• No results found

Some generalized Riemann Liouville k fractional integral inequalities

N/A
N/A
Protected

Academic year: 2020

Share "Some generalized Riemann Liouville k fractional integral inequalities"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Some generalized Riemann-Liouville

k-fractional integral inequalities

Praveen Agarwal

1

, Jessada Tariboon

2*

and Sotiris K Ntouyas

3,4

*Correspondence:

jessada.t@sci.kmutnb.ac.th

2Nonlinear Dynamic Analysis

Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800, Thailand Full list of author information is available at the end of the article

Abstract

The focus of the present study is to prove some new Pólya-Szegö type integral inequalities involving the generalized Riemann-Liouvillek-fractional integral operator. These inequalities are used then to establish some fractional integral inequalities of Chebyshev type.

MSC: 26D10; 26A33; 26D15

Keywords: integral inequalities; Chebyshev functional; Riemann-Liouville k-fractional integral operator; Pólya and Szegö type inequalities

1 Introduction and motivation

The celebrated functionals were introduced by the Chebyshev in his famous paper [] and were subsequently rediscovered in various inequalities (for the celebrated functionals) by

numerous authors, including Anastassiou [], Belarbi and Dahmani [], Dahmaniet al.

[], Dragomir [], Kalla and Rao [], Lakshmikantham and Vatsala [], Ntouyaset al.[],

Öˇgünmez and Özkan [], Sudsutadet al.[], Sulaiman []; and, for very recent work,

see also Wanget al.[]. This type of functionals is usually defined as

T(f,g) =ba

b

a

f(x)g(x)dx–

ba

b

a f(x)dx

ba

b

a g(x)dx

, (.)

wheref andgare two integrable functions which are synchronous on [a,b],i.e.,

f(x) –f(y)g(x) –g(y)≥, (.)

for anyx,y∈[a,b].

The well-known Grüss inequality [] is defined by

T(f,g)≤(M–m)(Nn)

 , (.)

wheref andgare two integrable functions which are synchronous on [a,b] and satisfy the following inequalities:

mf(x)≤M and ng(y)N, (.)

for allx,y∈[a,b] and for somem,M,n,N∈R.

(2)

Pólya and Szegö [] introduced the following inequality:

b af(x)dx

b a g(x)dx (abf(x)dxabg(x)dx) ≤

 

MN

mn +

mn MN

. (.)

Dragomir and Diamond [] by using the Pólya and Szegö inequality, proved that

T(f,g)≤ (M–m)(Nn)

(b–a)√mMnN

b

a f(x)dx

b

a

g(x)dx, (.)

wheref andgare two positive integrable functions which are synchronous on [a,b], and

 <mf(x)≤M<∞,  <ng(y)N<∞, (.)

for allx,y∈[a,b] and for somem,M,n,N∈R.

Recently, k-extensions of some familiar fractional integral operator like

Riemann-Liouville have been investigated by many authors in interesting and useful manners (see [–], and []). Here, we begin with the following.

Definition . Letk> , then the generalizedk-gamma andk-beta functions defined by []

k(x) = lim n→∞

n!kn(nk)xk–

(x)n,k

, (.)

where (x)n,k, is the Pochhammerk-symbol defined by

(x)n,k=x(x+k)(x+ k)· · ·

x+ (n– )k (n≥).

Definition . Thek-gamma function is defined by

k(x) =

tx–etkk dt, (x) > .

It is well known that the Mellin transform of the exponential functionetkk is the

k-gamma function. Clearly

(x) =lim

k→k(x), k(x) =k

x k–

x k

and k(x+k) =xk(x).

Definition . Ifk> , letfL(a,b),a≥, then the Riemann-Liouvillek-fractional integral

a,kof orderα>  for a real-valued continuous functionf(t) is defined by ([]; see also [])

a,kf(t)=  kk(α)

t

a

(t–τ)αk–f(τ)dτ t[a,b]. (.)

