• No results found

Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man)

N/A
N/A
Protected

Academic year: 2021

Share "Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Aquaculture

Reports

j ourna l h o m e pa ge :w w w . e l s e v i e r . c o m / l o c a t e / a q r e p

Effect

of

salinity

on

survival

and

growth

of

giant

freshwater

prawn

Macrobrachium

rosenbergii

(de

Man)

B.K.

Chand

a

,

R.K.

Trivedi

b

,

S.K.

Dubey

b,∗

,

S.K.

Rout

b

,

M.M.

Beg

a

,

U.K.

Das

b

aDirectorateofResearch,ExtensionandFarms,WestBengalUniversityofAnimalandFisherySciences,Kolkata700037,India

bDepartmentofAquaticEnvironmentManagement,FacultyofFisherySciences,WestBengalUniversityofAnimalandFisherySciences,Kolkata700094,

India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28January2015

Receivedinrevisedform6May2015 Accepted13May2015

Availableonline25May2015 Keywords:

Macrobrachiumrosenbergii Salinitytolerance Salinewaterinundation Medianlethalsalinity IndianSundarban

a

b

s

t

r

a

c

t

Twoindependentexperimentswereperformedtodeterminetheeffectsofsalinityonsurvivalandgrowth ofjuvenileMacrobrachiumrosenbergii,firstonewastodeterminethemedianlethalsalinity(MLS-5096h)

andsecondonewastoassessthesurvivalandgrowthatdifferentsub-lethalsalinitiesunderfield condi-tion.InMLS-5096 hstudy0,5,10,15,20,25and30pptsalinitieswereusedtoinitiallyfindoutthesalinity

tolerancerange.Accordingly,adefinitivesalinitytolerancetestwasdoneinnextphasetofindoutexact medianlethalsalinitybydirectlytransferringthetestspeciesto21,22,23,24,25,26and27pptsalinity for96h.ThemedianlethalsalinityofM.rosenbergiiwasestimatedat24.6ppt.Inthesecondexperiment, survivalandgrowthperformancesoftheprawnwererecordedatdifferentsub-lethalsalinitiesviz.,5, 10,15and20pptalongwith0pptascontrolduring60dayscultureperiod.Theprawnexhibited low-estfinalaverageweightat20pptsalinityandsignificantlyhighestat10pptsalinity.HighestSGRand weightgainwereobtainedat10pptfollowedby5ppt,15pptand0pptsalinitybutdifferencesamong treatmentwerenotsignificant(P>0.05).Survivalrateofprawnvariedbetween91%(at0ppt)and78% (at20ppt).Theprawngrewandsurvivedsatisfactorilyat0–15pptsalinities,implyingthatthespecies canbeculturedcommerciallyatwidesalinityrange.M.rosenbergiicanbeconsideredasanidealspecies topromote,inviewofcurrentandfutureclimatevariablesasmoreandmorecoastalareasofIndiaare goingtobevulnerabletosalinewaterinundation.

©2015PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Salinityisoneoftheimportantenvironmentalfactors affect-ingsurvival,growthanddistributionofmanyaquaticorganisms (KumluandJones,1995;Kumluetal.,1999,2000).Althoughmany crustaceansexhibitsomedegreeofeuryhalinity(Pequeux,1995), optimalsalinitylevelsforgrowth,survivalandproduction compe-tenceareoftenspecies–specific(Parado-Estepaetal.,1987;Rouse andKartamulia,1992;KumluandJones,1995;Kumluetal.,2001; RomanoandZeng,2006;Yeetal.,2009).Avarietyofaquatic crus-taceanshavebeenreportedtorearininlandsalinewateraround theworld(Ferrarisetal.,1987;Saoudetal.,2003;Rahmanetal., 2005).Thus,itisimportanttodeterminetheoptimumsalinitylevel foreachcommercialprawnspeciesinculturesystemswherethe salinitycanbealteredtosuitthespecies.

∗ Correspondingauthor.Tel.:+913324328749;fax:+913324328749. E-mailaddress:sourabhkumardb@gmail.com(S.K.Dubey).

Intropics,fluctuationsofsalinityareverypronouncedwhere theclimateischaracterizedbywetanddryseasons(Sureshand Lin,1992).Butinrecentyears,climatevariabilitymanifestedbysea levelrise,increasedincidenceofcoastalfloodandtropicalcyclones, whichareresponsibleforsalinitymediatedwaterstressof fresh-water fisheriesin variouspartsof theworld(Cruzet al.,2007; Badjecketal.,2010).InWestBengal,India,manyareasin Sundar-bandelta(UNESCOdeclaredWorldHeritageSite)arevulnerable tosalinewaterinundationandsubjectedtoenvironmentalhazard duringextremeweathereventslikecyclonesandstormsurges.In 2009,theseveretropicalcyclone‘Aila’hittheSundarban, inundat-ingextensiveareaswithbrackishwater.Itbroughthugechanges inenvironmentalparameters,especiallyinwatersalinityincreased from13.64±6.24pptto17.08±8.03pptwithanincreaseof25.2% (Mitraetal.,2011).Duetosalinityintrusioninfreshwater aqua-cultureareas,manyfreshwaterspeciesweresubjectedtosevere salinitystressandsomespeciesperishedduetotheirinabilityto copeupwithsuchextremeconditions.Therefore,itisimportantto determinethesalinitytoleranceoffreshwateraquaculturespecies

http://dx.doi.org/10.1016/j.aqrep.2015.05.002

(2)

andtoascertainwhethersomefreshwaterspeciescanbecultured inbrackishwaterareas.

Thegiantfreshwaterprawn Macrobrachiumrosenbergiihasa wide distribution throughout the Indo-Pacific region and most favouredforfarmingintropicalandsubtropicalareasoftheworld (New,2002,2005).Salinityplaysacriticalroleonegg,embryoand larvaldevelopmentduringlifecycleofM.rosenbergii.Initsnatural setting,gravidfemalesmigrateacrosssalinegradientsto estuar-inedownstreamtohatchtheireggsandlarvaldevelopmenttakes placeinbrackishwater(IsmaelandNew,2000).Thisfreshwater palaemonidprawnispopularlyknownas‘scampi’inIndiantrade, farmedchieflyinsmalltomedium-sizedearthenpondsinWest Bengal,AndhraPradesh,TamilNaduandKeralainIndia(Nairand Salin,2012).Globalproductionofthisprawnhasincreasedfrom 130,689tonsin2000to203,211tonsin2011(FAO,2013).Thetotal scampiproductionfromIndiain2010–2011wasabout8778 met-rictonsandWestBengalwastheleadingproducer.In2011–12, Indiaexported2723metrictonsM.rosenbergiiwithanincreaseof 31.61%thanthepreviousyears(MPEDA,2011).

