• No results found

triple Infinite Integral Representation For The Polynomial SetRn(x1, x2, x3)

N/A
N/A
Protected

Academic year: 2020

Share "triple Infinite Integral Representation For The Polynomial SetRn(x1, x2, x3)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2711

Research article Available online www.ijsrr.org

ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Triple Infinite Integral Representation For The Polynomial

Set R

n

(x

1

, x

2

, x

3

)

Rajnish Kumar Singh

1

and Brijendra Kumar Singh

2*

1

Department of Mathematics, Jai Prakash University, Chapra, Bihar (India)

1

Email:srajnish093@gmail.com

2

Department of Mathematics, Jai Prakash University, Chapra, Bihar (India)

2

Email:brijendrakumarsingh111956@gmail.com

ABSTRACT

In the present paper, an attempt has been made to express a Triple Infinite Integral Representation for the polynomial set Rn(x1, x2, x3). Many interesting new results may be

obtained as particular cases on separating the parameter.

KEYWORDS:

Appell Function, Generalized Hyper geometric Polynomial, Integral Representation, Lauricella function.

*Corresponding author

Brijendra Kumar Singh

Department of Mathematics Jai Prakash University Chapra, Bihar, India

(2)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2712

1.

INTRODUCTION

We defined the generalized hyper geometric polynomial set Rn(x1, x2, x3) by means of

generating relation,

… (1.1)

Where, , 1, ,1,2, 3are real and r, r1are non-negative integer and r2, r3are natural numbers.

The left hand side of (1.1) contains the product of generalized hyper geometric function and Lauricella function in the notation of Burchanall and Chaundy1.

The polynomial set contains number of parameters, for simplicity we shall denote

by Rn (x1, x2, x3).

where n denotes the order of the polynomial set. After little simplification (1.1) gives

 

   1 1 - 1

1 2

1 t 1- x tr r

     

     

 

 

 

  

 

 

 

 

2 2 3 3 1

1 2 2 3 3 v

; ; , ,

; ; ;

p u h m

r r r r

r

q k w

A C E G

F x t x t x t

B D F H

 

 

 

 

 

      

 

1 1 2 3

1 2 3 v

; ; ; ; ; ; ; ; ; ; ;

1 2 3

, ; ; ; ; ; ; ; 0

,

,

p u h m

q k w

A C E G n

n r r r r B D F H n

R

x x x

t

 

    

     

      1 1 2 3

1 2 3 v

; ; ; ; ; ; ; ; ; ; ;

1 2 3

, ; ; ; ; ; ; ;

,

,

p u h m

q k w

A C E G

n r r r r B D F H

R

x x x

    

   

  

   

   

       

   

  

1 1 2 2 1 1

2 3

1

1 2 3

1 2 3

0 0 0 0

, ,

n r r s r s

n r r s n r

n

e e

r r

n

s s r s

R x x x

           

 

 

 

 

1 1 2 1 3 3 1 1 2 2 3 3

1 1 1 1

p

n r r s r s r s q

n r r s r s r s

A B

   

   

   

           

     

   

 

     

2 3 1 1 1 1 2 2 3 3 2 3

1 1 2 2 3 3 2 3

1 1 2 3

v ! 1! 2! 3!

s s s s

u n r r s r s r s h s m s s s

k w

n r r s r s r s s s

C E G

(3)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2713

… (1.2)

2.

NOTATIONS

I.(i) (n) = 1, 2, 3, ……… n – 1, n.

(ii) (ap) = a1, a2, a3, ……… ap.

(iii)(ap ;i) = a1, a2, …… ai–1, ai+1 ……… ap.

II.(i) [(ap)] = a1a2 a3,……… ap.

(ii)

III.(i)

(ii)

(iii)

IV.(i)

(ii)

(iii)

(iv)

 

   

 

1 1 2 2 3 3

1 1 2 2 4

3 3

1 2

1 1 2 2 3 3

!

