• No results found

Problem 1.8-3. Work and heat: J V V P W J V P V P U J W U Q

N/A
N/A
Protected

Academic year: 2021

Share "Problem 1.8-3. Work and heat: J V V P W J V P V P U J W U Q"

Copied!
89
0
0

Loading.... (view fulltext now)

Full text

(1)

Problem 1.8-3. Work and heat 

Problem 1.8-3. Work and heat 

(A

(A→→B)B) W W  == −−PP A A

((

V V  B B −−V V  A A

))

== −−

4

4

⋅⋅

10

10

33

[ [ ]]

 J  J 

( (

PPV V  PP V V 

))

[ [ ]]

 J  J  U 

U ==

2

2

..

5

5

 B B  B B −−  A A  A A ==

10

10

44

∆ ∆ QQ == ∆∆−− ==

1

1

..

4

4

⋅⋅

10

10

44

[ [ ]]

 J  J  (B (B→→C)C) PP dV dV 

[ [ ]]

 J  J   B  B  B  B 3 3

10

10

7

7

))

((

== ⋅⋅ − − = =

∫∫

3 3 ⋅⋅ − − − − ⋅⋅ 33  B  B  B  B C  C  C  C 

..

..

..

(C (C→→A)A) ==

0

0

QQ

( (

PP PP

))

[ [ ]]

 J  J  C  C  C  C   A  A  A  A 3 3

10

10

5

5

..

7

7

5

5

..

2

2

−− == −− ⋅⋅ = = ∆ ∆ = =

[ [ ]]

 J  J  dV  dV  V  V  P P W  W   B  B  B  B 3 3

10

10

67

67

..

2

2

))

((

== −− ⋅⋅ − − = =

∫∫

[ [ ]]

 J  J  W  W  U  U  Q Q == ∆∆ −− ==

12

12

..

67

67

⋅⋅

10

10

33 (A (A→→B, parabola)B, parabola)

(2)
(3)

Problem 1.10-1. Shapes of S vs U 

Problem 1.10-1. Shapes of S vs U 

Most difficu

Most difficult: b, c, f lt: b, c, f and iand i

b) b) 3 3  /   /  2 2 3 3  /   /  1 1 2 2

 

 



 

 



 

 

 

 



 

 

 

 



 

 

 

 

= =

 NU 

 NU 

 R

 R

θ 

θ 

S S U U

Inconsistent with the postulates because entropy does not scale linearly with the Inconsistent with the postulates because entropy does not scale linearly with the

Consistent: a, c, e, g, i Consistent: a, c, e, g, i Inconsisten Inconsistent: b, d, f, t: b, d, f, h, jh, j s s zze e o o tt e e ssyysstteemm 3 3  /   /  2 2 3 3  /   /  1 1 2 2

 

 



 

 



 

 

 

 



 

 

 

 



 

 

 

 

= =

 N 

 N 

 R

 R

λ 

λ 

λ 

λ 

λ 

λ 

θ 

θ 

λ 

λ 

λ 

λ 

==

λ 

λ 

22 /  / 33 not true for not true for arbitraryarbitrary λλ

c) c) 2 2  /   /  1 1 2 2 0 0 2 2 2 2  /   /  1 1



 

 

 

 



 

 

 

 

+ +



 

 

 

 



 

 

 

 

= =

v

v

 R

 R

 NU 

 NU 

 R

 R

θ 

θ 

θ 

θ 

S S U U Consistent with the postulates, zero of energy

Consistent with the postulates, zero of energy is a

(4)

Problem 1.10-1. Shapes of S vs U 

Problem 1.10-1. Shapes of S vs U 

f) f)



 

 

 

 



 

 

 

 

= = 0 0 2 2

ln

ln

v

v

 R

 R

 N 

 N 

UV 

UV 

 NR

 NR

θ 

θ 

S S U U Inconsistent with postulate IV,

Inconsistent with postulate IV, S should be zero at S should be zero at ∂∂S/ S/ ∂∂UU→∞→∞ 2 2 i) i)

 

 

 

 

= =

 NR

 NR

 R

 R

00

exp

exp

S S U U S S U U First plot First plot U vs S U vs S Then rotate it Then rotate it around the U/S around the U/S bisector to

bisector to obtain S vs U obtain S vs U

Consistent with the postulates Consistent with the postulates

(5)

Problem 1.10-3. Entropy maximum for a

Problem 1.10-3. Entropy maximum for a

compos

compos

ite

ite

system 

system 

S S

For a

For a composite composite system (S=Ssystem (S=S11+S+S22))

( (

))

66

10

10

27

27

⋅⋅ −− = =  A  A  NV   NV 

( (

))

66

10

10

8

8

⋅⋅ −− = =  A  A  NV   NV 

80

80

= = + + = = B B  A

 A U U 

U  U  U  U  A A AA++ BB

( (

))

11 /  / 33 3 3  /   /  1 1

2

2

3

3

U U  A A U U  U U  A A const  const  S  S  − − + + =

= -- need to need to maximaximize wmize with respeith respect to Uct to U

A A

( (

))

[ [

11 /  / 33 11 /  / 33

]]

2

2

3

3

0

0

 A A  A A

 A  A U  U  U  U  U  U  U  U  − − + + ∂ ∂ ∂ ∂ = = 22 /  / 33

( (

))

22 /  / 33

3

3

2

2

0

0

== −− −− −− −− A A  A

 A U U  U U 

U  U  Solving for U Solving for UAA

( (

2

2

 / 

 / 

3

3

))

51

51

..