FreshwaterprawnM.rosenbergiihasbeenstudiedinrelationto theeffectsofdifferentenvironmentalfactors(Brownetal.,1991; ChenandKow,1996;Manushetal.,2004).Theeffectsof salin-ityonthe growthand survivalof severalpenaeidspecies have alsobeenextensivelystudied(Dalletal.,1990).Salinitiesbetween 15pptand25pptareconsideredoptimalforP.monodonculture (Ferrarisetal.,1986a;Chenetal.,1995).ItwasreportedbyNew (1995)thatadultM.rosenbergiicantoleratesalinityrangingfrom 0pptto25ppt.Huongetal.(2010)studiedtheeffectsofsalinities (15–25ppt)ontheosmoregulation,growthandmoultingcyclesof M.rosenbergiiatMekongdelta.YenandBart(2008)studied neg-ativeeffectofelevatedsalinityonthereproductionandgrowth femaleM.rosenbergii.Butitslethalsalinitylevel,growthand sur-vivalrateatdifferentsub-lethalsalinities,etc.arestilluncertain.To addresstheseissues,thepresentstudywasundertakento deter-minemedianlethalsalinity(MLS-5096h),andtoassessthesurvival

andgrowthratesatdifferentsub-lethalsalinities. 2. Materialandmethods

2.1. Experimentalspeciesandacclimation

Juvenilesof M.rosenbergiiwereobtainedfromthespawning ofwildbroodstockinacommercialhatcherylocatedinNaihati, North24ParganasdistrictofWestBengal,Indiaandtransported inoxygenatedpolythenebag(pH7.5,alkalinity100ppmasCaCO3,

hardness120ppmasCaCO3)tothelaboratory.Before

experimen-tation,healthyandactivejuveniles(transparentbodyandactively swimming)weresegregatedinto500LFRP(fibreglassreinforced plastic)tanksfilledwithfreshwaterunderconstantaerationand acclimatizedforthreeweeksatambienttemperatureof27–29.5◦C. About30%ofwaterwasreneweddaily.Prawnwerefedadlibitum twicedaily(9:00hand16:00h)withcommercialpelletedfeed(35% crudeprotein).Theleftoverfoodandfaecalmatterswereremoved dailybysiphoning.

2.2. Salinitytolerance(MLS96h)test

Inthefirstphase,anon-renewalstatictoxicitybioassaywas doneforsalinityrangefindingasdescribedbyPeltierandWeber (1985).JuvenilesofM.rosenbergii(length:6.98±0.67cm;weight: 4.05±0.84g)weredirectlytransferredto0,5,10,15,20,25and 30pptsalinewater. Desiredsalinitieswereachieved bymixing freshwater with brine water collected from salt pan (>100ppt salinity).Theexperimentalsystemconsistedof10Lglassaquaria stockedwithtenjuveniles/aquariumfor96hwiththreereplicates.

ThepHanddissolvedoxygenofthetanksrangedfrom7.2ppm to7.6ppm and 5.8ppm to 7.6ppm respectively. As 100% mor-talitywasobservedonlyat30ppt,adefinitivesalinitytolerance testwasconductedinthesecondphasetodeterminethemedian lethal salinity concentration.Median lethalsalinity (MLS96h)is

defined asthesalinity at whichsurvival of test species fallsto 50%in96hfollowingdirecttransferfromfreshwatertovarious test salinities (Watanabe etal., 1990).Thetest species (length: 7.71±0.61cm;weight:4.50±0.81g)weredirectlysubjectedto21, 22,23,24,25,26and27pptsalinitiesandobservedfor96h.Asper APHA(2012),standardphotoperiodof16hlight:8hdarkwas fol-lowed.Eachaquariumwascoveredwithafinemeshednylonnet topreventjumpingoutthetestjuveniles.ThepHanddissolved oxygenoftheaquariawererangedfrom7.0ppmto7.8ppmand 5.5ppmto6.75ppmrespectively.Survivalwasrecordedat24,48, 72and96hofexposuretoeachsalinitylevel.Lackofresponseto mechanicalstimuliwasthecriteriatodeterminedeathofjuveniles. Deadjuvenileswereremovedduringeachobservation.MLS96hwas

calculatedbyProbitmethodbypoolingthemortalitydatafrom replicateswithintreatmentsandconsideredsignificantlydifferent whenthecorresponding95%confidenceintervalsdidnotoverlap (Finney,1971).TheentireexperimentwascarriedoutinMohanpur campus(NadiadistrictofWestBengal)oftheUniversityinIndia. 2.3. Fieldtrialsonsurvivalandgrowthatdifferentsalinities

The field trial was conducted in 5 earthen ponds (0.02ha each)located atJharkhali fishfarmcomplex (N22◦01.219 and E088◦41.075),afringeareaofSundarbanmangroveeco-region, WestBengal,India.Fourdifferentsublethalsalinities,viz.,5,10,15 and20pptwerechosentoassesstheeffectsofsalinityonsurvival andgrowth.Simultaneouslyfreshwater(0pptsalinity)wasused ascontrol.Thedifferentsalinitygradientswerecreatedin experi-mentalearthenpondbypumpingsalinewaterfromthenearbytidal creekconnectedtoriverHerobhanga(averagesalinity28–30ppt). Threenumbersoffinenylonnethappa(12×8×4ft)wereplacedin eachearthenpondwithsupportofbambooframe.Fourty acclima-tisedM.rosenbergiiwererandomlysampled,stockedineachhappa andallowedtogrowfor60daysunderidealfarmmanagement.A waterdepthof1.2mwasmaintainedthroughouttheexperiment ineachpond.Sixnumbersofhideouts(PVCpipesof2diameter and1long)wereplacedineachhappatoactasshelterandavoid cannibalism.Prawnwerefedtwiceaday(9:00hand16:00h)ad libitumwithcommercialpelletedfeed(CharoenPokphandGroup, SamutSakron,Thailand;32%crudeprotein,4%lipidand6%fibre).

Prawnswereblotdriedusingatissuepaperandthebodyweight wasmeasuredfortnightly;whilemortality(ifany)wasnoteddaily. The growth performances were calculated in terms of specific growthrate(SGR;%/day),bodyweightgain(BWG%),averagedaily growth(ADG;g/day)(Brown,1957;Hopkins,1992)byusingthe followingformulae:

SGR



%/day



= (LnWf−t LnWf)×100

WhereLnrepresentsthenaturallogofindividualwetweight(g); Wfisthefinalwetweight,Witheinitialwetweight,tistheduration inday.

