

n

2r

m

B2rBmn−2rx

mn−2r −1

m1

× m!n!

mn!Bmn mn≥2,

1

0

BmxBnxBpxBqxdx −1mnpq

r,s0

m

2r

n

n

2r

m 2p

s

q

q

2s

p

×mn−2r−1!

pq−2s−1!

mnpq−2r−2s! BrBsBmnpq−2r−2

−1mp m!n!

mn!

p!q!

pq!BmnBpq.

1.5

In this paper, we will use1.4to derive the identities of the product of several Bernoulli and

(3)

2. The Product of Several Bernoulli and Euler Polynomials

Let us consider the following polynomials of degreen:

px

i1···irj1···jsn

Bi1x· · ·BirxEj1x· · ·Ejsx, 2.1

where the sum runs over all nonnegative integersi1, . . . , ir,j1, . . . jssatisfyingi1· · ·irj1

· · ·jsn,rs1,r, s≥0.

Thus, from2.1, we have

pkx nrs−1nrs−2· · ·nrsk

× ∞

i1···irj1···jsnk

Bi1x· · ·BirxEj1x· · ·Ejsx.

2.2

Fork1,2, . . . , n, by1.4, we get

ak

1

k!

pk−11−pk−10

nkrs

nrs

i1···irj1···jsnk1

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs

nkrs

nrs

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a

s c

−1c2sc

× ∞

i1···irj1···jsna1−kr

Bi1· · ·BiaEj1· · ·Ejc

i1···irj1···jsnk1

Bi1· · ·BirEj1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

.

2.3

From2.3, we note that

an

nrs n

nrs

i1···irj1···js1

Bi11· · ·Bir1Ej11· · ·Ejs1−Bi1· · ·BirEj1· · ·Ejs

nnrs

nrs

1

21

r

−1

2

s

−1

2

rs

nnrs

nrsrs

nrs−1

n

(4)

an−1 1

nrs

nrs n−1

×

i1···irj1···js2

Bi11· · ·Bir1Ej11· · ·Ejs1−Bi1· · ·BirEj1· · ·Ejs

1

nrs

nrs n−1

1 6r 1 2 1 2

rs

2

−1

6r

−1 2 −1 2

rs

2 0, a0 1 0

ptdt

i1···irj1···jsn

i1

l10

· · · ir

lr0

j1

p10

· · ·js

ps0

i1 l1 · · · ir lr j1 p1 · · · js ps

× Bi1−l1· · ·Bir−lrEj1−p1Ejs−ps

l1· · ·lrp1· · ·ps1.

2.4

Therefore, by1.3,2.1,2.3, and2.4, we obtain the following theorem.

Theorem 2.1. Forn∈Nwithn2, we have

i1···irj1···jsn

Bi1x· · ·BirxEj1x· · ·Ejsx

1

nrs

n−2

k1

nrs k × ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a s c

−1c2sc

i1···iaj1···jcna1−kr

Bi1· · ·BiaEj1· · ·Ejc

− ∞

i1···irj1···jsnk1

Bi1· · ·BirEk1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

Bkx

nrs−1

n

Bnx

i1···irj1···jsn

i1

l10

. . .

ir

lr0

j1

p10

· · ·

js

ps0

i1 l1 · · · ir lr j1 p1 · · · js ps

× Bi1−l1· · ·Bir−lrEj1−p1Ejs−ps

l1· · ·lrp1· · ·ps1.

(5)

Let us take the polynomialpxof degreenas follows:

px

i1···irj1···jstn

Bi1x· · ·BirxEj1x· · ·Ejsxx

t,

2.6

Then, from2.6, we have

pkx nrsnrs−1· · ·nrsk1

×

i1···irj1···jstnk

Bi1x· · ·BirxEj1x· · ·Ejsxx

t, 2.7

By1.4and2.7, we get, fork1,2, . . . , n,

ak

1

k!

pk−11−pk−10

1

nrs1

nrs1

k

×

i1···irj1···jstnk1

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs0

t

nrs1

k

nrs1

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a

s c

−1c2sc

×na1−kr

t0

i1···iaj1···jct

Bi1· · ·BiaEj1· · ·Ejc

i1···irj1···jsnk1

Bi1· · ·BirEj1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

,

2.8

Now, we look atanandan−1.

