• No results found

Generating Functions for the Mean Value of a Function on a Sphere and Its Associated Ball in

N/A
N/A
Protected

Academic year: 2020

Share "Generating Functions for the Mean Value of a Function on a Sphere and Its Associated Ball in"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2008, Article ID 656329,14pages doi:10.1155/2008/656329

Research Article

Generating Functions for the Mean

Value of a Function on a Sphere and Its

Associated Ball in

R

n

Antonela Toma

Department of Mathematics II, University Politehnica of Bucharest, Splaiul Independent¸ei 313, 060042 Bucharest, Romania

Correspondence should be addressed to Antonela Toma,antonela2222@yahoo.com Received 20 April 2008; Accepted 22 May 2008

Recommended by Patricia Wong

We define two functions which determine the properties and the representation of the mean value of a function on a ball and on its associated sphere. Using these two functions, we obtain Pizzetti’s formula inRnas well as a similar formula for the mean value of a function on the ball associated to

the sphere. We also give the expressions of the remainders in these two formulas, using the surface integral on a sphere.

Copyrightq2008 Antonela Toma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The mean function over values of a sphere and over its associated ball are very important in the study of some mathematical-physics problems as well as in the theory of a potential and in partial differential equations.

A representation for the mean values of a function over a sphere in Rn was given by Pizzetti1using polyharmonic operators.

In2, volume II chapter IV, Section 3, page 258, using the second Green’s formula, it is given the proof for Pizzetti’s formula and then its generalization inRn.

In this paper, we define two functions which determine the properties and the representations of the mean values of a function over a sphere and over its associated ball.

These functions are called generating functions of these two averages and using these functions we obtain Pizzetti’s formula inRnas well as a new formula for the mean values of a

function over a ball.

There are given the expression of the remainders using an integral over a sphere.

(2)

For this purpose we use two formulas of N. Ya. Sonin and of Dirichlet3, page 365,4, page 671, respectively.

There are defined the corresponding quantities of some scalar quantities using the differential operators∇,Δ,Δh.

This fact allows us to prove two new formulas which determine the properties of the generating functions.

It is very important to mention that in this paper the way of deducting Pizzetti’s formula is totally different from the way used in3, page 73as well as in5, page 104.

2. General results

LetΩ⊂Rnbe a bounded set andf:ΩR,f C2m 1Ω.

We denote bySra {x, xRn, |xa| r} the sphere of radiusr, centered in a

a1, a2, . . . , an,Bra {x, xRn,|xa| ≤r}the ball of radiusr and centered inawhich is

associated toSra.

We will also denote by R, R max{r |xa|n} for that Bra ⊂ Ω. We define the

functions

φ:−R, R−→R, φr

B1a

fa rxadx, 2.1

ψ :−R, R−→R, ψr

S1a

fa rxadS1, 2.2

wheredx,dS1represent the volume element and area element for the unit ball B1aand for

the unit sphere, respectively. The mean valuesMs

rfandMbrfforf : Ω → RoverSra⊂Ωand overBra⊂Ω,

respectively, are given by the following expressions:

Msrf 1 Sra

Sra

fxdS, 0≤rR, 2.3

Mrbf 1 Bra

Bra

fxdx, 0≤rR, 2.4

wheresee6, page 22|Sra| 2πn/2/Γn/2rn−1represents the area of the sphere Sra

and |Bra| 2πn/2/Γn/2rn/n represents the volume of the ball Bra, Γ being

beta-function.

Between the cartesian coordinates x x1, x2, . . . , xn and spherical coordinates y

ρ, θ1, . . . , θn−1centered ina a1, a2, . . . , anthere are the relations

x1a1 ρsinθ1sinθ2· · ·sinθn−2sinθn−1a1 ρh1,

x2a2 ρsinθ1sinθ2· · ·sinθn−2cosθn−1a1 ρh2,

x3a3 ρsinθ1sinθ2· · ·sinθn−3cosθn−2a3 ρh3,

.. .