8

8

[[

]]

1

1

33 /  / 22 J J  U  U  U 

 A A == +

+ = =

(6)

Problem 2.3-4. Restrictions due to the Postulates

r  m n

 N 

 AU 

=

Most common problem: forgetting to check if entropy is additive (extensive) When we increase the size of a thermodynamic system by a factor of λ, all

extensive variables should scale with λ: U→ λU, V→ λV, N→ λN, S→ λS.

Subjecting the fundamental relation to this scaling transformation:

( ) ( ) ( )

n m r  n m r  n m r 

 N 

 AU 

 N 

 A

=

λ 

λ 

λ 

=

λ 

+ +

λ 

r  m n+ + =

λ 

λ 

n

+

m

+

=

1

(7)

Problem 2.3-4. Restrictions due to the Postulates

r  m n

 N 

 AU 

= S U S must be increasing with U, so n>0

0<n<1

,

Additional condition: P should increase with U/V:

r  m n

 N 

mAU 

P

1 = ∂ ∂ = n m r 

 N 

nAU 

1

1

− = ∂ ∂ =

n

m

P

= ∂ ∂ = >

0

n

m

0

>

m

(8)

Problem 2.6-3. Energy in Equilibrium

]

[

10

5

.

2

3 ) 2 ( ) 1 (

 J 

+ = × (1) =

?

2

) 1 ( =

 N 

 N 

(2) =

3

) 1 ( ) 1 ( ) 1 (

2

3

1

 N 

 R

= ) 2 ( ) 2 ( ) 2 (

2

5

1

 N 

 R

=

The equations of state of the two systems are:

Since the two systems are in thermal equilibrium:

) 2 ( ) 1 (

= ) 2 ( ) 2 ( ) 1 ( ) 1 (

2

5

2

3

 N 

 N 

= (2) (1)

6

15

=

]

[

10

5

.

2

3 ) 2 ( ) 1 (

 J 

+ = ×

2

.

5

10

[

]

6

15

(1) 3 ) 1 (

 J 

+ = × (1)

714

[

]

 J 

=

(9)

Problem 2.7-3. The Indeterminate Problem of Thermodynamics

0

) 2 ( ) 1 ( + =

dU 

dU 

dU 

Since the composite system is isolated a) Show that

P

(1) =

P

(2) ) 2 , 1 ( ) 2 , 1 ( ) 2 , 1 (

dV 

P

dU 

= −

Since the piston is adiabatic, δ Q (1,2) = 0 and thus

0

) 2 ( ) 2 ( ) 1 ( ) 1 ( =

P

dV 

P

dV 

Since the total volume of the composite system is constant

dV 

(1) = −

dV 

(2)

) 2 ( ) 1 ( , .

b) Show that thermodynamics does not tell us what the temperatures of the two systems are

0

) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 2 ( ) 1 ( + = + + + =

dV 

P

dU 

dV 

P

dU 

dS 

dS 

dS 

The entropy maximum condition requires:

0

) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( = + + +

dV 

P

dU 

dV 

P

dU 

The numerators in this expression vanish identically because of the adiabaticity of the wall, therefore the denominators (T(1)and T(2)) can be arbitrary and still satisfy the entropy

(10)

Problem 2.8-1. Semi-permeable partition

Two different gases N1 and N2 N1(1), N

2(1) N1(2), N2(2)

N1 can freely flow through the membrane while N2cannot.

) 2 ( )

1

( althou h one of the as com onents can freel

N1

penetrate the membrane

P is intensive parameter conjugate to volume, volume is constrained

initial

 N 

 N 

 N 

 N 

1(1) + 1(2) = 1(1) + 1(2)

(

)

initial

(1) + (2) = (1) + (2) Conservation conditions:  Equilibrium conditions:  ) 2 ( ) 1 (

= ) 2 ( ) 2 ( 1 ) 1 ( ) 1 ( 1

 µ 

 µ 

=

(11)

Problem 2.8-1. Semi-permeable partition

 

 

 

 

 

 

 

 



 

 



 

 

+ =

 N 

 N 

 R

 N 

 N 

 N 

 R

 N 

 N 

 NR

 NA

5 / 2 1 1 2 2 2  /  3

ln

ln

ln

 NR

2

3

1

= ∂ ∂ = 2 1

 N 

 N 

= +

2

3

 NRT 

=

(1) = (2) = initial

(1) + (2) = (1) + (2) Solve for T

...

1 1 = ∂ ∂ =

 N 

Here, when differentiating do not forget that N=N1+N2

(

)

 

 

 

 

+ + − = 2  /  3 2 1 1 2  /  3 1

ln

2

5

 N 

 N 

 N 

 R

 R

 A

 µ 

After some algebra:

]

[

73

.

272

=

(12)

Problem 2.8-1. Semi-permeable partition

) 2 ( 1 ) 1 ( 1

µ 

 µ 

=

(

 N 

 N 

)

initial

 N 

 N 

1(1) + 1(2) = 1(1) + 1(2) Solve for N1

0

.

75

) 2 ( 1 ) 1 ( 1 =

=

 N 

To find P:

 NR

P

= = ∂ ∂

(

)

) 1 ( ) 1 ( 2 ) 1 ( 1 ) 1 (

 RT 

 N 

 N 

P

= +

]

[

680

) 1 (

kPa

P

= Similarly:

P

(2) =

567

[

kPa

]

(13)

Numerical Problem

First calculate P and T by differentiating the fundamental relation. Then use the parametric plot of P(S) and T(S) to plot the P(T) dependence.