an

nrs1

n

nrs1

i1···irj1···jst1

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs0

t

nrs1

n

nrs1 1

2rs 1−

−1

2

rs

rs1

nrs1

nrs1

n

nrs n

(6)

an−1

nrs1

n−1

nrs1

i1···irj1···jst2

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs0

t

nrs1

n−1

nrs1 1

6r1

1 2 1 2

rs

2

1

2rs

1

6r

−1 2 −1 2

rs

2

1

nrs1

nrs1

n−1

rs2

2

1 2

nrs n−1

,

2.9

From2.6, we note that

a0

1

0

ptdt

i1···irj1···jstn

i1

l10

· · ·ir

lr0

j1

p10

· · ·

js

ps0

i1 l1 · · · ir lr j1 p1 · · · js ps

×Bi1−l1· · ·BirlrEj1−p1Ejs−ps

1

l1· · ·lrp1· · ·pst1.

2.10

Therefore, by1.3,2.6,2.8,2.9, and2.10, we obtain the following theorem.

Theorem 2.2. Forn∈Nwithn2, one has

i1···irj1···jstn

Bi1x· · ·BirxEj1x· · ·Ejsxx

t

1

nrs1

n−2

k1

nrs1

k × ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a s c

−1c2scna1−kr

t0

i1···iaj1···jct

Bi1· · ·BiaEj1· · ·Ejc

i1···irj1···jsnk1

Bi1· · ·BirEj1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

Bkx

1

2

nrs n−1

Bn−1x

nrs n

Bnx

i1···irj1···jstn

i1

l10

· · ·ir

lr0

j1

p10

· · ·

js

ps0

i1 l1 · · · ir lr j1 p1 · · · js ps

×Bi1−l1· · ·BirlrEj1−p1· · ·Ejs−ps

× 1

l1· · ·lrp1· · ·pst1

.

(7)

Consider the following polynomial of degreen:

px

i1···irj1···jsn

1

i1!i2!· · ·ir!j1!· · ·js!Bi1x· · ·BirxEj1x· · ·Ejsx. 2.12

Then, from2.12, one has

pkx rsk

i1···irj1···jsnk

Bi1x· · ·BirxEj1x· · ·Ejsx

i1!i2!· · ·ir!j1!· · ·js! . 2.13

By1.4and2.13, one gets, fork1,2, . . . , n,

ak

1

k!

pk−11pk−10

rsk−1

k!

i1···irj1···jstnk1

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs

i1!i2!· · ·ir!j1!· · ·js!

rsk−1

k!

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a

s c

−1c2sc

i1···iaj1···jcna1−kr

Bi1· · ·BiaEj1· · ·Ejc

i1!i2!· · ·ia!j1!· · ·jc!

i1···irj1···jsnk1

1

i1!i2!· · ·ir!j1!· · ·js!Bi1· · ·BirEj1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

.

2.14

Now look atanandan−1:

an rs n−1

n!

i1···irj1···js1

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs

i1!i2!· · ·ir!j1!· · ·js!

rsn−1

n! 1

2rs

−1

2

rs

rsn

n! ,

an−1 rs

n−2

n−1!

i1···irj1···js2

Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs

i1!i2!· · ·ir!j1!· · ·js!

rsn−2

n−1!

1 2 1

6r

1 2 1 2

rs

2

− 1

2 1

6r

1 2

−1

2

rs

2

0.

(8)

It is easy to show that

a0

1

0

ptdt

i1···irj1···jsn

1

i1!· · ·ir!j1!· · ·js!

×i1

l10

· · ·ir

lr0

j1

p10

· · ·

js

ps0

Bi1−l1· · ·Bir−lrEj1−p1Ejs−ps

l1· · ·lrp1· · ·ps1

i1

l1

· · ·

ir

lr

j1

p1

· · ·

js

ps

.

2.16

Therefore, by1.3,2.14, and2.15, one obtains the following theorem.

Theorem 2.3. Forn∈Nwithn2, one has

i1···irj1···jsn

1

i1!i2!· · ·ir!j1!· · ·js!Bi1x· · ·BirxEj1x· · ·Ejsx

n−2

k1

rsk−1

k!

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a

s c

−1c2sc

×

i1···iaj1···jcna1−kr

Bi1· · ·BiaEj1· · ·Ejc

i1!i2!· · ·ia!j1!· · ·jc!

i1···irj1···jsnk1

1

i1!i2!· · ·ir!j1!· · ·js!

×Bi1· · ·BirEj1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

Bkx rs n

n! Bnx

i1···irj1···jsn

i1

l10

· · ·ir

lr0

j1

p10

· · ·

js

ps0

i1

l1

· · ·

ir

lr

j1

p1

· · ·

js

ps

× Bi1−l1· · ·Bir−lrEj1−p1Ejs−ps

i1!i2!· · ·ir!j1!· · ·js!

l1· · ·lrp1· · ·ps1

.