(3)

Definition . Ifk> , letfL,r[a,b],a,rR\ {–}then the generalized Riemann-Liouvillek-fractional integralRαa,,krof orderα>  for a real-valued continuous functionf(t) is defined by ([])

a,,krf(t)=( +r)

–αk

kk(α)

t

a

tr+–τr+αk–f(τ)dτ t[a,b], (.)

wherekis the Euler gammak-function.

The generalized Riemann-Liouvillek-fractional integral (.) has the properties

Raα,,krRaβ,,krf(t)=Raα,+kβ,rf(t)=Raβ,,krRaα,,krf(t) (.)

and

a,,kr{}= (t

r+ar+)αk

(r+ )αkk(α+k)

, α> . (.)

In this paper, we derive some new Pólya-Szegö type inequalities by making use of the

generalized Riemann-Liouvillek-fractional integral operators and then use them to

estab-lish some Chebyshev type integral inequalities.

We organize the paper as follows: in Section , we prove some generalized Pólya-Szegö

type integral inequalities involving the generalized Riemann-Liouvillek-fractional

inte-gral operators that we need to establish main theorems in the sequel and Section  contains

some Chebyshev type integral inequalities via generalized Riemann-Liouvillek-fractional

integral operators.

2 Some Pólya-Szegö types inequalities

In this section, we prove some Pólya-Szegö type integral inequalities for positive

inte-grable functions involving the generalized Riemann-Liouvillek-fractional integral

opera-tor (.).

Lemma . Let f and g be two positive integrable functions on[a,∞).Assume that there exist four positive integrable functionsϕ,ϕ,ψ,andψon[a,∞)such that:

(H)  <ϕ(τ)≤f(τ)≤ϕ(τ), <ψ(τ)≤g(τ)≤ψ(τ)(τ∈[a,t],t>a).

Then,for t>a,k> ,a≥,α> ,and r∈R\ {–},the following inequality holds: a,,rk{ψψf}(t)Rαa,,kr{ϕϕg}(t)

(Rαa,,kr{(ϕψ+ϕψ)fg}(t))

≤ 

. (.)

Proof From (H), forτ∈[a,t],t>a, we have

f(τ) g(τ)≤

ϕ(τ)

ψ(τ)

, (.)

which yields

ϕ(τ)

ψ(τ)

f(τ) g(τ)

(4)

Analogously, we have

ϕ(τ)

ψ(τ)

f(τ)

g(τ), (.)

from which one has

f(τ) g(τ)–

ϕ(τ)

ψ(τ)

≥. (.)

Multiplying (.) and (.), we obtain

ϕ(τ)

ψ(τ)

f(τ) g(τ)

f(τ) g(τ)–

ϕ(τ)

ψ(τ)

≥,

or

ϕ(τ)

ψ(τ)

+ϕ(τ)

ψ(τ)

f(τ) g(τ)≥

f(τ)

g(τ)+

ϕ(τ)ϕ(τ)

ψ(τ)ψ(τ)

. (.)

The inequality (.) can be written as

ϕ(τ)ψ(τ) +ϕ(τ)ψ(τ)

f(τ)g(τ)≥ψ(τ)ψ(τ)f(τ) +ϕ(τ)ϕ(τ)g(τ). (.)

Now, multiplying both sides of (.) by (+r)– α

k(tr+τr+)αk–

kk(α) and integrating with respect to

τ fromatot, we get

a,,kr(ϕψ+ϕψ)fg

(t)≥a,,rkψψf

(t) +a,,kϕg

(t).

Applying the AM-GM inequality,i.e.,a+b≥√ab,a,b∈R+, we have

a,,kr(ϕψ+ϕψ)fg

(t)≥

a,,kψf

(t)Rαa,,kϕg

(t),

which leads to

a,,kψf

(t)Rαa,,rkϕϕg

(t)≤  

a,,kr(ϕψ+ϕψ)fg

(t).

Therefore, we obtain the inequality (.) as required.