xn−2an−2 ρsinθ1sinθ2cosθ3an−2 ρhn−2,

xn−1an−1 ρsinθ1cosθ2an−1 ρhn−1,

xnan ρcosθ1an ρhn,

(3)

where

ρ≥0, θi∈0, π, i1, n−2, θn−1∈0,2π. 2.6

The Jacobian of this punctual transform is

Jρ, θ1, . . . , θn−1

∂x

∂y ρ

n−1sinn−2θ

1sinn−3θ2sinn−4θ3· · ·sinθn−2. 2.7

The volume elementdywritten in spherical coordinates has the expression

dyJρ, θ1, . . . , θn−1

dρ dθ1· · ·dθn−1 2.8

and the area element forSρais

dSρ ρn−1y

θ1, . . . , θn−2

12· · ·dθn−1, 2.9

where

Jθ1, . . . , θn−2

J

ρ, θ1, . . . , θn−1

ρn−1 sin n−2θ

1sinn−3θ2· · ·sin2θn−3sinθn−2. 2.10

From2.8and2.9we have

dy dρ dSρρn−1dρ dS1

θ1, . . . , θn−1

, 2.11

where dS1θ1, . . . , θn−1 represents the area element of the unit sphere S1a in spherical

coordinates.

Proposition 2.1. Between the functions φ, ψ : −R, RRdefined in2.1and2.2, there is the

relation

φr

1

0

un−1ψrudu, |r| ≤R. 2.12

Proof. Using the spherical coordinates and the relations 2.9 and 2.11 we obtain the following:

ψr

Δf

. . . , ai rhi, . . .

Jθ1, . . . , θn−2

1· · ·dθn−1

Δf

. . . , ai rhi, . . .

dS1

θ1, . . . , θn−1

,

2.13

φr

1

0

Δf

. . . , ai ruhi, . . .

un−1du dS1

θ1, . . . , θn−1

1

0

un−1

Δf

. . . , ai ruhi, . . .

dS1

θ1, . . . , θn−1

du,

2.14

whereΔ 0, π× · · · ×0, π×0,2π

n−2 times

. From2.13we note that

ψru

Δf

. . . , ai ruhi, . . .

dS1

θ1, . . . , θn−1

2.15

(4)

Concerning the dependence between the functions φ, ψ and the mean values Ms rf,

Mb

rfof a functionf over a sphere and over the associated ball, respectively, we can state the

following.

Proposition 2.2. Between the functions φ, ψ defined by 2.1and2.2, respectively, and the mean

valuesMfrf,Mbrfdefined by2.3and2.4, there are the following relations:

Mb rf

rn

Braφr nΓn/2

n/2 φr, 0≤rR, 2.16

Ms rf

rn−1

Sraψr nΓn/2

n/2 ψr, 0≤rR. 2.17

Proof. For 0≤ rR, from2.14makingthe substitutionur ρand taking into account2.4

we obtain

φr 1 rn

r

0

ρn−1

Δf

. . . , ai ρhi, . . .

dS1

θ1, . . . , θn−1

1

rn

Bra

fxdxn/

2

nΓn/2M

b rf

2.18

and so,2.16is proved.

Using the spherical coordinates, we have

Msrf

1

Sra

Srx0

fxdx

1

Sra

Δf

. . . , ai rhi, . . .

dSr

θ1, . . . , θn−1

rn−1

Sra

Δf

. . . , ai rhi, . . .

dS1

θ1, . . . , θn−1

.

2.19

Taking into account2.13we have

Ms rf

rn−1

Sraψr Γn/2

n/2 ψr 2.20

which is2.17.

The relations2.16and2.17show that for 0≤rR, the functionsφ, ψ:−R, RR, determine the properties of the mean valuesMbrfandMsrfand permit the calculus of these

two quantities.

These relations justify the introduction of the following.

Definition 2.3. The functionsφ, ψ:−R, RRdefined by2.1and2.2are called generating functions for the mean valuesMb

rfandMsrfof a functionf:Ω→Rover the ballBra⊂Ω

and over the sphereSra⊂Ω, respectively. Particularly, iff ≥0 onΩ⊂Rn, then this function

(5)

Consequently, taking into account2.3and2.17, the total massms

r of the sphereSra

is given by the expression

ms r

Sra

fxdSSraMsrf rn−1ψr, 0≤rR. 2.21

In this case, Msrf represents the mean value of the mass density onSra. Similarly, from

2.4and2.16we have the following expression for the total mass onBra:

mb r

Bra

fxdxBraMbrf rnφr, 0≤rR. 2.22

The expressions 2.21and 2.22 prove that the generating functions φ andψ, when f ≥ 0 and 0≤ rR, have a mechanical meaning, allowing the calculus of the mass forSra

and forBrawith the densityρx fx,x∈Ω⊂Rn.

Next, for the study of the properties of the generating functionsψ andφ, we will use M. Ya. Sonin Formula.