2.17

Take the polynomialpxof degreenas follows:

px

i1···irj1···jstn

1

i1!i2!· · ·ir!j1!· · ·js!t!Bi1x· · ·BirxEj1x· · ·Ejsxx t.

(9)

Then, from2.18, one gets

pkx rs1k

×

i1···irj1···jstnk

1

i1!i2!· · ·ir!j1!· · ·js!t!Bi1x· · ·BirxEj1x· · ·Ejsxx

t. 2.19

By1.4and2.19, one gets, fork1, . . . , n,

ak 1

k!

pk−11−pk−10

rs1k−1

k!

i1···irj1···jstnk1

1

i1!i2!· · ·ir!j1!· · ·js!t!

×Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs0

t

rs1k−1

k!

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a

s c

−1c2scna1−kr

t0

1

na1−krt!

×

i1···iaj1···jct

1

i1!i2!· · ·ia!j1!· · ·jc!Bi1· · ·BiaEj1· · ·Ejc

i1···irj1···jsnk1

Bi1· · ·BirEj1· · ·Ejs

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

.

2.20

Now look atanandan−1:

an rs1 n−1

n!

i1···irj1···jst1

1

i1!i2!· · ·ir!j1!· · ·js!t!

×Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs0

t

rs1n−1

n!

1

2rs 1−

−1

2

rs

rs1n−1

n! rs1

rs1n

(10)

an−1 rs1

n−2

n−1!

i1···irj1···jst2

1

i1!i2!· · ·ir!j1!· · ·js!t!

×Bi11· · ·Bir1Ej11· · ·Ejs1Bi1· · ·BirEj1· · ·Ejs0

t

r s1n−2

n−1!

1 2 1

6r

1

2

1 2 1 2

rs

2

1

2rs

1 2 1

6r

−1

2

−1

2

rs

2

rs1n−2

n−1!

rs1 2

rs1n−1

2n−1! .

2.21

From2.18, one can derive the following identity:

a0

1

0

ptdt

i1···irj1···jstn

1

i1!· · ·ir!j1!· · ·js!t!

1

0

Bi1x· · ·BirxEj1x· · ·Ejsxx

tdt

i1···irj1···jstn

1

i1!· · ·ir!j1!· · ·js!t! i1

l10

· · ·ir

lr0

j1

p10

· · ·

×

js

ps0

i1

l1

· · ·

ir

lr

j1

p1

· · ·

js

ps

Bi1−l1· · ·Bir−lrEj1−p1Ejs−ps

1

l1· · ·lrp1· · ·pst1.

2.22

Therefore, by1.3,2.20,2.21, and2.22, one obtains the following theorem.

Theorem 2.4. Forn∈Nwithn2, one has

i1···irj1···jstn

1

i1!i2!· · ·ir!j1!· · ·js!t!Bi1x· · ·BirxEj1x· · ·Ejsxx t

n−2

k1

rs1k−1

k!

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

0≤ar

0≤cs

krn−1≤ar

r a

s c

−1c2scna1−kr

t0

1

na1−krt!

×

i1···iaj1···jct

1

i1!i2!· · ·ia!j1!· · ·jc!Bi1· · ·BiaEj1· · ·Ejc

i1···irj1···jsnk1

Bi1· · ·BirEj1· · ·Ejs

i1!i2!· · ·ir!j1!· · ·js!

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

(11)

r2s1n−1

n−1! Bn−1x

rs1n

n!

i1···irj1···jstn

i1

l10

· · ·ir

lr0

j1

p10

· · ·

js

ps0

×

i1

l1

· · ·ir

lr

j1

p1

· · ·js

ps

i1!· · ·ir!j1!· · ·js!t! Bi1−l1· · ·BirlrEj1−p1Ejs−ps

1

l1· · ·lrp1· · ·pst1.

2.23

Acknowledgments

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea NRF funded by the Ministry of Education, Science and

Technology 2012R1A1A2003786.

References

1 S. Araci, D. Erdal, and J. J. Seo, “A study on the fermionicp-adicq-integral representation onZp associated with weightedq-Bernstein andq-Genocchi polynomials,” Abstract and Applied Analysis, vol. 2011, Article ID 649248, 10 pages, 2011.