BWG(%)=(Wf−Wi) Wi ×100

WhereWfisthefinalwetweightandWitheinitialwetweight ADG(g/day)=(Wf−Wi)

(3)

Table1

SalinitytolerancewithconfidenceintervalforMacrobrachiumrosenbergiiestimated usingprobit.

Probability Salinity(ppt) Confidenceinterval(95%)

Lowerbound95% Upperbound95%

0.20 21.76 0.74 24.11 0.30 22.93 6.82 24.80 0.40 23.82 11.44 25.35 0.50 24.60 15.49 25.88 0.60 25.37 19.32 26.49 0.70 26.17 23.00 27.45 0.80 27.09 25.76 30.05 0.90 28.35 27.17 35.97 0.95 29.38 27.89 41.25 0.99 31.31 29.07 51.27

WhereWfisthefinalwetweight,Witheinitialwetweightandtis thedurationinday.

Survival(%)= Numberofspeciessurvivedatendofexperiment Numberofspeciesstocked

×100

2.4. Waterquality

Salinityofeachtreatmentwascontrolleddailyandotherwater qualityparametersweremonitoredfortnightly.Temperature,pH, dissolvedoxygenand salinityweredetermineddirectlyby digi-talwateranalysisinstrument(HANNA,HI9828,Germany);while ammonia-nitrogen (NH3-N) and nitrate-nitrogen (NO2-N) was

measuredusingHACH spectrophotometer(DR 2800,Germany). AlkalinityandhardnessweremeasuredtitrimetricallyasperAPHA (2012).

2.5. Dataanalysis

Finalsurvivaland growthperformancedataofM.rosenbergii ateachtreatmentwereanalysedbyone-wayanalysisofvariance (ANOVA)afterconfirmationofnormalityandhomogeneityof vari-ance.Logorarcsinetransformationofdatawasperformedbefore theanalysiswhenevervariances werenot homogeneous.Tukey (HSD)meanseparationtestwereusedtodeterminethedifferences amongthemeans.SignificantdifferencesarestatedatP<0.05level unlessotherwisenoted(Zar, 1999).Allstatistical analyseswere performedusingstatisticalsoftwareSPSS10.0forWindows(SPSS Inc.Chicago,ILUSA).Graphsandplotsweregeneratedusing sta-tisticalsoftwareMedcalc®version12.7.0(MedCalcSoftwarebvba, Ostend,Belgium).

3. Results

3.1. Salinitytolerance(MLS96h)test

100% mortalities were recorded within 24h upon exposure to27–30ppt.In25–26ppt,survivalratesafter96hwere17–6%, respectively.Incontrast,at21–22pptsalinitytreatments,survival ratesafter96hwere83–79%,respectively.TheMedianlethal salin-ity(MLS96h)andconfidencelimitscomputedusingProbitforM.

rosenbergiijuvenileispresentedinTable1.The96hMedianLethal SalinityofM.rosenbergiiwas24.6pptwithconfidenceintervals (at95%)of15.5–25.9ppt.Thestatisticalconfidenceofpoint esti-matevalues otherthan50%canbeusedtocharacterizetoxicity (lethalsalinity).TheprecisionoftheMLS96htestresultsforatypical sigmoidcumulativedistributiondoseresponsecurveandtime(h) dependentsurvivorshipcurveforM.rosenbergiiinvariedsalinities

hasbeendemonstratedinFigs.1and2,respectively.Themortality ratewaspositivelycorrelatedwiththesalinityconcentrationwith correlationcoefficient(r)of0.97.

3.2. Survivalandgrowthatdifferentsub-lethalsalinities

Theinitialaveragebodymassoftheprawnwerenot signifi-cantlydifferent(P>0.05)atthecommencementoftheexperiment. Significant differences in monthly average body mass were observedindifferentsalinitytreatment(Fig.3).Attheendof60 dayscultureperiod,prawnexhibitedthelowestaveragegrowth (25.63g) at 20ppt and thehighest averagegrowth (34.97g) at 10ppt.Thehighestweightgainwasobtainedinprawncultured in10ppt(23.53g)followedby5–15ppt,butdidnotdiffer signifi-cantlytoeachother(P>0.05).Thelowestweightgainwasobtained in20ppt(13.58g)whichdifferedsignificantly(P<0.05)fromother treatments.Thisgrowthtrendwasalsotruefordailyweightgains (Table2).Thespecificgrowthrates(SGR)ofprawnwerealso high-estwhenculturedin10ppt(1.86%/day)followedby5ppt,15ppt salinitiesandinfreshwater (0ppt)butdifferences among treat-mentswerenotsignificant(P>0.05).SignificantlylowerSGRwas obtainedin 20pptsalinitytreatment(1.26%/day)(P<0.05).This growth trend was also similar in case of the percentage body weightgain(BWG%).TheSGRinfirstmonth(30days)and sec-ondmonth(60days)differedsignificantly(P<0.05).Incaseof30 daysSGR,highestgrowthratewereobtainedinfreshwater(0ppt) followedby5,10,15and20pptsalinities.Incontrast,thistrend wasjustreversein60daysSGR.In60daysSGR,highestgrowth ratewas obtainedin 15ppt followed by10pptbut differences amongthemwerenotsignificant(P>0.05)(Fig.4).Thesurvival rateofM.rosenbergiiafter60daystrialperiodwassignificantlyhigh (P<0.05)infreshwater(0ppt)anddecreasedassalinityincreased. Thedifferencesinsurvivalratebetween0pptand5pptaswellas between5pptand10pptwerenotsignificant(P>0.05)(Table2). Thephysico-chemicalparametersofpondwatermeasuredduring trialperiodweredepictedinTable3.

4. Discussion

Juvenilesorsub-adultsofM.rosenbergiioccurnaturallyin estu-arineareasofWestBengalarethusadaptedtoanenvironment inwhichsalinitylevelsvaryconstantly.Resultsofthisstudyalso indicatedthat themedianlethalsalinityvalue ofM.rosenbergii isvery high(24.6ppt)and it supportsthat thespeciesexhibits a widetolerancetoabruptchanges insalinity. Ling(1977) dis-coveredthatlarvaeofM.rosenbergiirequiredbrackishwaterfor survival,growthetc.TheM.rosenbergiiisexposedtoawiderange ofsalinities(0–18ppt)duringitcourseoflifecycle(Limpadanai andTansakul,1980;Chengetal.,2003).Inanearlierstudy,Sandifer etal.(1975)showedthattoleranceofpost-larvalM.rosenbergiito gradualandrapidincreasesinsalinitywasaround25pptand mor-talityincreasedrapidlyatlevels≥30pptinbothcases.Goodwinand Hanson(1975)alsostatedthatlarvaeandadultsofM.rosenbergii areeuryhalinetoaconsiderabledegreeandtoleratedsalinitiesup to21ppt.