LetmiR,i 1, nbe real numbers andkN0. Thensee3, page 365,4, page 671

we have Sonin formula

S

B10

m1x1 · · · mnxn

2k

dx1· · ·dxn

πn−1/2ΓΓk 1/2 n/2 k 1

m21 · · · mrnk.

2.23

Denotingm m1, m2, . . . , mnRnand “ ” the scalar product,2.23becomes

S

B10

m, x2k πn−1/2ΓΓk 1/2

n/2 k 1 m, m

k. 2.24

We mention that this result can be justifiedsee3, page 365on the basis of Dirichlet formula

D

B10 x2u1

1 · · ·x 2un

n dx1· · ·dxn

Γμ1 1/2

· · ·Γμn 1/2

Γn/2 k 1 , 2.25

whereμiN0,i1, nand1 · · · μn.

Usingμ μ1 · · · μnNn0, where|μ|μ1 · · · μn k, Dirichlet formula becomes

D

B10

x2μdx Γ

μ1 1/2

· · ·Γμn 1/2

Γn/2 k 1 . 2.26

(6)

Jacobian of the transform, we have

S

B1a

m, xa2kdx

B10

m, x2kdxπn−1/2ΓΓk 1/2

n/2 k 1 m, m

k, 2.27

D

B1a

xa2μdx

B10

x2μdx Γ

μ1 1/2

· · ·Γμn 1/2

Γn/2 k 1 , 2.28 whereB1arepresents the unit ball centered inaRn.

Let us consider the integrals

S

S1a

m, xa2kdS1, D

S1a

xa2μdS1, 2.29

whereS1ais the unit sphere, centered inaRn.

Proposition 2.4. Between the pairs of integralsS, SandD, D, there are the following relations:

S∗ 2k nS 2πn−1/2ΓΓk 1/2

k n/2 m, m

k, 2.30

D∗ 2k nD

μ1 1/2

· · ·Γμn 1/2

Γk n/2 . 2.31

Proof. Using the spherical coordinates2.5, we have

xahh1, h2, . . . , hn

. 2.32

Taking into account2.11, Sonin’s integral2.27becomes

S

B1a

m, xa2kdx

1

0

Δ m, ρh

2kρn−1dρ dS 1

θ1, . . . , θn−1

1

2k n

Δ m, h 2kdS

1

θ1, . . . , θn−1

1

2k n

S1a

m, xa2kdS1,

2.33

whereΔ 0, π× · · · ×0, π

n−2

×0,2π. We obtain

S

S1a

m, xa2kdS1

2k nS

2k nΓΓk 1/2 n/2 k 1π

n−1/2 m, mk

k 1/2

Γn/2

n−1/2 m, mk.

(7)

Using the same procedure, Dirichlet’s integral2.28becomes

D

B1a

xa2μdx

1

0

Δ m, ρh

2μρn−1dρ dS 1

θ1, . . . , θn−1

1

2k n

Δh 2μdS

1

θ1, . . . , θn−1

1

2k n

S1a

xa2μdS1.

2.35

Hence

D

S1a

xa2μdS1

2k nD

2k nΓ

μ1 1/2

· · ·Γμn 1/2

Γk n/2 1

μ1 1/2

· · ·Γμn 1/2

Γn/2 k .

2.36

So the proposition is proved.

Next, using the formulas concerning the calculus of the higher order differential for functions of several variables, we will define the correspondings for some scalar quantities which appear in the expressions ofSandS∗, respectively2.27and2.29.

The corresponding scalar quantities are defined using some differential operators, this fact leads us to new expressions similar to2.24and2.30.

On the basis of these formulas, we will establish the properties of the generating functionsψandφand of the mean valuesMsrfandMbrf.

LetfCpΩwithB

1a⊂Ωand 2k≤p. We will define the following correspondings:

1

m m1, . . . , mn

−→ ∇fa

∂x1, . . . ,

∂xn

fa, 2.37

where∇ ∂/∂x1, . . . , ∂/∂xnrepresents the operator “nabla”;

2

|m|2 m, m −→ ∇,fa Δfa, 2.38

where| · |represents the norm of a vector andΔ ∇,2/∂x2

1 · · · 2/∂x2nthe

(8)

3

|m|2k m, mk −→ ∇,kfa Δkfa, 2.39

where Δk Δ ·Δ· · ·Δ

k

2/∂x21 · · · 2/∂x2nk represents the polyharmonic

operator of orderk;

4

m, xa −→ ∇, xafa

∂x1

x1−a1

· · ·

∂xn

xnan

fa dfa,

2.40

whered ∂/∂x1x1−a1 · · · ∂/∂xnxnanrepresents the differential operator;

5

m, xa2k −→ ∇, xa2kfa d2nfa, 2.41

where d2k ∂/∂x

1x1−a1 · · · ∂/∂xnxnan2k represents the differential

operator of order 2k.