Lemma . Let f and g be two positive integrable functions on[a,∞).Assume that there exist four positive integrable functionsϕ,ϕ,ψ,andψsatisfying(H)on[a,∞).Then,

for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},the following inequality holds: a,,kr{ϕϕ}(t)Rβa,,kr{ψψ}(t)Rαa,,kr{f}(t)Rβa,,kr{g}(t)

(Rαa,,kr{ϕf}(t)Rβa,,kr{ψg}(t) +Rαa,,kr{ϕf}(t)R,,kr{ψg}(t))

≤

. (.)

Proof To prove (.), using the condition (H), we obtain

ϕ(τ)

ψ(ρ)

f(τ) g(ρ)

(5)

and

f(τ) g(ρ)–

ϕ(τ)

ψ(ρ)

≥, (.)

which imply that

ϕ(τ)

ψ(ρ)

+ ϕ(τ)

ψ(ρ)

f(τ) g(ρ)≥

f(τ)

g(ρ)+

ϕ(τ)ϕ(τ)

ψ(ρ)ψ(ρ)

. (.)

Multiplying both sides of (.) byψ(ρ)ψ(ρ)g(ρ), we have

ϕ(τ)f(τ)ψ(ρ)g(ρ) +ϕ(τ)f(τ)ψ(ρ)g(ρ)

ψ(ρ)ψ(ρ)f(τ) +ϕ(τ)ϕ(τ)g(ρ). (.)

Multiplying both sides of (.) by

( +r)–αk( +r)–

β

k(tr+τr+)–(tr+ρr+)

β

k–

kk(α)kk(β) ,

and double integrating with respect toτandρfromatot, we have

a,,kr{ϕf}(t)Rβa,,kr{ψg}(t) +a,,kr{ϕf}(t)Raβ,,kr{ψg}(t)

a,,rkf(t)Rβa,,kr{ψψ}(t) +a,,kr{ϕϕ}(t)Rβa,,kr

g(t).

Applying the AM-GM inequality, we get

a,,kr{ϕf}(t)R

β,r

a,k{ψg}(t) +Raα,,kr{ϕf}(t)R

β,r

a,k{ψg}(t)

≥

a,,krf(t)Rβ,r

a,k{ψψ}(t)R,,kr{ϕϕ}(t)Rβa,,kr

g(t),

which leads to the desired inequality in (.). The proof is completed.

Lemma . Let f and g be two positive integrable functions on[a,∞).Assume that there exist four positive integrable functionsϕ,ϕ,ψ,andψsatisfying(H)on[a,∞).Then,

for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},the following inequality holds: a,,krf(t)Rβa,,krg(t)≤Raα,,kr(ϕfg)/ψ

(t)Rβa,,kr(ψfg)/ϕ

(t). (.)

Proof From (.), we have

( +r)–αk

kk(α)

t

a

tr+–τr+αk–f(τ)dτ

≤( +r)–

α

k

kk(α)

t

a

tr+–τr+αk–ϕ(τ) ψ(τ)

f(τ)g(τ)dτ,

which implies

a,,krf(t)≤a,,kr(ϕfg)/ψ

(6)

By (.), we get

( +r)–βk

kk(β)

t

a

tr+ρr+βk–g(ρ)dρ

≤( +r)–

β

k

kk(β)

t

a

tr+–ρr+

β

k–ψ(ρ) ϕ(ρ)

f(ρ)g(ρ),

from which one has

R,βtg(t)≤Raβ,,kr(ψfg)/ϕ

(t). (.)

Multiplying (.) and (.), we get the desired inequality in (.).

Corollary . Let f and g be two positive integrable functions on[,∞)satisfying (H)  <mf(τ)≤M<∞, <ng(τ)≤N<∞(τ∈[a,t],t>a).

Then,for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},we have (Rαa,,kr{f}(t))(Rβ,r

a,k{g}(t)) Raα,,kr{fg}(t)Raβ,,kr{fg}(t) ≤

MN

mn. (.)