Waterqualityparametersliketemperature,pH,dissolved oxy-gen, alkalinity, ammonia-nitrogen, and nitrate-nitrogen during growthtrialperiodwerefoundwithinacceptablerangefor fresh-waterprawn rearing(Correia etal.,2000;New,2002; Mallasen etal.,2003)Table3.ThoughsurvivalofM.rosenbergiiwashigher infreshwater(0ppt)inthestudy,thehighestgrowthwasachieved in10ppt.Salinitybeyond15pptwasnotsuitableforgrowthofM. rosenbergiiwhichisagreeswellwithpreviousstudyofHuongetal. (2010).New(2002)suggestedthatM.rosenbergiicanbecultured inbrackishwater(uptoasalinityof10ppt),althoughbetter

(4)

pro-Fig.1. SigmoidcumulativedistributiondoseresponsecurveforMacrobrachiumrosenbergii.

duction,individualsizeandsurvivalofthestockwereobserved at a salinity of 5ppt (Nairand Salin,2005). In contrarytothe presentinvestigation,Singh (1980)demonstrated that freshwa-terprawnswereabletogrowinsalinityupto17pptwithhighest growthachievedatsalinitybetween0pptand2ppt.YenandBart (2008)reportedmaximumgrowthofM.rosenbergiiat0pptand decreasedassalinityincreasedandhaltedgrowthwasdocumented

at18ppt,howeverthisstudywasdonewithhighstockingdensity. GoodwinandHanson(1975)indicatedthatjuvenileofM. rosen-bergiigrewmorerapidlyinslightbrackishwater(<5ppt)when compared tomorebrackish waterupto15ppt. Specificgrowth ratesshowedasteadydeclinewiththerelativeincreaseintotal biomassastheprawnsbecomelargerandolder(Fig.4). Notewor-thyobservationin thistrialis thatafter30 days,SGRraisedat

(5)

Fig.3.Monthlyaveragebodyweight(g)ofMacrobrachiumrosenbergiiculturedindifferentsalinitiesfor60days.Theresultsareexpressedasmean±SDofthreereplicates

Table2

Initialweight(g),finalweight(g),weightgain(g),averagedailygrowth(g/day),specificgrowthrate(%/day),bodyweightgain(%)andsurvival(%)ofMacrobrachium rosenbergiirearedindifferentsalinitiesfor60days.

Variables Salinity(ppt)

0(control) 5 10 15 20

Initialweight 11.22±1.39 11.30±0.75 11.43±1.25 11.30±0.81 12.05±0.95

Finalweight 30.86±2.38b 32.55±1.12ab 34.97±1.11a 32.47±0.89ab 25.63±0.84c

Weightgain 19.64±1.25b 21.25±0.38ab 23.53±1.10a 21.16±0.27b 13.58±0.88c

Averagedailygrowth 0.32±0.02b 0.35±0.006ab 0.39±0.01a 0.35±0.004b 0.22±0.01c

Specificgrowthrate 1.70±0.19ac 1.80±0.16a 1.86±0.16a 1.76±0.07ac 1.26±0.11b

Bodyweightgain 177.63±31.56ac 188.54±9.78a 208.03±30.57a 187.80±13.66ac 113.46±15.23b

Survival 90.66±2.08a 88.33±1.52ab 86.66±1.52b 81.00±1.00c 78.00±2.64c

DataarepresentedasMean±SD0fthreereplicates.Differentsuperscriptsinsamerowweresignificantlydifferent(P<0.05).

highersalinitylevels(Fig.4)revealingthatprawnwere acclima-tisingandrecoveringstressinhighersalinityasthecultureperiod progressed.

Theosmoregulatoryprocessisanimportantadaptationofmany crustaceanstoovercomechangesinsalinity,especiallyinestuarine andcoastalenvironments(Pequeux,1995).Inthisstudy,M. rosen-bergiihyperosmoregulatedwhensalinitywasaboveitsiso-osmotic pointandhypoosmoregulatedwhensalinitywasbelowthispoint. PreviousstudiesindicatedthatM.rosenbergiiisanosmoregulator infreshwateruptosalinitiesattheiso-osmoticpoint(14–15ppt), whereasitis anosmoconformerathighersalinities(15–28ppt) (Sternetal.,1987;Funge-Smithetal.,1995;Chengetal.,2003).This

adaptationisjustreversefortypicalpenaeidshrimpandmost crus-taceansthatinhabitestuarineormarineareas(MantelandFarmer, 1983;Lemaireet al.,2002).Malecha (1983)alsoexplainedthat althoughfreshwaterprawntoleratehigherthantheiriso-osmotic point(18ppt),optimumgrowthconditionsareatfreshorslightly brackish water (0–4ppt). Changesin relative concentrations of variousionsinmedia,upto15ppt, seemtohavenosignificant influenceonthehaemolymphcompositioninM.rosenbergiithat managedtosurviveandgrowinthem(Sternetal.,1987;Huong etal.,2010).Althoughhaemolymphcompositionandosmolality werenotmeasuredinthestudy,itiswellestablishedthat exter-nalosmolalityaffectscrustaceanhaemolymphosmolalityandionic

Table3

Waterqualityparametersanalysedindifferentsalinitytreatmentsduring60daysgrowthtrialofMacrobrachiumrosenbergii.ValuesarepresentedasMean±SD.

Parameters Salinity(ppt) 0ppt(Control) 5ppt 10ppt 15ppt 20ppt Temperature(◦C) 31.44±2.87 32.02±3.17 31.48±3.28 31.26±3.30 31.20±3.31 pH 7.86±0.46 8.47±0.47 8.13±0.45 8.24±0.48 8.24±0.48 Dissolvedoxygen(ppm) 6.02±0.89 6.02±1.16 6.50±1.45 6.41±1.10 6.41±1.10 NH3-N(ppm) 0.17±0.10 0.19±0.09 0.22±0.05 0.22±0.01 0.26±0.08 NO2-N(ppm) 0.08±0.05 0.09±0.04 0.10±0.05 0.11±0.07 0.15±0.08 Alkalinity(ppm) 30.25±6.54 79.30±11.05 89.50±13.50 97.45±14.0 118.25±12.50

(6)

Fig.4.Monthlyaveragespecificgrowthrate(%/day)ofMacrobrachiumrosenbergiiculturedindifferentsalinitiesfor60days.Theresultsareexpressedasmean±SDofthree replicates.Differentsuperscriptsindicatesignificantlydifferences(P<0.05).

composition(DallandSmith,1981;ChengandLiao,1986;Linetal., 2000).