Using these correspondences and taking into account 2.23, 2.27, 2.29, and 2.30, we obtain

B1a

d2kfadxπn−1/2ΓΓk 1/2 n/2 k

kfa, 2.42

S1a

d2kfadS12πn−1/2ΓΓk 1/2

n/2 kΔ

kfa. 2.43

We note that the expressions 2.42and 2.43 represent the correspondings for 2.27

and2.30. We will prove the availability of these relations.

Proposition 2.5. ForfCpΩwithB

1a⊂Ωand2k≤pthe relations2.42and2.43held. Proof. We have

B1a

d2kfadx

B1a

∂x1

x1−a1

· · ·

∂xn

xnan

2k

fadx1· · ·dxn

2μ1 ··· 2μn2k

2k!

2μ1

!· · ·2μn

!

2

∂x2 1

μ1

· · ·

2

∂x2 n

μn

fa·

B1a

xa2μdx.

2.44

On the basis of2k!2kk!2k−1!!22kk!Γk 1/2/π, we obtain

2k!

2μ1

!· · ·2μn

! k! μ1!· · ·μn!

πn−1/2Γk 1/2

Γμ1 1/2

· · ·Γμn 1/2

(9)

Taking into account2.45and Dirichlet Formulas2.43, the expression2.44becomes

B1a

d2kfadxπn−1/2ΓΓk 1/2 n/2 k 1

μ1 μ2 ··· μnk

k! μ1!· · ·μn!

2 ∂x21

μ1

· · ·

2 ∂xn2

μn

fa,

2.46

so that

B1a

d2kfadxπn−1/2ΓΓk 1/2 n/2 k 1

2

∂x21 · · · 2

∂x2n

k

fa

πn−1/2ΓΓk 1/2 n/2 k

kfa.

2.47

Using the same method, we obtain

S1a

d2kfadx

S1a

∂x1

x1−a1

· · ·

∂xn

xnan

2k

fadS1

2μ1 ··· 2μn2k

2k!

2μ1

!· · ·2μn

!

2

∂x21

μ1

· · ·

2

∂x2n

μn

fa·

S1a

xa2μdS1.

2.48

On the basis of2.45and2.31, we have

S1a

d2kfadS 1

2πn−1/2Γk 1/2

Γn/2 k

μ1 ··· μnk

k! μ1!· · ·μn!

2

∂x21

μ1

· · ·

2

∂x2n

μn

fa

2πn−1/2Γk 1/2

Γn/2 k

2

∂x21 · · · 2

∂xn2

k

fa

2πn−1/2ΓΓk 1/2 n/2 kΔ

kfa

2.49

and so the proposition is proved.

(10)

Proposition 2.6. LetΩ ∈ Rn be a bounded set andf : Ω R,f C2m 1Ω. Then the functions

φ, ψ :−R, RRdefined by2.1and2.2, whereR max|xa|such thatBra⊂Ω, have the following properties:

1φ,ψare even functions andφ, ψC2m 1R, R,

2φk0 ψk0 0forkodd,k≤2m 1,

3ψ2k0 S1ad

2kadS

1 2πn−1/2Γk 1/2/Γn/2 kΔkfa, km,

4φ2k0 1/n 2kψ2k0 πn−1/2Γk 1/2/Γn/2 k 1Δkfa, km,

5φpr 01un p−1ψprudu, p2m 1,

6ψpr S1adpfa rxadS

1, p ≤2m 1,

7ψrn/2mk01/k!Γn/2 kr/22kΔkfa R2m 1r,

where

R2m 1r ψ

2m 1θr

2m 1! r

2m 1 r2m 1

2m 1!

S1a

d2m 1fa θrxadS1, 0< θ <1, 2.50

8φr πn/2m

k01/k!Γn/2 k 1r/22kΔkfa R∗2m 1r, where

R2m 1r φ

2m 1θr

2m 1!r

2m 1 r 2m 1

2m 1!

1

0

S1a

un 2md2m 1fa θruxadu dS1, 0< θ <1.