3 Chebyshev type integral inequalities

In the sequel, we establish our main Chebyshev type integral inequalities involving the

generalized Riemann-Liouvillek-fractional integral operator (.), with the help of the

Pólya-Szegö fractional integral inequality in Lemma . as follows.

Theorem . Let f and g be two positive integrable functions on[a,∞),a≥.Assume that there exist four positive integrable functionsϕ,ϕ,ψ,andψsatisfying(H).Then,

for t>a,k> ,a≥,α> ,and r∈R\ {–},the following inequality is fulfilled:

(tr+–ar+)

α

k

(r+ )αkk(α+k)

Raα,,kr{fg}(t) –a,,kr{f}(t)Raα,,kr{g}(t)

G(f,ϕ,ϕ)(t)G(g,ψ,ψ)(t)

, (.)

where

G(u,v,w)(t) = (t

r+ar+)αk

(r+ )αkk(α+k)

(Rαa,,kr{(v+w)u}(t))

a,,kr{vw}(t) –

a,,kr{u}(t). (.)

Proof Letfandgbe two positive integrable functions on [a,∞). Forτ,ρ∈(a,t) witht>a, we defineA(τ,ρ) as

A(τ,ρ) =f(τ) –f(ρ)g(τ) –g(ρ), (.)

or, equivalently,

(7)

Multiplying both sides of (.) by (+r)

(–α

k)(tr+τr+)αk–(tr+ρr+)αk–

(kk(α)) and double integrating

with respect toτ andρfromatot, we get

( +r)(–αk)

(kk(α))

t

a

t

a

tr+–τr+

α

k–tr+ρr+αk–A(τ,ρ)dτdρ

=  (t

r+ar+)αk

(r+ )αkk(α+k)

a,,kr{fg}(t) – a,,kr{g}(t)Raα,,kr{f}(t). (.)

By using the Cauchy-Schwartz inequality for double integrals, we have

( +r)(–

α

k)

(kk(α))

t

a

t

a

tr+τr+αk–tr+ρr+αk–A(τ,ρ)dτdρ

( +r)(–αk)

(kk(α))

t

a

t

a

tr+–τr+

α

k–tr+ρr+αk–f(τ)dτdρ

+( +r)

(–αk)

(kk(α))

t

a

t

a

tr+–τr+αk–tr+ρr+αk–f(ρ)dτdρ

– ( +r)

(–α

k)

(kk(α))

t

a

t

a

tr+–τr+αk–tr+ρr+αk–f(τ)f(ρ)dτdρ

×

( +r)(–αk)

(kk(α))

t

a

t

a

tr+–τr+

α

k–tr+ρr+αk–g(τ)dτdρ

+( +r)

(–αk)

(kk(α))

t

a

t

a

tr+–τr+

α

k–tr+ρr+αk–g(ρ)dτdρ

– ( +r)

(–αk)

(kk(α))

t

a

t

a

tr+–τr+αk–tr+ρr+αk–g(τ)g(ρ)dτdρ

. (.)

Therefore, we obtain

( +r)(–

α

k)

(kk(α))

t

a

t

a

tr+–τr+

α

k–tr+ρr+

α

k–A(τ,ρ)dτdρ

≤

(tr+ar+)αk

(r+ )αkk(α+k)

a,,krf(t) –a,,kr{f}(t)

 

×

(tr+ar+)αk

(r+ )αkk(α+k)

a,,rkg(t) –a,,kr{g}(t)

 

. (.)

By applying Lemma ., forψ(t) =ψ(t) =g(t) = , we get

a,,krf(t)≤  

(Rαa,,kr{(ϕ+ϕ)f}(t))

a,,kr{ϕϕ}(t)

(8)

which leads to

(tr+ar+)αk

(r+ )αkk(α+k)

a,,krf(t) –a,,rk{f}(t)

≤ (tr+–ar+)

α

k

(r+ )αkk(α+k)

(Rαa,,kr{(ϕ+ϕ)f}(t))

a,,kr{ϕϕ}(t)

a,,kr{f}(t)

=G(f,ϕ,ϕ)(t). (.)