AccordingtoWoo andKelly (1995),in freshwater condition aquaticspeciesspendacertainamountofenergytocompensatethe saltlostthroughpassivediffusion,providingmildbrackishwater (≤10ppt)reducesenergyexpenditureandconsequentlypromotes growth.Itiswellknownthathyper-osmoregulationincrustaceans requiresenergyintheformofprotein(Rosasetal.,1999;Setiarto etal.,2004;Silviaetal.,2004)andorlipids(Lemosetal.,2001;Sang andFotedar,2004).Inadditiontothephysiologicalstress,growth ofM.rosenbergiicanbeaffectedinhighersalinitiesduetoincreased energyexpenditure,proteinsparinganddepletionoflipidreserves, whichinturnaffectbiomasswhencomparedtothoserearedinlow salinities.TherespiratorymetabolisminMacrobrachiumshoweda generaltendencytowardslowoxygenconsumptionratesat inter-mediatesalinitiesasdiscussedbyMoreiraetal.(1983).Moreover, freshwaterprawnrearedinhighersalinitiesneedmoretimeand energytocompletetheirmoultingprocessresultinginareduction offeedingactivity.Althoughthepresentstudydidnotanalyzethe moultingperiod,itmayhaveinfluencedthelowerfood consump-tionleadingpoorergrowthinhighersalinity(StaplesandHeales, 1991;Chien,1992;JayalakshmyandNatarajan,1996).Inprawn, Lemosetal.(2001)andSangandFotedar(2004)havedemonstrated reduced growthathighsalinities toappetite and reduced food assimilationrespectively.Infishalso,rearingneartheiriso-osmotic pointhasanenergysavingeffect(Boeufand Payan,2001).Fish exposedtoincreasedsalinityarelikelytofaceaconflictbetween themechanisms ofsalt uptake and nutrient uptake in thegut. Reductionsingrowthduetodecreasedfoodintakeinincreasing salinityhavebeenreportedinseveralculturedfishspecies(Ferraris etal.,1986b;Boecketal.,2000;Imslandetal.,2001).

Increasing inland salinity due to human activity (Williams, 2001)andclimaticvariabilityhasmajoreconomic,socialand envi-ronmentalconsequences, threatening theviabilityof numerous ruralcommunities (Beresfordet al.,2001).Thispictureis quite prominentincoastalareasofWestBengal,especiallyin Sundar-baneco-region (Chand etal.,2012a).Riverembankmentfailure

due tosealevel riseand subsequenterosioncoupledwith fre-quentextremeweathereventsisaseriousandemergentproblem inIndianSundarbanregionoverthepasttwodecades.Asaresults manyareasareinundatedbybrackishwaterandconverting fresh-watertooligohalinezone(Chand etal.,2012b).Inthischanged scenario,M.rosenbergiihaswiderpotentialityforcultureinmany brackishwaterareasofIndian Sundarbandeltaaswellasother tropicaldeltas and canbeused asa climatechangeadaptation strategyforaquaculture.

Theresultsofthepresentexperimentsindicatedthatsalinity plays a significantrole in theculture ofM. rosenbergii and the speciesshowedsatisfactorygrowthandsurvivalatwidesalinity range(0–15ppt).Inviewofthecurrentandfutureclimate vari-ables, more and more coastalareas of India and othertropical deltaicregionsaregoingtobevulnerabletobrackishwater inun-dation.Undersuchscenario,M.rosenbergiicanbeconsideredas anidealspeciestopromote.Noteworthythisconclusionhas sig-nificantimplicationsforM.rosenbergiiaquaculture, asit canbe utilizedinfarmsiteselectionandsalinitymaintenancetomaximize commercialproductivityincoastalinundationpronearea. Acknowledgements

The authors are grateful to Indian Council of Agricultural Research (ICAR),New Delhifor thefinancialassistancethrough theNICRA(NationalInitiativesonClimateResilientAgriculture) projectentitled “Developmentof Climate ResilientAquaculture StrategiesforSagarandBasantiBlocksofIndianSundarban”.Weare gratefultotheDeputyProjectDirector,SundarbanDevelopment Board,Govt.ofWestBengal,Kolkataforsharingfieldlaboratory facilities.AdditionalthanksgoestoMr.SudanRoyforfield assis-tance.

References

APHA,2012.StandardMethodsfortheExaminationofWaterandWastewater, twentytwoed.AmericanPublicHealthAssociation,AmericanWaterWorks Association,andWaterEnvironmentFederation,Washington,USA.

(7)

Badjeck,M.C.,Allison,E.H.,Halls,A.S.,Dulvy,N.K.,2010.Impactsofclimate variabilityandchangeonfisherybasedlivelihoods.Mar.Policy.34,375–383,

http://dx.doi.org/10.1016/j.marpol.2009.08.007

Beresford,Q.,Bekle,H.,Phillips,H.,Mulcock,J.,2001.TheSalinity

Crisis-Landscapes,CommunitiesandPolitics.UniversityofWesternAustralia Press,Perth.

Boeck,G.D.,Vlaeminck,A.,Linden,A.V.,Blust,R.,2000.Theenergymetabolismof commoncarp(Cyprinuscarpio)whenexposedtosaltstress:anincreasein energyexpenditureoreffectsofstarvation?Physiol.Biochem.Zool.73, 102–111.

Boeuf,G.,Payan,P.,2001.Howshouldsalinityinfluencefishgrowth?Com. Biochem.Physiol.PartC:Toxicol.Pharmacol.130,411–423,http://dx.doi.org/ 10.1016/S1532-0456(01)268-X

Brown,J.H.,Wickins,J.F.,MacLean,M.H.,1991.Theeffectofwaterhardnesson growthandcarapacemineralizationofjuvenilefreshwaterprawns, MacrobrachiumrosenbergiideMan.Aquaculture95,329–345,http://dx.doi. org/10.1016/0044-8486(91)90098-R

Brown,M.E.,1957.ThephysiologyofFishes.In:Brown,M.E.(Ed.),Experimental StudiesonGrowth.AcademicPress,NewYork,pp.361–400.