2.51

Proof. Using the spherical coordinates given by 2.5 and denoting h h1, . . . , hn, the

expression forψgiven by2.2becomes

ψr

S1a

fa rxadS1

ΔJθ

1, . . . , θn−2 2π

0

fr, θ1, . . . , θn−1

dθn−1

1· · ·dθn−2,

2.52

whereΔ 0, π× · · · ×0, π

n−2

,fr, θ1, . . . , θn−1 fa rhandJθ1, . . . , θn−2is given by the

formulas2.10.

Since fC2m 1Ω, using the dierentiation rule for integrals depending on a

parameter, it results inψC2m 1R, R.

In order to prove thatψ is an even function we will change the variablesθ1, . . . , θn−1→

u1, . . . , un−1by the relations

θiπui, i1, n−2, θn−1π un−1,

ui∈0, π, i1, n−2, un−1∈−π, π

2.53

(11)

The Jacobian of this transform is defined by

J1

u1, . . . , un−1

θ1, . . . , θn−1

∂u1, . . . , un−1

−1n−2 2.54

Having this change of variables,2.52becomes

ψr

ΔJu

1, . . . , un−2

π

πf

r, u

1, . . . , un−1

dun−1

du1· · ·dun−2. 2.55

Sincef∗−r, u1, . . . , un−1is periodical, with the period 2πwith respect to the variableun−1, the

expression2.55becomes

ψr

ΔJu

1, . . . , un−2 2π

0

f∗−r, u1, . . . , un−1

dun−1

du1· · ·dun−2. 2.56

Makingthe comparison between the expression from above and2.52we haveψr ψrsoψ is an even function.

Consequently,ψ2kis an even function andψ2k 1is odd, it means that ψ2k 10 0.

From 2.12 we have φ is even, φC2m 1R, R, φ2k is even and φ2k 1 is odd, so

φ2k 10 0.

So we proved the properties1and2.

Remark 2.7. In the case off :Rn R,f ∈ DRnwhereDRnis L. Schwartz space,f CRn

and having a compact support, thenψ : RR,ψr S1afa rxadS1,ψrCR

with compact support.

Iff ∈ DRn, we can state that the formulas

ψr

S1a

fa rxadS1, 2.57

rR, define an integral transform which associatesf ∈ DRnto the even functionψ ∈ DR.

According to 7, page 61, this integral transform is denoted by Tn

p named polare

transform. Thus we writeψ Tn

pf. From2.2applying the differentiation rule for composite

functions and denotingyarxa, we obtain

ψpr

S1a ∂p ∂rpf

a rxadS1

S1a

∂yi

∂yi

∂r

p

fydS1

S1a

∂y1

x1−a1

· · ·

∂yn

xnan

p

fydS1

S1a

dpfa rxadS1.

(12)

Forp2k≤2mandr 0 we have

ψ2k0

S1a

∂x1

x1−a1

· · ·

∂xn

xnan

2k

fadS1

S1a

d2kfadS1.

2.59

Taking into account2.43, we have

ψ2k0

S1a

d2kfadS12πn−1/2ΓΓk 1/2

n/2 kΔ

kfa. 2.60

On the other hand, from2.12and2.60we obtain

φpr

1

0

un p−1ψprudu, |r| ≤R, p≤2m 1,

φ2k0 1 n 2kψ

2k0

n−1/2

n 2k

Γk 1/2

Γn/2 kΔ

kfa

πn−1/2ΓΓk 1/2 n/2 k

kfa.

2.61

The formulas2.60and2.61justify the properties3,4,5,6from the proposition. In order to obtain the formula 7 we will apply Mac-Laurin formulas. Thus ψ being even andψC2m 1R, R, on the basis of2.58, we can write

ψr

m

0

ψ2k0

2k! r

2k R

2m 1r, 2.62

where

R2m 1r ψ

2m 1θr

2m 1! r

2m 1 r 2m 1

2m 1!

S1a

d2m 1fa θrxadS1, 0< θ <1. 2.63

Since2k!22kk!Γk 1/2π−1/2and taking into account2.60, from2.62we obtain7.

Using the same method, we obtain8taking into account the results from4,5, and

6. So,Proposition 2.6is proved.

In particular, if fCR, R and f is analytic, then the remainders R2m 1t → 0,

R2m 1r→0 form→ ∞.