3 n r r s r s r s r s r s r

r s

x

x

n r r s r s

r s

x

     

    

 

1 2

1

.

p

p n i n n n p n

i

a a a a a

    

a b, b b, 1, b a 1.

a a a

 

  

 

k ;  1  1

k k k

b b b a

a b

a a a

 

1

1

a

k r

b r

a

 

 

     

 



1 1

1

; .

p m

i p

k

i r

a r m a

m

   

 

1 .

p

p i

i

a a

   

 

 

1

; .

p

p i

i s

a s a

 

 

  

 

1

.

m

r

m r

a a

m m

 

 

 

1

1

; .

a

r

b r a b

(4)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2714

V.(i)

(ii)

VI.(i)

3. THEOREM For r2> 1 and r3> 1

… (3.1) Proof : we have

 

a

b

 

a

b

a

b

.

     

* ab   abab .

 

 

     

    

4

1 1

v !

n r

p n u n

q n n

A C x

M

B D n

 

 

 

 

1 1 2 3

0

8 1 2 , ,

1 1 1

2 2 2 2

n

n

n

M R x x x

i f t J t dt

   

 

       

2 2

 

21 2 2 2

2

2 2 2

2 2

2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

     

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

     

       

 

    

 

 

  

       

 

 

      

1 2 3 1 2 3

1 v : : : :

1 2 3

: , , , , 1 : , , 1, 1 ——————, 1 : , , 1, 1

q q h m

p u k w

h

n r r r r B n r r r r F

A n r r r r

 

   

 

 

   

 

v 1 2 3 1

1 2 3

1 : , , , , :1 :1 :1 , :1 , 1 :1

2 1

1 : , , , , :1 :1 , :1 1 :1

2 2 2

h m

u k w

D n r r r r E G u

C n r r r r F H

 

           

  

 

   

         

     

 

 

       

   

 

1 1

1

4 4

v 1 v 1

1 2

1 1

1 1

, ,

r p q u r r p q u

r r

r r

x

x x

 

 

            

   

  

2 3

2

2 3

4 4

v 1 v 1

2 2 3

1 1 3

1 1

,

r p q u p q r p q u p q

r

r r

r r

x

dxdydz

x x x

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

     

       

 

    

(5)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2715

1 1 2 2 1 1

2 3

1

1 2 3

0 0 0 0

n r r s r s n r r s

n r n

r r

r r

s s s s

                                

 

1 1 2 2 3 3 2 1 1 2 2 3 3

1 1 2 2 3 3 2 1 1 2 2 3 3

1 1

v

1 1

p u n r r s r s r s h s

n r r s r s r s

q n r r s r s r s k s

n r r s r s r s

A C E

B D F

                                    

   

1 1 2 2 3 3 1 1 2 2 3

1 4

1 3

3 3 3

1 1 2 3 1

1 2 3 1 1 2 2 3 3

! ! ! !

n r r s r s r s r s r s s

s r

s

m s s s

r s w s

G x x

H s s s x n r r s r s r s

                       

 

1 1 1 1 2 1 1

2 2 2

s s s         

2 2

2211

2 2 2

221

2 2 2

2 2

2 2 0 0 0

exp

s s

x y

x y x y z i x y z

x y               

  

            2 2

1 2 2 2

cos 2 tan

2 x y

f x y z

                                  

  

1 1 2 2 1 1

2 3

1

1 2 3

0 0 0 0

n r r s r s

n r r s

n r n

r r

r r

s s s s

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

1 1

v

1 1

p u n r r s r s r s

n r r s r s r s

q n r r s r s r s n r r s r s r s

A C B D                               

 

 

1 1 2 2 2 3 1

1

2 3

3 3

2 3

1 2 2 3

1 2 3 3

! ! ! !

r s r s s s s

s

h s m s s s

r s

k s w s

E G x

F H s s s x s

                       

 

 

1 1 2 2 3 3 4

1

1 1

1

1 1 2 2 3 3

1 2

1

! 1

2 2 2

n r r s r s r s r

s

s s

x dxdydz

n r r s r s r s

                

1 1 2 2 1 1

2 3

1

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

1 1

0 0 0 0

1 1

n r r s r s n r r s

n r n

r r

r

r p

n r r s r s r s

s s s s q n r r s r s r s

A B                                                   

  

 

 

1 1 2 2 1

1 1 1 2 2 3 3 2 3

1 1 2 2 3 3 2 3

1 1 2

v ! 1! 2!

r s r s s

s

u n r r s r s r s h s m s s s

k w

n r r s r s r s s s

C E G x

D F H s s s

                                     