Similarly, we get

(tr+ar+)αk

(r+ )αk

k(α+k)

a,,krg(t) –a,,kr{g}(t)

≤ (tr+–ar+)

α

k

(r+ )αkk(α+k)

(Rαa,,kr{(ψ+ψ)g}(t))

a,,kr{ψψ}(t)

a,,kr{g}(t)

=G(g,ψ,ψ)(t). (.)

Finally, combining (.), (.), (.), and (.), we arrive at the desired result in (.). This

completes the proof.

Remark . Ifϕ=m,ϕ=M,ψ=n, andψ=N, then we have

G(f,m,M)(t) =(M–m)

mM

a,,rk{f}(t), (.)

G(g,n,N)(t) = (N–n)

nN

a,,kr{g}(t). (.)

Theorem . Let f and g be two positive integrable functions on[a,∞),a≥.Assume that there exist four positive integrable functionsϕ,ϕ,ψ,andψsatisfying(H).Then,

for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},the following inequality is true:

(tr+–ar+)

α

k

(r+ )αkk(α+k)

a,,kr{fg}(t) + (t

r+ar+)βk

(r+ )βkk(β+k)

a,,kr{fg}(t)

a,,kr{f}(t)Rβa,,kr{g}(t) –a,,rk{g}(t)Raβ,,kr{f}(t)

G(f,ϕ,ϕ)(t) +G(f,ϕ,ϕ)(t)

 

×G(g,ψ,ψ)(t) +G(g,ψ,ψ)(t)

, (.)

where

G(u,v,w)(t) =

(tr+ar+)βk

(r+ )βkk(β+k)

(Rαa,,rk{(v+w)u}(t)) a,,kr{vw}(t) –R

α,r a,k{u}(t)R

β,r a,k{u}(t),

G(u,v,w)(t) =

(tr+ar+)αk

(r+ )αkk(α+k)

(Rβa,,kr{(v+w)u}(t)) a,,kr{vw}(t) –R

α,r a,k{u}(t)R

(9)

Proof Multiplying both sides of (.) by(+r)

–α+β

k (tr+τr+)αk–(tr+ρr+)βk–

k

k(α)k(β) and double

inte-grating with respect toτandρfromatot, we obtain

( +r)–α+

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–A(τ,ρ)dτdρ

= (t

r+ar+)αk

(r+ )αkk(α+k)

a,,kr{fg}(t) + (t

r+ar+)βk

(r+ )βkk(β+k)

a,,kr{fg}(t)

a,,kr{f}(t)Rβa,,kr{g}(t) –a,,kr{f}(t)Raα,,rk{g}(t). (.)

By using the Cauchy-Schwartz inequality for double integrals, we have

( +r)–

α+β

k

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–A(τ,ρ)dτdρ

( +r)–α+

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–f(τ)dτdρ

+ ( +r)

–α+kβ

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–f(ρ)dτdρ

–  ( +r)

–α+kβ

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–f(ρ)dτdρ

×

( +r)–α+

k

k(α)k(β)

t

a

t

a

tr+–τr+αk–tr+ρr+

β

k–g(τ)dτdρ

+ ( +r)

–α+kβ

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–g(ρ)dτdρ

–  ( +r)

–α+kβ

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–g(τ)g(ρ)dτdρ

.

Therefore, we get

( +r)–

α+β

k

kk(α)k(β)

t

a

t

a

tr+–τr+

α

k–tr+ρr+

β

k–A(τ,ρ)dτdρ

(tr+ar+)αk

(r+ )αkk(α+k)

a,,krf(t)+ (t

r+ar+)βk

(r+ )βkk(β+k)

a,,krf(t)

– Rβa,,krf(t)a,,krf(t)

 

×

(tr+–ar+)αk

(r+ )αkk(α+k)

a,,krg(t)+ (t

r+ar+)βk

(r+ )βkk(β+k)

a,,krg(t)

– Rβa,,krg(t)Rαa,,rkg(t)

 

(10)

Applying Lemma . withψ(t) =ψ(t) =g(t) = , we have

(tr+ar+)βk

(r+ )βkk(β+k)

a,,rkf(t)≤ (t

r+ar+)βk

(r+ )βkk(β+k)

(Rαa,,kr{(ϕ+ϕ)f}(t))

a,,kr{ϕϕ}(t)

.