 Nu=1;V =0.01;U0=1; T@S_ D:=U0S  V J2 + S  NuNExpB S  NuF; P@S_ D:=U0S 2  V 2ExpB S  NuF;

Param etricPlot@ T@SD,P@SD<, S,0,0.8<,Fram e->True,TextStyle->  FontFam ily->"Tim es",FontW eight->"Bold",FontSize->14<, Fram eLabel->  Tem perature""@KD,Pressure" "@PaD<,PlotRange-> AllD

14000 0 100 200 300 400 500 Temperature @KD 0 2000 4000 6000 8000 10000 12000      e      r     u      s      s      e      r       P       @      a       P       D ÜGraphics Ü

(14)

Problem 3.3-1. Fundamental relation from the equations of state

v

 As

2

3

= Equations of state: 2 3

v

 As

P

=

a) To find the chemical potential, let us use the Gibbs-Duhem relation. Since the independent variables are s and v, it is convenient to use the Gibbs-Duhem relation in the energy representation:

 

 

 

 

− 3 2

3

 As

As

 

 

 

 

v

v

2



 

 



 

 

− =

v

 As

3

 µ 

ds

v

 As

dv

v

 As

ds

v

 As

dv

v

 As

2 2 3 2 2 3

3

2

6

3

+ − − =

 µ 

ds

v

 As

dv

v

 As

2 2 3

3

− =

 µ 

 

const 

v

 As

+ − = 3

 µ 

(15)

Problem 3.3-1. Fundamental relation from the equations of state

Molar form of the Euler equation of state in the energy representation is:

+ −

=

Ts

Pv

u

Substituting the equations of state into this equation:

const 

v

 As

const 

v

 As

v

v

 As

s

v

 As

u

= − − + = + 3 3 2 3 2

3

const 

v

 As

u

= + 3

(16)

Problem 3.3-1. Fundamental relation from the equations of state

Now let us directly integrate the molar form of the equations of state:

Pdv

Tds

du

= −

dv

v

 As

ds

v

 As

du

2 3 2

3

− =



 

 



 

 

= − =

v

 As

dv

v

 As

ds

v

 As

du

3 2 3 2

3

const 

v

 As

u

= + 3

(17)

Problem 3.5-1. Fundamental relation from the equations of state

c) Equations of state:

buv

a

buv

c

v

u

P

+ + =

buv

a

u

+ =

Equations of state are functions of u and v, so convenient to work in the entropy representation in molar form:

P

s

s

=

 

 

 

 

∂ =

1

Are these equations of state compatible?

v

u

 

v

 

u

 

bv

u

a

+ =

1

bu

v

c

P

+ = where



 

 



 

 

∂ ∂ ∂ =



 

 



 

 

∂ ∂ ∂

u

v

s

v

u

s

2 2

v

u

P

 

 

 

 

∂ = ∂

 

 

 

 

1

b

b

= Yes

(18)

Problem 3.5-1. Fundamental relation from the equations of state

dv

P

du

ds

=

1

+

bu

dv

v

c

du

bv

u

a

ds

 

 

 

 

+ +

 

 

 

 

+ =

( )

dv

bu

( )

dv

ad 

( ) ( )

u

bv

du

cd 

( ) ( )

v

bu

dv

v

c

du

bv

du

u

a

ds

= + + + =

ln

+ +

ln

+

( )

uv

vdu

= - This is wrong because v is a variable, not a constant

( ) ( )

( ) ( )

( )

( )

( ) ( )

( )

ln

( )

(

)

ln

)

(

ln

ln

ln

ln

uv

bd 

v

cd 

u

ad 

du

v

dv

u

b

v

cd 

u

ad 

dv

bu

v

cd 

du

bv

u

ad 

ds

+ + = + + + = + + + =

( )

u

c

( )

v

buv

 

const 

a

s

=

ln

+

ln

+ + (same problem in 3.3-1)

(19)

Problem 3.5-6. VdW and ideal gas in equilibrium 

2

v

a

b

v

 RT 

P

− − =

v

 RT 

P

=

In this problem, temperature, pressure and molar volumes of the van der Waals fluid and the ideal gas are the same in equilibrium

VdW: Ideal:

P

 RT 

v

=

Substituting this molar volume into the equation of state for VdW:

( )

2 2

 RT 

aP

b

P

 RT 

 RT 

P

− − =

Here P is the only unknown, so need to solve for P

After simple algebra:

[ ]

Pa

a

 RT 

b

 RT 

P

1

=

3

.

5

10

7

 

 

 

 

− =

(20)

Problem 3.6-1. Microwave Background Radiation 

4  /  1 4  /  3 4  /  1

3

4

b

= Fundamental relation 4

bVT 

= Equation of state

Substituting U into expression for S: 3

3

4

bVT 

=

Isentropic process: Sinitial=Sfinal=S

3 3 3

3

4

2

3

4

3

4

 f  i  f   f  i i

bV 

bV 

bV 

= =  f  i

=

2

3 3

2

 f  i

=

 f 

i 3

2

1

=

Note that energy of the background radiation is not conserved, it constantly decreases! Where does it go?