We obtain the following Mac-Laurin Series forψ, φ:−R, RR:

ψrn/2

k0

1 k!Γn/2 k

r 2

2k

Δkfa, |r| ≤R, 2.64

φr πn/2

k0

1

k!Γn/2 k 1

r 2

2k

(13)

The results established inProposition 2.6permit to give the corresponding representa-tions for the mean values Ms

rf andMbrf defined in 2.3 and2.4, by using 2.16 and

2.17.

Thus, for 0≤rR, taking into account8,2.16, and2.64we can write

Mbrf 1 Bra

Bra

fxdx

nn 2 m k0 1

k!Γn/2 k 1

r 2

2k

Δkfa

nn/

n 2

r2m 1

2m 1!

1

0

S1a

un 2md2m 1fa θruxadu dS1, 0< θ <1,

Mbrf nn 2 k0 1

k!Γn/2 k 1

r 2

2k

Δkfa.

2.66 Similarly, from7,2.62, and2.17we have

Msrf 1 Sra

Sra

fxdS

Γ n 2 m k0 1 k!Γn/2 k

r 2

2k

Δkfa

Γn/2n/2 ·

r2m 1

2m 1!

S1a

d2m 1fa θrxadS1, 0< θ <1,

2.67

Msrf Γ

n 2 k0 1 k!Γn/2 k

r 2

2k

Δkfa. 2.68

We remark that the expression of the remainder forMs

rfgiven in2.67

R∗∗2m 1r

Γn/2n/2

r2m 1

2m 1!

S1a

d2m 1fa θrxadS1, 0< θ <1 2.69

may have other forms as in2, volume II, chapter IV, Section 3, page 261and8.

Forn 3, sinceΓ3/2 k 2k 1!/22k 1k!π, from 2.68, we obtain Pizzetti’s Formula1:

Msrf

k0

r2k

2k 1!Δ

kfa. 2.70

Similarly, since

Γ

3

2 k 1

3 2 k Γ 3 2 k

2k 32k 1!

22k 2k!

π, 2.71

we have

Mrbf 3

k0

r2k

2k 1!2k 3Δ

kfa. 2.72

(14)

References

1 P. Pizzetti, “Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera,”Rendiconti Lincei (5), vol. 18, pp. 309–316, 1909.

2 R. Courant and D. Hilbert,Methoden der Mathematischen Physik, Springer, Berlin, Germany, 1937. 3 G. M. Fichtenholz,Differential-und Integralrechnung. III, vol. 63 ofHochschulb ¨ucher f ¨ur Mathematik, VEB

Deutscher Verlag der Wissenschaften, Berlin, Germany, 1977.

4 I. S. Gradstein and I. M. Ryshik,Tables of Series, Products and Integrals. Vol. 1, 2, Harri Deutsch, Thun, Switzerland, 1981.

5 G. E. Shilov, Generalized Functions and Partial Differential Equations, vol. 7 of Mathematics and Its Applications, Gordon and Breach, New York, NY, USA, 1968.

6 S. G. Mihlin,Ecuat¸ii liniare cu derivate part¸iale, Editura S¸tiint¸ific˘a s¸i Enciclopedic˘a, Bucures¸ti, Romania, 1983.

7 W. W. Kecs,Teoria distribit¸iilor s¸i aplicat¸ii, Editura Academiei Romˆane, Bucures¸ti, Romania, 2003. 8 M. N. Olevski˘ı, “An explicit expression for the remainder in the Pizetti formula,”Functional Analysis

References

Related documents

Considering only women who received abortion care from public facility where there is shortage contraception supplies in study conducted in two of the region and failing to

The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: a study of 197 cases and indications for the medical

Antioxidant activity of the selected plants by DPPH (2,2-diphenyl-1-picrylhydrazyl radical) scavenging assay and using ascorbic acid as a standard indicated that

Any balance remaining in the Participant's Health Flexible Spending Account or Dependent Care Flexible Spending Account as of the end of the time for claims reimbursement

The use of sodium polyacrylate in concrete as a super absorbent polymer has promising potential to increase numerous concrete properties, including concrete

And in the commentary on the book of Job, measure- immeasure also becomes the means of reorganising an impressive string of topics: value, labour, pain, ontology, time, power,

ABSTRACT : Aiming at the poor dynamic performance and low navigation precision of traditional fading Kalman filter in BDS dynamic positioning, an improved fading

The institutions offering graduate programs are Ball State University, DePaul University, Georgia State University, Illinois State University, University of Akron, University of