This implies that

(tr+ar+)βk

(r+ )βkk(β+k)

a,,rkf(t) –Raα,,kr{f}(t)Raβ,,kr{f}(t)

≤ (tr+–ar+)

β

k

(r+ )βkk(β+k)

(Rαa,,kr{(ϕ+ϕ)f}(t))

a,,kr{ϕϕ}(t)

a,,kr{f}(t)Rβa,,kr{f}(t)

=G(f,ϕ,ϕ)(t) (.)

and

(tr+ar+)αk

(r+ )αkk(α+k)

a,,krf(t) –Raα,,kr{f}(t)Raβ,,kr{f}(t)

≤ (tr+–ar+)

α

k

(r+ )αkk(α+k)

(Rβa,,kr{(ϕ+ϕ)f}(t))

,t{ϕϕ}(t)

a,,kr{f}(t)Rβa,,kr{f}(t)

=G(f,ϕ,ϕ)(t). (.)

Also, applying the same procedure withφ(t) =φ(t) =f(t) = , we get

(tr+–ar+)βk

(r+ )βkk(β+k)

a,,rkg(t) –Raα,,kr{g}(t)Raβ,,kr{g}(t)

G(g,ψ,ψ)(t) (.)

and

(tr+ar+)αk

(r+ )αkk(α+k)

a,,krg(t) –Raα,,kr{g}(t)Raβ,,kr{g}(t)

G(g,ψ,ψ)(t). (.)

Finally, considering (.) to (.), we arrive at the desired result in (.). This completes

the proof of Theorem ..

Remark . We conclude the present investigation by remarking that if we follow Sarikaya and Karaca [] then our main results become the results recently given by Ntouyaset al.[]. Similarly, after some parametric changes our results reduce to numerous well-known results presented in the literature.

4 Examples

In this section, we show some approximations of unknown functions by using four linear functions. Let us define the constantsm,m,M,M,n,n,N,N∈Rsuch that

(11)

Proposition . Suppose that f and g are two positive integrable functions on[a,∞),a≥ satisfying(H).Then,for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},we have

nNRαa,,rk

τf(t) + (nN+nN)Rαa,,rk

τf(t) +nNRαa,,kr

f(t)

×mMRαa,,kr

τg(t) + (mM+mM)Rαa,,kr

τg(t) +mMRαa,,kr

g(t)

≤ 

(mn+MN)Rαa,,kr

τfg(t) + (mn+mn+MN+MN)Rαa,,kr{τfg}(t) + (mn+MN)R,,rk{fg}(t)

. (.)

Proof Settingϕ(τ) =mτ+m,ϕ(τ) =Mτ+M,ψ(τ) =nτ+n, andψ(τ) =Nτ+N,

and applying Lemma ., we obtain (.) as desired.

Corollary . Let all assumptions of Proposition.be fulfilled with m =M =n =

N= .Then,for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},the following inequality

holds:

a,,rk{f}(t)Rα,r a,k{g}(t) (Rαa,,kr{fg}(t)) ≤

 

mn

MN

+

MN

mn

. (.)

Proposition . Suppose that f and g are two positive integrable functions on [a,∞), a≥satisfying(H).Then,for t>a,k> ,a≥,α> ,and r∈R\ {–},we get the

follow-ing inequality:

(tr+–ar+)

α

k

(r+ )αkk(α+k)

Raα,,kr{fg}(t) –a,,kr{f}(t)Raα,,kr{g}(t)

G∗(f,m,m,M,M)(t)G∗(g,n,n,N,N)(t)

, (.)

where

G∗(u,v,w,x,y)(t)

= (t

r+ar+)αk

(r+ )αkk(α+k)·

((v+x)Rαa,,kr{τu}(t) + (w+y)Rαa,,rk{u}(t)) vxRαa,,kr{τ}(t) + (vy+wx)Rα,r

a,k{τ}(t) +wyR α,r a,k{}(t)

a,,kr{u}(t). (.)