(21)

Problem 3.7-2. Rubber Band 

cL

= 0

Equation of state of the rubber band is:

Since T is constant, U is also constant:

dT 

=

0

dU 

=

0

From the conservation of energy:

dU 

=

+

Q

=

0

Q

= −

Calculating work from the second equation of state:

dL

 L

 L

 L

 L

bT 

0 1 0 − − =

δ 

0 1 0

 L

 L

 L

 L

bT 

− − = Γ  We obtain:

dL

 L

 L

 L

 L

bT 

Q

0 1 0 − − − =

δ 

(22)

Problem 3.8-1. Paramagnet 

The fundamental relation of a simple paramagnetic system is:



 

 



 

 

+ = 2 0 2 2 0

 exp

 I 

 N 

 I 

 NR

 NRT 

Equations of state:

 

 

+ =

 

 

∂ = 2

ex

 

 

∂ 0 ,

 NR

 N 

 I  N 



 

 



 

 

+ =

 

 

 

 

∂ ∂ = 2 0 2 2 2 0 0 ,

exp

2

 I 

 N 

 I 

 NR

 NI 

 IRT 

 I 

 B

 N  S  e



 

 



 

 

+



 

 



 

 

− − =

 

 

 

 

∂ ∂ = 2 0 2 2 2 0 2 2 0 ,

exp

2

1

 I 

 N 

 I 

 NR

 I 

 N 

 I 

 NR

 RT 

 N 

 I  S 

 µ 

(23)

Problem 3.8-1. Paramagnet 

 N 

 B

TS 

= + e +

The Euler equation:

Substituting the equations of state into the Euler equation:

 

 

− − + +

 

 

+ = 2 2 2 0

2

1

2

exp

 I 

 I 

 RT 

0 0 0



 

 



 

 

+ = 2 0 2 2 0

 exp

 I 

 N 

 I 

 NR

 RT 

(24)

Problem 3.9-6. Model of a solid insulator 

(

)

 

 

 

 

+ − =

 R

s

v

v

b

 As

u

3

exp

0 2 3  /  4 Fundamental relation: a) Show that at s→0, T0

(

)



 

 



 

 

+

 

 

 

 

+ − = ∂ ∂ =

 R

s

s

 R

s

v

v

b

 A

s

u

3

3

4

3

exp

3  /  4 3  /  1 2 0

(25)

Problem 3.9-6. Model of a solid insulator 

Problem 3.9-6. Model of a solid insulator 

b) Show that c b) Show that cvv~ T~ T33 at Tat T00

( (

))



 

 

 

 



 

 

 

 

+ +



 

 

 

 



 

 

 

 

+ + − − = =

 R

 R

ss

ss

 R

 R

ss

vv

vv

b

b

 A

 A

3

3

3

3

4

4

3

3

exp

exp

3 3  /   /  4 4 3 3  /   /  1 1 2 2 0 0

( (

))



 

 

 

 



 

 

 

 

+ + − − = =

 R

 R

ss

vv

vv

b

b

 As

 As

u

u

3

3

exp

exp

00 22 3 3  /   /  4 4

Let us calculate T/u: Let us calculate T/u:



 

 



 

 

+ + = =

4

4

1

1



 

 



 

 

+ + = =

u

u

4

4

1

1

Since s

Since s→→0 at T0 at T→→0, we can simplify the expression for T at low temperature:0, we can simplify the expression for T at low temperature:

ss

u

u

~

~

On the other hand, from the fundamental relation at low T, we obtain:

On the other hand, from the fundamental relation at low T, we obtain:

u

u

~

~ ss

44 /  / 33 Substituting into the expression for T:

Substituting into the expression for T:

~

~ ss

11 /  / 33

ss

~

~ T 

33

Since Since

ss

u

u

~

~

u

u

~

~

Ts

Ts

~

~

44 33 4 4

~

~

~

~

u

u

cc

vv vv ∂ ∂ ∂ ∂



 

 

 

 



 

 

 

 

∂ ∂ ∂ ∂ = = This is

(26)

Problem 3.9-6. Model of a solid insulator 

Problem 3.9-6. Model of a solid insulator 

c) Show that c c) Show that cvv~ R at T~ R at T→∞→∞

 R

 R

u

u

 R

 R

ss

u

u

3

3

3

3

1

1

3

3

4

4

≈ ≈



 

 

 

 



 

 

 

 

+ + = =

( (

))

 R

 R

 RT 

 RT 

u

u

cc

vv vv

3

3

3

3

≈ ≈ ∂ ∂ ∂ ∂ ≈ ≈



 

 

 

 



 

 

 

 

∂ ∂ ∂ ∂ = =

ss is a monotonically increasing function of u and T sois a monotonically increasing function of u and T so ss→∞→∞, T, T→∞→∞ (this is not tr(this is not trivial,ivial,

related to the fact that second derivative of u with respect to s is positive) related to the fact that second derivative of u with respect to s is positive)

 RT 

 RT 

u

u

≈≈

3

3

d) Show that d) Show that α α →→0 as P0 as P→→00 P P

vv

vv

 

 



 

 



 

 

 

 

∂ ∂ ∂ ∂ = =

1

1

α 

α 

S  S 

vv

u

u

P

P



 

 

 

 



 

 

 

 

∂ ∂ ∂ ∂ − − = =

( (

))



 

 

 

 



 

 

 

 

+ + − − = =

 R

 R

ss

vv

vv

b

b

 As

 As

u

u

3

3

exp

exp

00 22 3 3  /   /  4 4

(

(

)

)

(

(

)

)

b

b

(

(

vv

vv

))

u

u

 R

 R

ss

vv

vv

b

b

 As

 As

vv

vv

 Ab

 Ab

P

P

00 44 /  / 33 00 22

2

2

00

3

3

exp

exp

2

2



== −− −−

 

 

 

 



 

 

 

 

+ + − − − − − − = =

0

0

2

2

22 → →



 

 

 

 



 

 

 

 

∂ ∂ ∂ ∂ = =



 

 

 

 



 

 

 

 

∂ ∂ ∂ ∂  p  p P P

u

u

bu

bu

P

P

vv

bu

bu

P

P

vv

vv

2

2

0 0 −− = = when when

P

P

→→

0

0

(27)