Chand,B.K.,Trivedi,R.K.,Biswas,A.,Dubey,S.K.,Beg,M.M.,2012a.Studyonimpact ofsalinewaterinundationonfreshwateraquacultureinSundarbanusingrisk analysistools.Explor.Anim.Med.Res.2,170–178http://

animalmedicalresearch.org/Vol.2Issue-2December2012/B%20K%20Chand. pdf

Chand,B.K.,Trivedi,R.K.,Dubey,S.K.,2012b.ClimatechangeinSundarbanand adaptationstrategyforresilientaquaculture.In:Sinha,A.,Katiha,P.K.,Das,S.K. (Eds.),CIFRICompendiumonSundarban,RetrospectandProspects.Central InlandFisheriesResearchInstitute,Kolkata,India,pp.116–128http://www. academia.edu/3109327/CLIMATECHANGEINSUNDARBANAND

ADAPTATIONSTRATEGYFORRESILIENTAQUACULTURE

Chen,J.C.,Kow,T.T.,1996.Effectoftemperatureonoxygenconsumptionand nitrogenousexcretionofjuvenileMacrobrachiumrosenbergii.Aquaculture145, 295–303,http://dx.doi.org/10.1016/S0044-8486(96)1,348-8

Chen,J.C.,Lin,M.N.,Ting,Y.Y.,Lin,J.N.,1995.Survival,haemolymphosmolalityand tissuewaterofPenaeuschinensisjuvenileacclimatedtodifferentsalinityand temperaturelevels.Comp.Biochem.Physiol.110,253–258,http://dx.doi.org/ 10.1016/0300-9629(94)164-O

Cheng,J.H.,Liao,I.C.,1986.Theeffectofsalinityontheosmoticandionic concentrationsinthehemolymphofPenaeusmonodonandP.penicillatus.In: Maclean,J.L.,Dizon,L.B.,Hosillos,L.V.(Eds.),ProceedingsoftheFirstAsian FisheriesForum.AsianFisheriesSociety,Manila,Philippines,633–636.

Cheng,W.,Liu,C.H.,Cheng,C.H.,Chen,J.C.,2003.Osmolalityandionbalancein giantriverprawnMacrobrachiumrosenbergiisubjectedtochangesinsalinity: roleofsex.AquacRes34,555–560,http://dx.doi.org/10.1046/j1365-2109. 2003.00853.x

Chien,Y.W.,1992.Waterqualityrequirementsandmanagementformarineshrimp culture.In:Wyban,J.M.(Ed.),ProceedingsoftheSpecialSessiononShrimp Farming.TheWorldAquacultureSociety,BatonRouge,Louisiana,pp.145–156.

Correia,E.S.,Suwannatous,S.,New,M.B.,2000.Flow-throughhatcherysystems andmanagement.In:New,M.B.,Valenti,W.C.(Eds.),FreshwaterPrawn Culture,theFarmingofMacrobrachiumrosenbergii.BlackwellScience,Oxford, pp.52–68.

Cruz,R.V.,Harasawa,H.,Lal,M.,Wu,M.,Anokhin,Y.,Punsalmaa,B.,Honda,Y., Jafari,M.,Li,C.,HuuNinh,N.,2007.Asia.ClimateChange2007:Impacts, AdaptationandVulnerability.In:Parry,M.L.,Canziani,O.F.,Palutikof,J.P.,van derLinden,P.J.,Hanson,C.E.(Eds.),ContributionofWorkingGroupIItothe FourthAssessmentReportoftheIntergovernmentalPanelonClimateChange. CambridgeUniversityPress,Cambridge,UK,pp.469–506.

Dall,W.,Hill,B.J.,Rothlisberg,P.C.,Staples,D.L.,1990.TheBiologyofthePenaeidae. AdvancesinMarineBiology.London,AcademicExpress.

Dall,W.,Smith,D.M.,1981.Ionicregulationoffourspeciesofpenaeidprawn.J. Exp.Mar.Biol.Ecol.55,219–232.

FAO,FisheriesandAquacultureDepartment,StatisticalCollections.OnlineQuery Panels.FAO-FIGIS.GlobalAquacultureProduction.(FAO-Fisheriesand AquacultureInformationandStatisticsService-16/07/2013)http://www.fao. org/figis/servlet/

SQServlet?ds=Aquacultureandk1=SPECIESandk1v=1andk1s=2608andouttype= html(accessedTueJul1612).

Ferraris,R.P.,Parado-Estepa,F.D.,deJesus,E.G.,Ladja,J.M.,1986a.Osmoregulation inPenaeusmonodon:effectsofmoltingandexternalsalinity.In:Mclean,J.L., Dizon,L.B.,Hosillos,L.V.(Eds.),ProceedingoftheFirstAsianFisheriesForum. AsianFisheriesSociety,Manila,Philippines,637–640.

Ferraris,R.P.,Catacutan,M.R.,Mabelin,R.L.,Jazul,A.P.,1986b.Digestibilityin milkfish,Chanoschanos(Forsskal):affectsofproteinsource,fishsizeand salinity.Aquaculture59,93–105, http://dx.doi.org/10.1016/0044-8486(86)90123-7

Ferraris,R.P.,Parado-Estepa,F.D.,deJesus,E.G.,Ladja,J.M.,1987.Osmoticand chlorideregulationinthehemolymphofthetigerprawnPenaeusmonodon duringmoltinginvarioussalinities.Mar.Biol.95,377–385.

Finney,D.J.,1971.Probitanalysis,thirded.CambridgeUniversityPress,Cambridge.

Funge-Smith,S.J.,Taylor,A.C.,Whitley,J.,Brown,J.H.,1995.Osmoticandionic regulationinthegiantMalaysianfreshwaterprawn,Macrobrachium rosenbergii(deMan),withspecialreferencetostrontiumandbromine.Comp. Biochem.Physiol.110A,357–365.

Goodwin,H.L.,Hanson,J.A.,1975.Aquacultureofthefreshwaterprawn Macrobrachiumspecies.TheOceanicInstitute,Waimanalo,Hawaii.

Hopkins,K.D.,1992.Reportingfishgrowth:areviewofthebasics.J.World Aquacult.Soc.23,173–179.

Huong,D.T.T.,Wang,T.,Bayley,M.,Phuong,N.T.,2010.Osmoregulation,growth andmoultingcyclesofthegiantfreshwaterprawn(Macrobrachium

rosenbergii)atdifferentsalinities.Aquac.Res.41,e135–e143,http://dx.doi.org/ 10.1111/j.1365-2109.2010.02486.x

Imsland,A.K.,Foss,A.,Gunnarsson,S.,Berntssen,M.H.G.,FitzGerald,R.,Bonga,S.W., Ham,E.V.,Nævdal,G.,Stefansson,S.O.,2001.Interactionoftemperatureand salinityongrowthfoodconversioninjuvenileturbot,Scophthalmusmaximus. Aquaculture198,353–367,http://dx.doi.org/10.1016/S0044-8486(01)507-5

Ismael,D.,New,M.B.,2000.Biology.In:New,M.B.,Valenti,W.C.(Eds.),Freshwater PrawnCulture,theFarmingofMacrobrachiumrosenbergii.BlackwellScience, Oxford,pp.69–90.