Proof By settingϕ(τ),ϕ(τ),ψ(τ), andψ(τ) as in Proposition . and using Theorem .,

we get the inequality (.).

Remark . Ifm=M=n=N= , then we have

G∗(f, ,m, ,M)(t) =G(f,m,M)(t),

G∗(g, ,n, ,N)(t) =G(g,n,N)(t),

(12)

Proposition . Assume that f and g are two positive integrable functions on[a,∞),a≥ satisfying(H).Then,for t>a,k> ,a≥,α> ,β> ,and r∈R\ {–},we obtain the

following estimate:

(tr+–ar+)

α

k

(r+ )αkk(α+k)

a,,kr{fg}(t) + (t

r+ar+)βk

(r+ )βkk(β+k)

a,,kr{fg}(t)

a,,kr{f}(t)Rβa,,kr{g}(t) –a,,rk{g}(t)Raβ,,kr{f}(t)

G∗(f,m,m,M,M)(t) +G∗(f,m,m,M,M)(t)

 

×G(g,n,n,N,N)(t) +G∗(g,n,n,N,N)(t)

, (.)

where

G(u,v,w,x,y)(t)

= (t

r+ar+)βk

(r+ )βkk(β+k)

· ((v+x)R

α,r

a,k{τu}(t) + (w+y)R α,r a,k{u}(t)) vxRαa,,kr{τ}(t) + (vy+wx)Rα,r

a,k{τ}(t) +wyR α,r a,k{}(t) –a,,kr{u}(t)Rβa,,kr{u}(t),

G(u,v,w,x,y)(t)

= (t

r+ar+)αk

(r+ )αkk(α+k)·

((v+x)Rβa,,kr{τu}(t) + (w+y)Rβa,,kr{u}(t))

vxRβa,,kr{τ}(t) + (vy+wx)Rβ,r

a,k{τ}(t) +wyR β,r a,k{}(t) –a,,kr{u}(t)Rβa,,kr{u}(t).

Proof By setting the four linear functions as in Proposition . and using Theorem ., we

get the estimate (.).

Corollary . If m=M=n=N=v=x= ,then we obtain

G(u, ,w, ,y)(t)

=

w

y + y w

(tr+ar+)βk(α+k)

(r+ )βk(β+k)

·a,,kr{u}(t)

a,,kr{u}(t)Rβa,,kr{u}(t), G(u, ,w, ,y)(t)

=

w

y + y w

(tr+ar+)αk(β+k)

(r+ )αk(α+k)

·a,,kr{u}(t)

a,,kr{u}(t)Rβa,,kr{u}(t).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

(13)

Author details

1Department of Mathematics, Anand International College of Engineering, Jaipur, 303012, India.2Nonlinear Dynamic

Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800, Thailand.3Department of Mathematics, University of Ioannina, Ioannina,

451 10, Greece. 4Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics,

Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.

Received: 3 February 2016 Accepted: 11 April 2016

References

1. Chebyshev, PL: Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov2, 93-98 (1882)

2. Anastassiou, GA: Advances on Fractional Inequalities. Springer Briefs in Mathematics. Springer, New York (2011) 3. Belarbi, S, Dahmani, Z: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math.10(3), Article ID 86

(2009)

4. Dahmani, Z, Mechouar, O, Brahami, S: Certain inequalities related to the Chebyshev’s functional involving a type Riemann-Liouville operator. Bull. Math. Anal. Appl.3(4), 38-44 (2011)

5. Dragomir, SS: Some integral inequalities of Grüss type. Indian J. Pure Appl. Math.31(4), 397-415 (2000)

6. Kalla, SL, Rao, A: On Grüss type inequality for hypergeometric fractional integrals. Matematiche66(1), 57-64 (2011) 7. Lakshmikantham, V, Vatsala, AS: Theory of fractional differential inequalities and applications. Commun. Appl. Anal.