Num

Num

erica

erica

l Prob

l Prob

lem –

lem –

Heli

Heli

um an

um an

d W

d W

ater 

ater 

R  R ==  8.  8.3143144;V4;V00==0.0.0303;U;U00==15000;15000; a ahh==0.0.00300346;bh46;bh==23.23.771010--66;;cchh==11..55;;HH**helium helium **LL a aww==0.0.54544;bw4;bw==30.30.551010--66;c;cww==33..11;;HH**wwataterer**LL P

Pllot3Dot3DAARR LoLoggAHAH Vh Vh-- b bhhLLHHUhUh++aahhêê Vh VhLLcchhEE++RRLoLogg@H@H V0 V0-- Vh Vh-- b bwwLL HHU0U0--UhUh++aawwêHêH V0 V0-- Vh VhLLLLcwcwDD,, Vh,0.Vh,0.0101V0,0.V0,0.9999V0V0<<,, Uh,0.Uh,0.0101U0,0.U0,0.9999U0U0<<,P,PllototRRangangee->-> Al AlllEE

Using the known form of the fundamental relation for the VdW fluid, we can plot Using the known form of the fundamental relation for the VdW fluid, we can plot entropy of the composite system as:

entropy of the composite system as:

0.01 0.01 0.02 0.02 5000 5000 10000 10000 20 2000 2 25500 0.01 0.01 0.02 0.02 Ü

(28)

Num

Num

erica

erica

l Prob

l Prob

lem –

lem –

Heli

Heli

um an

um an

d W

d W

ater 

ater 

C

CononttouourrPPllototAARR LoLoggAHAH Vh Vh-- b bhhLLHHUhUh++aahhêê Vh VhLLcchhEE++R LoRLogg@H@H V0 V0-- Vh Vh-- bw bwLL HHU0U0--UhUh++aaww êH êH V0 V0-- Vh VhLLLLccwwDD, V, Vh,0.h,0.0101V0,0.V0,0.9999V0V0<<, , UhUh,0.,0.0101UU0,0.0,0.9999U0 U0 ,P,PllototRRangeange->-> Al AlllEE

10000 10000 12000 12000 14000 14000

Same plot in the contour format: Same plot in the contour format:

0 0 00..00005 5 0.0.001 1 00..00115 5 00..002 2 00..00225 5 00..0033 0 0 2000 2000 4000 4000 6000 6000 8000 8000 Ü

(29)

Numerical Problem – Helium and Water 

Now we can numerically solve for the volume and energy of helium that maximize the entropy of the composite (water + helium) system

 m ve=FindMinim um A-R LogAH Vh- bhLHUh+ahê VhLchE-R Log@H V0- Vh- bwL HU0-Uh+awê H V0- VhLLcwD,8 Vh,0.01 V0,0.99 V0<,8Uh,0.001U0,0.999 U0<E

8-273.848,8VhØ0.0150799,UhØ4903.03<<

 Vh1= Vhê.m ve@@2,1DD 0.0150799

Uh1=Uhê.m ve 2,2 4903.03

Substituting thus obtained values of the volume and energy into the VdW

equations of state, we find the values of temperature and pressure of helium in equilibrium T= Uh1 +ahê Vh1 chR  393.154 P=T R   Vh1- bh - ahchR  Uh1 Vh1 Vh1 ah Vh1 217109.

(30)

Numerical Problem – Helium and Water 

T0=300 300 eq1=Uh+ahê Vh==chR T0 Uh+ 0.00346 Vh == 3741.48 eq2=Uw+aw H V0- VhL==cw R T0 0.544

Now, to find the equilibrium state of the system we use two temperature

equations of state and the pressure equation of state for the two VdW fluids:

Uw+ 0.03-Vh == . eq3= R   Vh- bh - ahchR  UhVh2+ah Vh == R   V0- Vh- bw - aw cw R  Uw H V0- VhL2+awH V0- VhL 8.3144 -0.0000237+Vh - 0.0431517 0.00346Vh+UhVh2== -14.0214 0.544H0.03-VhL+UwH0.03-VhL2+ 8.3144 0.0299695-Vh

 NSolve@8eq1,eq2,eq3<,8 Vh,Uh,Uw<D

99UhØ3668.54-599.249 I,Uw Ø7714.26+0.00343921 I,VhØ6.9252µ10-7-5.68961µ10-6I=,

9UhØ3668.54+599.249 I,Uw Ø7714.26-0.00343921 I,VhØ6.9252µ10-7+5.68961µ10-6I=,8UhØ3741.25,U wØ7695.87,VhØ0.0151061<,

8UhØ3741.36,Uw Ø4753.18,VhØ0.0298174<,8UhØ3741.36,UwØ -7106.08,VhØ0.0299633<=

Physically meaningful solutions have real-valued volumes and energies. There are three such solutions.

(31)

Numerical Problem – Helium and Water 

Three physically meaningful solutions:

8

UhÆ3741.25095377012062`,UwÆ7695.86692894271351`,VhÆ0.0151061206931622615`

<

,

8

UhÆ3741.36396037953744`,UwÆ4753.17737520313787`,VhÆ0.029817401540839814`

<

,

8

UhÆ3741.36452555181753`,UwÆ -7106.08071201483948`,VhÆ0.0299633385449733715`

<

1 2 3

They correspond to three volume ratios of helium to water:

1.01425 163.295 817.298

Some of you have stated that the first solution (Vh/Vw = 1.01425) is the one that should be experimentally observed as it maximizes the total entropy of helium plus water. This is incorrect since the system is not adiabatically isolated from the environment in part (b) of this problem. Therefore, the total entropy of helium, water AND the environment must be maximized by the correct solution. At this point, you do not have enough information to decide which of the three solutions is correct – we will learn this later in the course. It will turn out that the right solution is Vh/Vw =817.298. This solution minimizes energy of the system. This solution is consistent with our intuition that water vapor should condense into liquid at room temperature and pressure close to atmospheric, and thus occupy small volume. Note that the internal energy of water for solution #3 is negative, which means that the absolute value of the (negative) potential energy exceeds the kinetic energy and thus the system is bound (remember mechanics and astronomy), or “condensed” in the language of thermodynamics.