 

1 1 2 2 3 3 2 3 4

1 3 3

1 1

2 3 1

3 3 1 1 2 2 3 3

1 2 1

! ! 1

2 2 2

n r r s r s r s

s s r

s r s

s s

x

x s n r r s r s r s

   

     

 

(6)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2716 … (3.2)

The single terminating factor makes all summation in (3.2) run upto and we finally achieve

on using2

PARTICULAR CASES(3.1)

On specializing the values of the parameters involved in Lauricella form, a number of known and unknown polynomials can be obtained as the particular cases of polynomial set Rn(x1,x2,x3). Some of them, which are well known, are listed below.

(I) Hermite Polynomials

 

 

   

 

         

 

 

     

1

1 1

0 1

1 1 1

2 2 2 2

1 8 1

2 2

n

n s

i s s

f t J t dt s

 

 

1 1 1

2 2 2 2

8 1 2

i           

    

    

   

  

   

   

       

   

  

1 1 2 2 1 1

2 3

1

1 2 3

1

0 0 0 0

n r r s r s n r r s

n r n

r r

r r

s s s s

M

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

v

1 1

1 1

1 1

1 1

q r r s r s r s

r r s r s r s

p r r s r s r s u r r s r s r s

B n D n

A n C n

       

       

       

 

       

 

 

 

 

 

2 1

1 1

2 3

1 1 1

4 4

2 3

v 1 v 1

1 1

1 1 1 2

1 1

! ! !

r p q u r p q u s s

s

h s m s s s

r r s

r r

k s w s

E G

F H s s x x s

       

         

   

     

   

   

2 2

2 2 2 1 1

1 1 2 2 3 3 2 2

3 3 4

v 1 2 2 2

1 3 3

1

!

r p q u p q s s r s

r s

r r s r s r s

r s r s

r

x x n

x s x

     

  

  

   

 

 

3 3

3

3 3 4

v 1 3

0 1 3

1 r p q u p q s

s

n r s

r f t J t dt

x x

     

 

 

 

 1 2 3    

0

1 1 1

2 2 2 2 , ,

8 1 2

n

n n

i

R x x x f t J t dt

 

       

   

2 2

 

21 2 2 2

2

2 2 2

2 2 2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

    

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z dxdydz

    

  

   

 

   

 

 

 

1 1 1

2 2 2

8 1 2

n

i          

(7)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2717

On setting p = 0 = q = u = v = s; = 1 = = 1 = r = r4; r1 = 2 = ; 1= – 4

and writingxforx1in (3.1) we achieve

where Hn(x) are the Hermite Polynomials.

(II) Bedient Polynomials3

If we set q = 0 = s; p = 1 = u = v =  = 1 = r4; r1 = 2 = ; 1 = –4, A1 = ,

C1 = , D1 =  + and writingx1 forxin (3.1), we get

WhereGm(, , x) are Bedient Polynomials.

(III). Sylvester Polynomials4

If we putp = 0 = q = u = v = s; = 1 = r1 = ; = 1 = = r; 1 = x and writing

xforx1in (3.1) we arrive at

 

 

 

 

   

0

8 1 2

2

1 1

1

2 2 2 2

n n

n

n

x H x

i f t J t dt

     

 

       

2 2

 

21 2 2 2

2

2 2 2

2 2

2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

     

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

    

      

 

   

 

 

2

1

, , 1 :1 ;

2 2 2 2

1 ×

1 :1 , 1 :1 ;

2 2 2

n n

F dxdydz

x

   

 

 

  

 

 

 

 

 

     

 

 

 

   

0

8 1 2

2 , ,

1 1

! 1

2 2 2 2

n n n m

n

n n

x

G x

n i f t J t dt

     

  

 

          

2 2

 

21 2 2 2

2

2 2 2

2 2

2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

     

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

    

      

 

   

 

 

2

1

, ,1 , 1 :1 ;

2 2 2 2

1 ×

1

1 ,1 , :1 , 1 :1 ;

2 2 2

n n n

F dxdydz

x

n n

       

 

 

  

 

       

 

(8)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2718 wheren(x) are the Sylvester Polynomials.