2 A. Bayad, “Modular properties of elliptic Bernoulli and Euler functions,” Advanced Studies in

Contemporary Mathematics, vol. 20, no. 3, pp. 389–401, 2010.

3 A. Bayad and T. Kim, “Identities involving values of Bernstein,q-Bernoulli, andq-Euler polynomials,”

Russian Journal of Mathematical Physics, vol. 18, no. 2, pp. 133–143, 2011.

4 L. Carlitz, “Note on the integral of the product of several Bernoulli polynomials. ,” Journal of the

London Mathematical Society. Second Series, vol. 34, pp. 361–363, 1959.

5 L. Carlitz, “Multiplication formulas for products of Bernoulli and Euler polynomials,” Pacific Journal

of Mathematics, vol. 9, pp. 661–666, 1959.

6 L. Carlitz, “Arithmetic properties of generalized Bernoulli numbers,” Journal f ¨ur die Reine und

Angewandte Mathematik, vol. 202, pp. 174–182, 1959.

7 N. S. Jung, H. Y. Lee, and C. S. Ryoo, “Some relations between twistedh, q-Euler numbers with weightαandq-Bernstein polynomials with weightα,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 176296, 11 pages, 2011.

8 D. S. Kim, “Identities of symmetry forq-Euler polynomials,” Open Journal of Discrete Mathematics, vol. 1, no. 1, pp. 22–31, 2011.

9 D. S. Kim, “Identities of symmetry for generalized Euler polynomials,” International Journal of

Combinatorics, vol. 2011, Article ID 432738, 12 pages, 2011.

10 T. Kim, “On the weightedq-Bernoulli numbers and polynomials,” Advanced Studies in Contemporary

Mathematics, vol. 21, no. 2, pp. 207–215, 2011.

11 T. Kim, “Symmetry of power sum polynomials and multivariate fermionicp-adic invariant integral onZp,” Russian Journal of Mathematical Physics, vol. 16, no. 1, pp. 93–96, 2009.

12 T. Kim, “Some identities on theq-Euler polynomials of higher order andq-Stirling numbers by the fermionicp-adic integral onZp,” Russian Journal of Mathematical Physics, vol. 16, no. 4, pp. 484–491, 2009.

13 B. Kurt and Y. Simsek, “Notes on generalization of the Bernoulli type polynomials,” Applied

Mathematics and Computation, vol. 218, no. 3, pp. 906–911, 2011.

14 H. Y. Lee, N. S. Jung, and C. S. Ryoo, “A note on theq-Euler numbers and polynomials with weak weightα,” Journal of Applied Mathematics, vol. 2011, Article ID 497409, 14 pages, 2011.

15 H. Ozden, “p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials,”

Applied Mathematics and Computation, vol. 218, no. 3, pp. 970–973, 2011.

(12)

17 S.-H. Rim, A. Bayad, E.-J. Moon, J.-H. Jin, and S.-J. Lee, “A new construction on theq-Bernoulli polynomials,” Advances in Difference Equations, vol. 2011, article 34, 2011.

18 C. S. Ryoo, “Some relations between twistedq-Euler numbers and Bernstein polynomials,” Advanced

Studies in Contemporary Mathematics, vol. 21, no. 2, pp. 217–223, 2011.

19 Y. Simsek, “Complete sum of products ofh, q-extension of Euler polynomials and numbers,” Journal

of Difference Equations and Applications, vol. 16, no. 11, pp. 1331–1348, 2010.

(13)

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations

International Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Mathematical PhysicsAdvances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Optimization

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation http://www.hindawi.com Volume 2014

The Scientific

World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Stochastic Analysis

References

Related documents

The teams were segregated first of all according to the Leadership Style of the Team Leader to see the significant difference in the conflict resolution and

Juvvigunta R, Reddy GN, Dhanalakshmi D and Ramesh B: A new analytical method development and validation for simultaneous estimation of sitagliptin and metformin

Objective : Aim of this study was testing sensitivity of clinical isolates of Candida albicans and non albicans to frequently prescribe antifungal drugs,

In connection with a change in the lifestyle of a person, energy requirements for fats have decreased due to a decrease in physical exertion.On the contrary,

Objectives: To determine the prevalence of blood pressure measurement in children presenting to the emergency department of Ibn - Alatheer Pediatric Teaching Hospital in Mosul and

The results of this study are presented in two times: at first it was sociodemographic and economic profile and the risks of stress during the course; the second

The present paper compared the outcomes of lower back segment stabilization and Aussie current exercises in decreasing the pain’s framework and functional