(32)

Problem 4.2 

 

3 Free Expansion of Ideal Gas

dV 

 NR

dV 

 P 

dS 

dN 

dV 

 P 

dU 

dS 

1

 

In general:

Since U of ideal gas is independent on volume (dU=0), and N = const in the process:

In a series of infinitesimal free expansions, entropy changes by:



 

 



 

 



i  f   V  V 

 NR

dV 

 NR

 f   i

ln

(33)

Problem 4.2

 

4 Temperature and entropy change in free expansion

 s

 Av

2

The equations of state:



 

 



 

 

0

ln

2

 s

 s

 Av

 P 

Given the initial temperature

0

, molar volume

v0

, and final molar volume

v f 

,

find the final temperature and increase in molar entropy

s.

Solution:

Since equations of state involve v and s as independent extensive variables, it is

convenient to find the fundamental relation in the energy  representation:

 Pdv

Tdu

du

dv

 s

 s

 Av

ds

 s

 Av

du



 

 



 

 

0 2

ln

2

integrating

 s

 s

 Av

u



 

 



 

 

0 2

ln

(34)

Problem 4.2

 

4 Temperature and entropy change in free expansion

In the free expansion process, no work is done on

the system and no heat is transferred to the system

if it is adiabatically insulated form the environment.

Therefore, the energy of the system does not

change in the free expansion process:

i  f  

u

u

 s

 s

 Av

u



 

 



 

 

0 2

ln



 

 



 

 



 

 



 

 

0 2 0 2 0

ln

ln

 s

 s

 Av

 s

 s

 Av

i  f   f  

Note that s

0

 is not the initial entropy, it is just a constant (this may be a source

of some confusion). Otherwise we would get

 s f =s0

 in the irreversible free

(35)

Problem 4.2

 

4 Temperature and entropy change in free expansion



 

 



 

 



 

 



 

 

0 2 0 2 0

ln

ln

 s

 s

 Av

 s

 s

 Av

i  f   f   2 2 0 0 0

ln

ln

 f   v  f   v i

 s

 s

 s

 s



 

 



 

 



 

 



 

 

2 2 0 0 0  f   v  f   v i

 s

 s

 s

 s



 

 



 

 



 

 



 

 

0 0 2 2 0

 s

 s

 s

 s

v f   v i f  



 

 



 

 

2 2 0 0 0  f   v v i  f  

 s

 s

 s

 s



 

 



 

 

 f    f    f  

 s

 Av

2

2 2 0 0 0 2  f   v v i  f    f  

 s

 s

 s

 Av



 

 



 

 

2 2 0 2 0 0 0 0 2  f   v v  f    f  

 Av

 s

 s

 Av



 

 



 

 

0 2 0 0 0 2 0 0 2 2 0

 Av

 s

 Av

 s

 s

 f   v v



 

 



 

 

0 2 0 2

 Av

 Av

 s

 s

 s

 f    f   i  f  

(36)

Problem 4.4

 

1 Heat Exchange between Two Identical Objects

 

1 1 2

 

2 2

0

1 20 10

dT 

dT 

 f    f   T  T  T  T 

Conservation of energy demands:

where

 f 

 is the final temperature of each body. Therefore:

 

 

 

 

2 2 20 20 2 10 10

2

2

2

2

 f  

f  

 B

 AT 

 B

 AT 

 B

 AT 

Solving for

 f 

2

307

.

1

[

]

2

1

2 20 10 2 20 10

 B

 A

 B

 A

 f  

 

 

 

 

(37)

Problem 4.4

 

1 Heat Exchange between Two Identical Objects

 f    f    f    f    f    f   T  T  T  T  T  T  T  T  T  T  T  T 

dT 

 BT 

 A

dT 

 BT 

 A

dT 

dT 

Q

Q

20 10 20 10 20 10 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 1

 

 

The change of entropy of the two systems in this process can be found from the

expression below, where we have taken into account that no work is done in the

process

20 20 10 10

ln

ln

 B

 A

 B

 A

 f    f    f  



 f  

 

 



 

 



 

 



 

 





 

 

 

 

 K 

 J 

 B

 A

ln

 f  

2

 f   10 20

1

.

6

20 10 2

Integrating, we obtain:

(38)

Problem 4.5

 

6 Maximum work theorem

P

V

 A

B

C

adiabat

isobar

isochore

1. The system delivers a non-zero work during the adiabatic process A – B: W AB > 0 .

2. Since the process is adiabatic, no heat flows between

the system and the reversible heat source (RHS): Q AB = 0.

3. From the conservation of energy and the above two statements, the internal energy of the system decreases in this process U AB < 0.

4. Since energy is a monotonically increasing function of temperature, temperature of the system decreases in the process A – B: TB < T A.

5. Since temperature is a function of the state only, it also decreases in the process A – C – B.

6. Since W ACB < W AB and U AB = U ACB, we conclude from the conservation of energy that heat flows from the system to the reversible heat sink during the A-C-B process Q ACB>0.

7. Entropy of the composite system (system + reversible heat source) increases every time there is

heat transfer between the system and the RHS and Tsystem TRHS(irreversible process).

8. For example, at point B’ on the isobar close to point B, Tsystem < T A TRHSbecause positive heat has been transferred to the RHS during the ACB’ process Q ACB>0.