11, 395-402 (2007)

8. Ntouyas, SK, Agarwal, P, Tariboon, J: On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal.10(2), 491-504 (2016)

9. Ö ˇgünmez, H, Özkan, UM: Fractional quantum integral inequalities. J. Inequal. Appl.2011, Article ID 787939 (2011) 10. Sudsutad, W, Ntouyas, SK, Tariboon, J: Fractional integral inequalities via Hadamard’s fractional integral. Abstr. Appl.

Anal.2014, Article ID 563096 (2014)

11. Sulaiman, WT: Some new fractional integral inequalities. J. Math. Anal.2(2), 23-28 (2011)

12. Wang, G, Agarwal, P, Chand, M: Certain Grüss type inequalities involving the generalized fractional integral operator. J. Inequal. Appl.2014, Article ID 147 (2014)

13. Grüss, G: Über das maximum des absoluten Betrages von 1

ba

b

af(x)g(x)dx

1 (ba)2

b af(x)dx

b

ag(x)dx. Math. Z.39,

215-226 (1935)

14. Pólya, G, Szegö, G: Aufgaben und Lehrsatze aus der Analysis, Bd. 1. Die Grundlehren der mathmatischen Wissenschaften, Bd. 19. Springer, Berlin (1925)

15. Dragomir, SS, Diamond, NT: Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results. East Asian Math. J.19(1), 27-39 (2003)

16. Agarwal, P, Jain, S: Somek-Riemann-Liouville type fractional integral inequalities via Pólya-Szegö inequality (submitted)

17. Romero, LG, Luque, LL, Dorrego, GA, Cerutti, RA: On thek-Riemann-Liouville fractional derivative. Int. J. Contemp. Math. Sci.8(1), 41-51 (2013)

18. Sarikaya, MZ, Karaca, A: On thek-Riemann-Liouville fractional integral and applications. Int. J. Stat. Math.1(3), 33-43 (2014)

19. Sarikaya, MZ, Dahmani, Z, Kiris, ME, Ahmad, F: (k;s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat.45(1), 77-89 (2016)

20. Diaz, R, Pariguan, E: On hypergeometric functions and Pochhammerk-symbol. Divulg. Mat.15, 179-192 (2007) 21. Mubeen, S, Habibullah, GM:k-fractional integrals and application. Int. J. Contemp. Math. Sci.7, 89-94 (2012) 22. Set, E, Tomar, M, Sarikaya, MZ: On generalized Grüss type inequalities fork-fractional integrals. Appl. Math. Comput.

References

Related documents

Although for general image compar- ison problems SIFT and SURF provide better performance in terms of accuracy, our experiment showed that for VSNs, where all images have

(G) Antiamanitin immunostaining of hymenium and subhymenium showing basidia (arrows) with sterigmata and sterile cells containing amanitin (CLSM superimposed on DIC).. (H) Same

Several families of viruses can induce cancer as the Epstein-Barr virus (EBV).The aim of the present study was to determine if there is a greater association of EBV infection

Recent pharmacological studies have been contributed in discovering new drugs using ethnomedicinal plants to treat several types of cancers like breast cancer,

samples in comparison with the standard SnO2.and the crystallite size at various stages of the process. Peak position and the relative intensity of samples observed in XRD

The performance of the new approach was evaluated with the boundary layer parameterization proposed, using the crosswind integrated equation (26) and the data set

These findings, coupled with the restoration of MG cell density and morphology in Sox2 MUTANT ;CALSL-NICD retinas, provide evidence that SOX2 maintains the identity of postnatal MG

Sommen, “A new method for efficient convolution in frequency do- main by nonuniform partitioning for adaptive fil- tering,” IEEE Transactions on Signal Processing , vol..