Jayalakshmy,B.,Natarajan,P.,1996.Influenceofsalinityonfertilizationand hatchingofMacrobrachiumidellaunderlaboratorycondition.J.Aquacult.Trop. 11,33–38.

Kumlu,M.,Eroldogan,O.T.,Aktas,M.,1999.Theeffectofsalinityonlarvalgrowth: survivalanddevelopmentofPenaeussemisulcatus(Decapoda:Penaeidae).Isr. J.Aquac.Bamidgeh51,114–121.

Kumlu,M.,Eroldogan,O.T.,Aktas,M.,2000.Effectsoftemperatureandsalinityon larvalgrowth,survivalanddevelopmentofPenaeussemisulcatus.Aquaculture 188,167–173,http://dx.doi.org/10.1016/S0044-8486(00)330-6

Kumlu,M.,Eroldogan,O.T.,Saglamtimur,B.,2001.Theeffectofsalinityandadded substratesongrowthandsurvivalofMetapenaeusmonocerospost-larvae (Decapoda:Penaeidae).Aquaculture196,177–188,http://dx.doi.org/10.1016/ S0044-8486(00)580-9

Kumlu,M.,Jones,D.A.,1995.Salinitytoleranceofhatchery-rearedpostlarvaeof PenaeusindicusH.MilneEdwardsoriginatingfromIndia.Aquaculture130, 287–296,http://dx.doi.org/10.1016/0044-8486(94)319-J

Lemaire,P.,Bernard,E.,Martinez-Paz,J.A.,Chin,L.,2002.Combinedeffectof temperatureandsalinityonosmoregulationofjuvenileandsubadultPenaeus stylirostris.Aquaculture209,307–317, http://dx.doi.org/10.1016/S0044-8486(01)756-6

Lemos,D.,Phan,V.N.,Alvarez,G.,2001.Growth,oxygenconsumption,ammonia-N excretion,biochemicalcompositionandenergycontentofFarfantepenaeus paulensisPérez-Farfante(Crustacea,Decapoda,Penaeidae)earlypostlarvaein differentsalinities.J.Exp.Mar.Biol.Ecol.261,55–74,http://dx.doi.org/10. 1016/S0022-0981(01)260-X

Limpadanai,D.,Tansakul,R.,1980.Cultureofgiantfreshwaterprawn (Macrobrachiumrosenbergii)inasmallreservoir.Aquaculture20,257–260,

http://dx.doi.org/10.1016/0044-8486(80)90,116-7

Lin,S.C.,Liou,C.-H.,Cheng,J.H.,2000.Theroleoftheantennalglandsinionand bodyvolumeregulationofcannulatedPenaeusmonodonrearedinvarious salinityconditions.Comp.Biochem.Physiol.127A,121–129,http://dx.doi.org/ 10.1016/S1095-6433(00)245-2

Ling,S.W.,1977.AquacultureinSoutheastAsia:AHistoricalOverview.University ofWashingtonPress,Seattle.

Malecha,S.R.,1983.Commercialpondproductionofthefreshwaterprawn, Macrobarchiumrosenbergii,inHawaii.In:McVeyJames,P.(Ed.),CRC HandbookofMariculture,vol.1.CRCPress,Inc.BocaRaton,Florida,pp. 231–259.

Mallasen,M.,Valenti,W.C.,Ismael,D.,2003.Effectsofnitriteconcentrationon larvaldevelopmentofthegiantriverprawn,Macrobrachiumrosenbergii.J. Appl.Aquacult.14,55–69.

Mantel,L.H.,Farmer,L.L.,1983.Osmoticandionicregulation.In:Bliss,D.E.(Ed.), TheBiologyofCrustacea,Vol.5.InternalAnatomyandPhysiological Regulation.AcademicPress,NewYork,pp.53–143.

Manush,S.M.,Pal,A.K.,Chatterjee,N.,Das,T.,Mukherjee,S.C.,2004.Thermal toleranceandoxygenconsumptionofMacrobrachiumrosenbergiiacclimatedto threedifferenttemperatures.J.ThermBiol.29,15–19,http://dx.doi.org/10. 1016/j.jtherbio2003.11.005

Mitra,A.,Halder,P.,Banerjee,K.,2011.Changesofselectedhydrological parametersinHooglyestuaryinresponsetoseveretropicalcyclone(Aila). IndianJ.Mar.Sci.40,32–36.

MPEDA,2011.ThemarineproductsexportdevelopmentauthorityAnnualReport 2011-2012,MinistryofcommerceandIndustry,Govt.ofIndia,Panampilly Avenue,Kochi,India.

Moreira,G.S.,McNamara,J.C.,Shumway,S.E.,Moreira,P.S.,1983.Osmoregulation andrespiratorymetabolisminBrazilianMacrobrachium(Decapoda, Palaemonidea).Comp.Biochem.Physiol.PartA74,57–62.

Nair,C.M.,Salin,K.R.,2012.Currentstatusandprospectsoffarmingthegiantriver prawnMacrobrachiumrosenbergii(DeMan)andthemonsoonriverprawn Macrobrachiummalcolmsonii(H.M.Edwards)inIndia.Aquac.Res.43, 999–1014,http://dx.doi.org/10.1111/j1365-2109.2011.03074.x

New,M.B.,1995.Statusoffreshwaterprawnfarming:areview.Aquac.Res.26, 1–54.

New,M.B.,2002.Farmingfreshwaterprawns.Amanualforthecultureofthegiant riverprawn(Macrobrachiumrosenbergii).In:FAOFisheriesTechnicalPaperNo. 428.FoodandAgricultureOrganizationoftheUnitedNations,Rome,pp.212 pp.

New,M.B.,2005.Freshwaterprawnfarming:globalstatus:recentresearchanda glanceatthefuture.Aquac.Res.36,210–230.

Parado-Estepa,F.,Ferraris,R.P.,Ladja,J.M.,deJesus,E.G.,1987.Responsesof intermoltPenaeusindicustolargefluctuationsinenvironmentalsalinity. Aquaculture64,175–184,http://dx.doi.org/10.1016/0044-8486(87)90,323-1

(8)

Peltier,W.H.,Weber,C.I.,1985.MethodsforMeasuringtheAcuteToxicityof EffluentstoFreshwaterandMarineOrganisms,seconded.U.S.Environmental ProtectionAgency,EPA600/4-85/013,Washington,D.C.

Pequeux,A.,1995.Osmoticregulationincrustaceans.J.Crustac.Biol.15,1–60.