9. Since Tsystem  TRHSduring the B’ - B process, the B’ – B process is irreversible and thus the whole  A-C-B process is irreversible.

(39)

Problem 4.5

 

11 Heat Flow between Two Different Objects

 

 

 

2

20 2 2 10 2 2 2 1 1 2 2 1 1

2

2

20 10 20 10

b

a

dT 

bT 

dT 

aT 

dT 

dT 

 f    f   T  T  T  T  T  T  T  T   f    f    f    f  

The change of energy of the two bodies only depends on the initial and final

states and is given by:

Maximum work can be obtained from the two bodies in a reversible process

where the total change of entropy of the two bodies is zero:

10

 

20

2 2 2 1 1 1 2 2 1 1 2 1

2

0

20 10 20 10

b

a

dT 

dT 

Q

Q

 f    f   T  T  T  T  T  T  T  T   f    f    f    f  

 

 

In the above expression we replaced

 Q

 with

dU 

 since the process was carried out

at constant volumes of both bodies, so no work was done by the bodies

d i r e c t l y  

.

The bodies act as hot and cold bodies of a typical heat engine.

Solving for

 f 

:

b

a

bT 

aT 

 f  

2

2

20 10

2 20 10

2

b

a

ab

Substituting the expression for

 f 

The maximum work is negative of

U 

:

0

2

2 20 10 max

b

a

ab

(40)

Problem 4.6

 

2 Efficiency of the heat pump

When calculating efficiencies (and many other quantities) in thermodynamics,

one needs to use the absolute temperature scale (Kelvin scale).

Indeed, there is nothing special about zero Celsius of Fahrenheit, but if you use

Celsius or Fahrenheit in the equation above, your efficiency always turns t o

zero if the hot system is at zero degrees independent on the temperature of the

cold body. This is unphysical because zero of Celsius or Fahrenheit

temperature scale is to a large degree arbitrary.

The Kelvin scale is the absolute temperature scale (zero Kelvin is the lowest

temperature possible) and should always be used in thermodynamics. Convert

temperature to Kelvins before using it in a thermodynamic equation.

c h h

Q

 

 

 

Efficiency of a reversible heat pump:

 K 

h

294

.

26

 K 

c

283

.

15

5

.

26

 

(41)

Problem 5.3 

− 

1 Fundamental Relation for Ideal Gas in Different Representations 

 

 

 

 



 

 



 

 



 

 



 

 



 

 



 

 

+ = −5 / 2 0 0 2  /  3 0 0

ln

 N 

 N 

 NR

 Ns

Fundamental relation in the entropy representation for monoatomic ideal gas:

Solving for U, we get internal energy representation of the fundamental relation:

 

 

 

 



 

 



 

 

 

 

 

 

=

 R

s

 NR

 N 

 N 

3

2

3

2

exp

0 3  /  5 0 3  /  2 0 0

For calculation of the Helmholtz potential, calculate temperature:

 

 

 

 



 

 



 

 

 

 

 

 

= ∂ ∂ =

 R

s

 NR

 N 

 N 

 NR

3

2

3

2

exp

3

2

5 / 3 0 0 3  /  2 0 0

(42)

Problem 5.3 

− 

1 Fundamental Relation for Ideal Gas in Different Representations 

Therefore:

NRT 

2

3

= and

 

 

 

 



 

 



 

 



 

 



 

 



 

 



 

 

+ = −5 / 2 0 0 2  /  3 0 0

2

3

ln

 N 

 N 

 NRT 

 NR

 Ns

TS 

= − Substituting these expressions into the Legendre transform for S:

 

 

 

 

 

 

 

 



 

 



 

 



 

 



 

 



 

 



 

 

+ − = −5 / 2 0 0 2  /  3 0 0

2

3

ln

2

3

 N 

 N 

 NRT 

 R

s

 NT 

 NRT 

(43)

Problem 5.3 

− 

1 Fundamental Relation for Ideal Gas in Different Representations 

For calculation of the enthalpy, calculate pressure:

 

 

 

 



 

 



 

 

= ∂ ∂ − =

 R

s

 NR

 N 

 N 

P

3

2

3

2

exp

3

2

5 / 3 0 0 3  /  5 3  /  2 0 0

3

2

 

 

 

 



 

 



 

 

 

 

 

 

=

 R

s

 NR

 N 

 N 

P

5

2

5

2

exp

3

2

0 0 5  /  2 0 5  /  3 0

Express volume as a function of pressure:

The appropriate Legendre transformation is:

PV 

PV 

PV 

PV 

 H 

2

5

2

3

= + = + =

(44)

Problem 5.3 

− 

1 Fundamental Relation for Ideal Gas in Different Representations 

(

)

 

 

 

 



 

 



 

 

 

 

 

 

= =

 R

s

 NR

 N 

 N 

PV 

PV 

 H 

5

2

5

2

exp

3

2

2

5

2

5

0 0 5  /  2 0 5  /  3 0

For the Gibbs potential calculation:

NRT 

2

3

= 3  /  5 3  /  2

 

 

 

 

 

 

= ∂ =

 R

 NR

 N 

 NR

3

3

exp

3

0 0 0 0

 

 

 

 



 

 



 

 

= ∂ ∂ − =

 R

s

 NR

 N 

 N 

P

3

2

3

2

exp

3

2

5 / 3 0 0 3  /  5 3  /  2 0 0

TS 

 NRT 

PV 

TS 

 NRT 

PV 

TS 

G

= − + = − + = −

2

5

2

3

 NRT 

PV 

=

(45)

Problem 5.3 

− 

1 Fundamental Relation for Ideal Gas in Different Representations 

 