(IV) Laguerre Polynomials

On puttingp = 0 = q = u = v = h = s; k = 1 =  =  = 2 = = r4 = r2 = x1;

x2 = y,F1 = 1 +  in (3.1), we obtained

where are the Laguerre Polynomials. (V) Jacobi Polynomials

On making the substitutionp = 0 = q = u = h = s = r; r2 = v = 1 = k =  =  = 2 = r4;  =

1 = 1; D1 = 1 + ; F1 = 1 + ; and instead of in (3.1), we get

 

 

 

   

0

8 1

2

1 1

! 1

2 2 2 2

n

n

n

n

x x

i n f t J t dt

      

         

2 2

 

21 2 2 2

2

2 2 2

2 2

2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

     

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

    

      

 

   

 

 

 

 

 

 

 

 

 

, , 1 :1 ; 2

1 ×

1 :1 , 1 :1 ;

2 2 2

n x

F dxdydz

x

 

 

 

 

 

   

0

8 1 1

2

1 1

! 1

2 2 2 2

n n

n

n

L x

n i f t J t dt

      

 

       

2 2

 

21 2 2 2

2

2 2 2

2 2

2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

     

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

    

      

 

   

 

 

 

 

 

 

   

 

 

, , 1 :1; 2 ×

1

1 , :1 , 1 :1 ;

2 2 2

n x

F y dxdydz

 

 

n

L y

 

2 x 11

x x

    

 

 

   

 

 

      

   

     

 

,

0

1 8 1 1

2

1 1

! 1

2 2 2 2 2

n n

n

n n

n

x

P x

(9)

Rajnish Kumar Singh et al., IJSRR 2019, 8(2), 2711-2719

IJSRR, 8(2) April. – June., 2019 Page 2719 where are the Jacobi Polynomials.

4.

CONCLUSION

These polynomials are of at most important for scientists, engineers and physical sciences, because these occurs in the solution of integral equation and analytic function, which describe physical problems. The newly defined polynomials may be immense use in new phase of Mathematics relevant to Physics, Chemistry, Engineering and Social Sciences.

REFERENCES

1. Burchnall J L. &Chaundy T. W.,“Expansions of Appell's double hypergeometric functions” (II). Quart. J. Math. Oxford ser.1941;12, 112 - 128.

2. Szego G. “Orthogonal polynomials. Amer. Math. Soc. ColloquiumPubl”. Amer. Math. Soc. Providence, Rhode Island.1967.Vol. 23, 3rd Ed.

3. ErdelyiA., et al “Higher transcendental functions” Bateman Manuscript project McGraw Hill.1953.Vol. I, II and III.

4. Rainville E. D. “Special functions. The Mc. Millan Company” New York.1960.

2 2

 

21 2 2 2

2

2 2 2

2 2

2 2 0 0 0

exp x y

x y x y z i x y z

x y

 

  

     

 

  

2 2

1 2 2 2

cos 2 tan

2

x y

f x y z

    

      

 

   

 

 

   

 

 

 

 

   

 

 

, , 1 :1;

2

1 ×

1 1

1 , :1 , 1 :1 ;

2 2 2

n n

x

F dxdydz

x

 

 

 ,

n

References

Related documents

sulla base della nostra esperien- za di cinque anni la presenza di un medico (spesso come co-conduttore) è molto utile per discutere ad esempio dei sintomi

 Benchmark - In the same way that an organization will consider their financial position by comparison with previous years, so the regular use of online surveys will allow an

We obtain these results by comparing four security designs: (i) the status quo , in which sovereign bonds are neither pooled across nation-states nor tranched for safety; (ii)

Practice sits across disciplines. Functionalist and disciplinary bound theory will always struggle to 

“God in the form of pure, bright white light flowing through my entire body, mind and soul is purifying and healing apus, pridhvi, vayu, tejas, akash, my home, my DNA, and all

If the polynomial derivation D has an infinite number of Darboux polynomials then by Darboux’s theorem, D has a rational first integral. Thus in this situation the problem is

This discourse, concerning the origins of the fine arts (and more specifically the visual arts), is explored through Darwinian evolution and inherited traits. Using a

The study mainly focused on studying the pragmatic knowledge of Malaysian Chinese on the two speech acts of apology and request in the academic level, and comparing their