Rahman,S.U.,Jain,A.K.,Reddy,A.K.,Kumar,G.,Raju,K.D.,2005.Ionicmanipulation ofinlandsalinegroundwaterforenhancingsurvivalandgrowthofPenaeus monodon(Fabricius).Aquac.Res.36,1149–1156,http://dx.doi.org/10.1111/ j1365-2109.2005.01322.x

Romano,N.,Zeng,C.,2006.Theeffectsofsalinityonthesurvival,growthand haemolymphosmolalityofearlyjuvenileblueswimmercrabs,Portunus pelagicus.Aquaculture260,51–162,http://dx.doi.org/10.1016/j.aquaculture. 2006.06.019

Rosas,C.,Martinez,E.,Gaxiola,G.,Brito,R.,Sánchez,A.,Soto,L.A.,1999.Theeffect ofdissolvedoxygenandsalinityonoxygenconsumption,ammoniaexcretion andosmoticpressureofPenaeussetiferus(Linnaeus)juveniles.J.Exp.Mar.Biol. Ecol.234,41–57.

Rouse,D.B.,Kartamulia,I.,1992.Influenceofsalinityandtemperatureonmolting andsurvivaloftheAustraliafreshwatercrayfish(Cheraxtenunimanus). Aquaculture105,47–52.

Sandifer,P.A.,Hopkins,J.S.,Smith,T.I.J.,1975.Observationsonsalinitytolerance andosmoregulationinlaboratory-rearedMacrobrachiumrosenbergii post-larvae(Crustacea:Caridea).Aquaculture6,103–114,http://dx.doi.org/10. 1016/0044-8486(75)90,063-0

Sang,H.M.,Fotedar,R.,2004.Growth,survival,haemolymphosmolalityand organosomaticindicesofthewesternkingprawn(Peneauslatisulcatus Kishinouye1896),rearedatdifferentsalinities.Aquaculture234,601–614,

http://dx.doi.org/10.1016/j.aquaculture.2004.01.008

Saoud,I.P.,Davis,D.A.,Rouse,D.B.,2003.Suitabilitystudiesofinlandwellwaters forLitopenaeusvannameiculture.Aquaculture217,373–383,http://dx.doi.org/ 10.1016/S0044-8486(02)418-0

Setiarto,A.,Strussmann,C.A.,Takashima,F.,Watanabe,S.,Yokota,M.,2004. Short-termresponsesofadultkurumashrimpMarsupenaeusjaponicusto environmentalsalinity:osmoticregulation,oxygenconsumptionand

ammoniaexcretion.Aquac.Res.35,669–677,http://dx.doi.org/10.1111/ j1365-2109.2004.01064.x

Silvia,G.J.,Antonio,U.R.A.,Francisco,V.O.,Georgina,H.W.,2004.Ammoniaefflux ratesandfreeaminoacidlevelsinLitopenaeusvannameipostlarvaeduring suddensalinitychanges.Aquaculture233,573–581,http://dx.doi.org/10.1016/ j.aquaculture.2003.09.050

Singh,T.,1980.Theisosmoticconceptinrelationtotheaquacultureofthegiant prawn,Macrobrachiumrosenbergii.Aquaculture20,251–256,http://dx.doi.org/ 10.1016/0044-8486(80)90,115-5

Staples,D.J.,Heales,D.S.,1991.Temperatureandsalinityoptimaforgrowthand survivalofjuvenilebananaprawnsPenaeusmerguiensis.J.Exp.Mar.Biol.Ecol. 154,251–274.

Stern,S.,Borut,A.,Cohen,D.,1987.Osmoticandionicregulationoftheprawn Macrobrachiumrosenbergii(DeMan)adaptedtovaryingsalinitiesandion concentrations.Comp.Biochem.Physiol.86A,373–379.

Suresh,R.V.,Lin,C.K.,1992.Tilapiacultureinsalinewaters:review.Aquaculture 106,201–226,http://dx.doi.org/10.1016/0044-8486(92)90,253-H

Watanabe,W.O.,Ellingson,L.J.,Olla,B.I.,Ernst,D.H.,Wicklund,R.I.,1990.Salinity toleranceandseawatersurvivalvaryontogeneticallyinFloridaredtilapia. Aquaculture87,311–321,http://dx.doi.org/10.1016/0044-8486(90)90,068-X

Williams,W.D.,2001.Anthropogenicsalinisationofinlandwaters.Hydrobiologia 466,329–337.

Woo,N.Y.S.,Kelly,S.P.,1995.Effectsofsalinityandnutritionalstatusongrowth andmetabolismofSpamssarbainaclosedseawatersystem.Aquaculture135, 229–238,http://dx.doi.org/10.1016/0044-8486(95)1,003-3

Ye,L.,Jiang,S.,Zhu,X.,Yang,Q.,Wen,W.,Wu,K.,2009.Effectsofsalinityon growthandenergybudgetofjuvenilePenaeusmonodon.Aquaculture290, 140–144,http://dx.doi.org/10.1016/j.aquaculture.2009.01.028

Yen,P.T.,Bart,A.N.,2008.Salinityeffectsonreproductionofthegiantfreshwater prawnMacrobrachiumrosenbergii(deMan).Aquaculture280,124–128,http:// dx.doi.org/10.1016/j.aquaculture.2008.04.035

Zar,J.H.,1999.BiostatisticalAnalysis,fourthed.Prentice-Hall,Inc.,UpperSaddle River,NewJersey,pp.931pp.

References

Related documents

Studies on the comparative breeding and larval biology of Indian river prawn Macrobrachium malcolmsonii (H. Milne Edwards) and giant freshwater prawn,

EFFECTS OF TEMPERATURE AND SALINITY ON GROWTH, HATCHING RATE AND SURVIVAL OF THE GIANT FRESHWATER PRAWN, MACROBRACHIUM ROSENBERGII (DE MAN) UNDER CAPTIVE CONDITIONS.. Shailender M*

This study explored the viability of giant freshwater prawn (Macrobrachium rosenbergii, locally known as ulang) culture in six regions in the Philippines. Twelve

We used therefore repetitive transcranial magnetic stimulation (rTMS) in its virtual lesion mode (1 Hz, 10 min, 90% of motor threshold) to study the effects of transient disruption

In order to reduce the cannibalism and to increase uniform growth, various experiments have been carried out on complete or partial claw-ablation or claw

Our phase one study on the characterization of Macrobrachium rosenbergii (giant freshwater prawn) allergens by using 2-dimensional electrophoresis and

Many discount brokerage firms adopt the layered model and in the process improve its offerings through person- alized advice, superior research tools, and varying

Uber die Entstehung von multinuklearen Reed-Sternberg Riesenzellen und die Rolle von CD4 T-Zellen im Hodgkin Lymphom. '