 

 

 

 

 

 

 



 

 



 

 



 

 



 

 



 

 



 

 

+ − = −5 / 2 0 0 2  /  3 0 0

ln

2

5

 N 

 N 

 NR

 Ns

 NRT 

G

 

 

 

 

 

 



 

 



 

 



 

 



 

 



 

 



 

 

+ − = −5 / 2 0 0 2  /  3 0 0

2

3

ln

2

5

 N 

 N 

PV 

 NRT 

 NRT 

 R

s

TN 

 NRT 

G

(46)

Problem 5.3 

− 

5 Calculation of Gibbs potential and

α 

,

κ 

, c 

(

)

1 / 3 3  /  1 0 2

 NVU 

v

 R



 

 



 

 

=

θ 

We are given the fundamental relation:

Solve it for U to obtain the fundamental relation in the energy representation:

3 2 0

 NV 

 R

v

=

θ 

To obtain the Gibbs potential via a Legendre transformation:

(

P

)

TS 

PV 

G

,

= − +

We need to express U, S and V as functions of T and P. There fore, we need three equations to eliminate U, S and V :

3 2 0

 NV 

 R

v

=

θ 

2 2 0

3

 NV 

 R

v

=

θ 

∂ ∂ = 3 2 2 0

 NV 

 R

v

P

=

θ 

∂ ∂ − =

(47)

Problem 5.3

− 

5 Calculation of Gibbs potential and

α 

,

κ 

, c 

Solving these three equations for U, S and V , we obtain:

P

v

 NT 

 R

θ 

0 3 2

27

=

P

v

 NT 

 R

θ 

0 2 2

9

= 2 0 3 2

27

v

P

 NT 

 R

θ 

=

Substituting them into the Legendre transformation for G and simplifying:

(

)

P

v

PV 

TS 

P

G

θ 

0

27

,

= − + = −

Writing the differential of G:

dG

= −

SdT 

+

VdP

+

dN 

we note that:

P

v

 NT 

 R

G

 N  P 0

θ 

2 2 ,

9

=

 

 

 

 

∂ ∂ − = 2 0 3 2 ,

27

2

P

v

 NT 

 R

P

G

 N  T 

θ 

=

 

 

 

 

∂ ∂ =

(48)

Problem 5.3

− 

5 Calculation of Gibbs potential and

α 

,

κ 

, c 

Recalling the definitions of α , κ , c P:

P

v

 NT 

 R

P

v

 NT 

 R

P

v

 NT 

 R

P

v

 NT 

 R

 N  P  N  P

3

9

2

27

2

1

9

2

1

27

2

1

1

0 2 2 2 0 3 2 0 2 2 , 2 0 3 2 , = = =



 

 



 

 

∂ ∂ =

 

 

 

 

∂ ∂ =

θ 

θ 

θ 

θ 

α 

P

P

v

 NT 

 R

P

v

 NT 

 R

P

v

 NT 

 R

P

v

 NT 

 R

P

P

 N  P  N  P T 

2

27

4

27

2

1

27

4

1

27

2

1

1

3 0 3 2 2 0 3 2 3 0 3 2 , 2 0 3 2 , = = =



 

 



 

 

∂ ∂ − =

 

 

 

 

∂ ∂ − =

θ 

θ 

θ 

θ 

κ 

P

v

 R

P

v

 NT 

 R

 N 

 N 

c

 N  P  N  P P

θ 

θ 

0 2 2 , 0 2 2 ,

9

2

9

=



 

 



 

 

∂ ∂ =

 

 

 

 

∂ ∂ =

(49)

Problem 5.3

− 

6 Fundamental Relation in the Enthalpy Representation 

The second good fundamental relation:

2  /  1 2 0 2 2  /  1



 

 



 

 

+

 

 

 

 

=

v

 R

 NU 

 R

θ 

θ 

02 2 2

 Nv

 R

 NR

=

θ 

θ 

2

 R

P

= − ∂ =

θ 

 NPv

2 0 = 0

v

PV 

 H 

= +

θ 

θ 

θ 

θ 

 R

 NPv

P

 R

 NPv

 Nv

 R

 NR

 H 

2

2

2 0 2 2 0 2 0 2 +



 

 



 

 

− =

θ 

θ 

θ 

θ 

θ 

 R

v

 NP

 NR

 R

v

 NP

 R

v

 NP

 NR

 H 

4

2

4

2 0 2 2 2 0 2 2 0 2 2 + = + − =

θ 

 R

 NPv

P

 H 

 N  S 

2

2 0 , =

 

 

 

 

∂ ∂ =

References

Related documents

We need to get children caught up NOW on vaccine doses they missed or are due for so that they can safely return to in-person learning. •

A minimal surface spanning a given contour Γ is the differentiable surface with the boundary curve Γ, which is represented by a harmonic vector j(w, v) and for which (u y v)

These transformers are specially designed tuned circuit in RFI-tight groundable metal packages for narrow bandwith IF application.. They are called

However, there is a crucial difference between American, Spanish and Russian resistance to foreign occupation and late nineteenth century guerilla resistance in Cuba and

The cross product is defines based on the coordinates of the vectors, but vectors were introduced in- dependent from their coordinates raising the question if the cross product

A running chainsaw is a dangerous thing to carry around, so if a player holding a chainsaw is Knocked Down for any reason, the opposing coach is allowed to add 3 to their Armour

Meseguer, J., Montanari, U., Sassone, V.: Process versus unfolding semantics for place /transition Petri nets. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of

Tenant agrees that, subject to referendum of the residents of the City of Sausalito to the contrary, a minimum of three (3) tennis courts, on the Land, but not located in the