• No results found

EASA Pocket Book

N/A
N/A
Protected

Academic year: 2021

Share "EASA Pocket Book"

Copied!
116
0
0

Loading.... (view fulltext now)

Full text

(1)

TABLE OF CONTENTS

MOTOR DATA-ELECTRICAL

Terminal Markings and Connections

Part Winding Start '"

1

Maximum Locked-Rotor Currents-Three-Phase

Starting Characteristics Of Squirrel Cage

Three-Phase Motors-8ingle Speed

2

'Three-Phase Motors-Two Speed, Single Winding

6

Single-Phase Motors-Capacitor Start

8

DC Motors And Generators

10

Field Polarities Of DC Machines

12

Full-Load Currents-Motors

13

Squirrel Cage Motors

16

General Speed-Torque Characteristics

17

Full-Load Efficiencies Of Energy Efficient Motors

18

Effect Of Voltage Variation On Motor Characteristics

20

Power Supply And Motor Voltages

20

Effect Of Voltage Unbalance On Motor Performance

21

Induction Motors

22

Allowable Starts And Starting Intervals

23

MOTOR DATA-MECHANICAL

NEMA Frame Assignments-Three-Phase Motors

24

NEMA Frame Dimensions

IEC Mounting Dimensions-Foot-Mounted

IEC Shaft Extension, Key And Keyseat

NEMA Shaft Extension And Keyseat

NEMA Frame Dimensions-Foot-Mounted

NEMA Frame Dimensions

IEC Mounting Dimensions-Foot-Mounted

IEC Shaft Extension, Key And Keyseat

NEMA Shaft Extension And Keyseat

NEMA Frame Dimensions-Foot-Mounted

AC Machines (Inches)

28

AC and DC Machines (Inches)

40

Dimensions-Continuous Duty AC Motors (Inches) ... 42

Dimensions-Foot-Mounted DC Machines (Inches) ... 43

DC Machines (Inches)

44

AC Machines (mm)

46

AC and DC Machines (mm)

58

Dimensions-Continuous Duty AC Motors (mm)

60

Dimensions-Foot-Mounted DC Machines (mm)

61

(2)

I

I

TABLE OF CONTENTS-Continued

CONTRACTORS

Power Factor Improvement Of Induction Machines

64

NEMA Size Starters For Three-Phase Motors

66

Starter Enclosures

67

NEMA Code Letters For AC Motors

68

NEMA Size Starters For Single-Phase Motors

69

Derating Factors For Conductors In A Conduit

69

Allowable Ampacities Of Insulated Conductors

70

Motor Protection Devices-Maximum Rating Or Setting

74

TRANSFORMERS

Full-Load Currents-Three-Phase Transformers

75

Full-Load Currents-Single-Phase Transformers

76

Transformer Connections

77

ELECTRONICS

Semiconductors And Transistors-Symbols

And Connections

85

Resistor Color Codes

87

Capacitor Color Codes

88

MISCELLANEOUS

Temperature Classification Of Insulation Systems

89

Resistance Temperature Detectors

89

Dimensions, Weight And Resistance of Solid

Round Copper Wire (AWG and metric)

90

Properties Of Metals And Alloys

94

Determining The Polarization Index

Of Machine Windings

96

USEFUL FORMULAS AND CONVERSIONS

Common Fractions Of An Inch-Decimal And

Metric Equivalents

97

Formulas For Electric Motors

98

Formulas For Electrical Circuits

98

Temperature Correction Of Winding Resistance

99

Motor Application Formulas

99

Centrifugal Applications

101

Temperature Conversion Chart

102

Conversion Factors

104

GLOSSARy

117

(3)

TERMINAL MARKINGS AND CONNECTIONS

PART WINDINGSTART

NEMA NOMENCLATLlRE-6 LEADS

66

2 9 8 3

j/(

2 9 8 Delta Wye 1

OPER.

MODE L1

L2

L3 OPEN

. START

1

2

3

7,8,9

RUN

1,7

2,8 3,9

-9/\

l\/~

3 8 2 Double Delta (Extended Delta)

MOTOR LEADS

NEMA AND IEC NOMENCLATURE-12 LEADS

SINGLE VOLTAGE OR LOW VOLTAGE OF

DUAL-VOLTAGE MOTORS

NEMA W \U1

iec

W5/6 U2

Wi

~5

W1 \U6 V6-v§V2 V1

T1

T2

T3

T7

T8

T9

I

NEMA

1,6

2,4

3,5

7,12

8,10

9,11

(4)

TERMINAL MARKINGS AND CONNECTIONS

THREE-PHASE MOTORS-SINGLE SPEED

NEMA NOMENCLATURE-6 LEADS

SINGLE VOLTAGE

EXTERNAL WYE CONNECTION

JOIN

tHB±!

1

2

3

4&5&6

I

SINGLE VOLTAGE

6

1

EXTERNALDELTA CONNECTION

! \

I

L1

[ L 2

L3

.\

1,6

2,4

3,5

3

4

5

2

SINGLE AND DUAL VOLTAGE

WVE-DELTA CONNECTIONS

,)\,

5

2

SINGLE VOLTAGE

. ­

OPERATING

MODE

CONNECTION

L1

L2

L3

JOIN

START

WYE

1

2

3

4&5&6

RUN

DELTA

1,6

2,4

3,5

-DUAL VOLTAGE'

VOLTAGE

CONNECTION L1

L2

L3

JOIN

HIGH

WYE

1

2

3

4&5&6

LOW

DELTA

1,6

2,4

3,5

-'Voltage ratio: 1.732 to 1.

2

(5)

TERMINAL MARKINGS AND CONNECTIONS

THREE-PHASE MOTORS-SINGLE SPEED

NEMA NOMENCLATLJRE-9 LEADS

DUAL VOLTAGE

WYE·CONNECTED

VOLTAGE

L1

L2

L3

JOIN

HIGH

1

2

3

4&7,5&8,6&9

LOW

1 7

28

39

4&5&6

DUAL VOLTAGE

DELTA·CONNECTED

VOLTAGE

L1

L2

L3

JOIN

HIGH

1

2

3

4&7,5&8,6&9

LOW

1,6,7

2,4,8

3,5,9

-3

(6)

4

TERMINAL MARKINGS AND CONNECTIONS

THREE-PHASE MOTORS-SINGLE SPEED

NEMA NOMENCLATURE-12 LEADS

:1

71

10

12

11

6V~5

DUAL VOLTAGE

EXTERNAL WYE CONNECTION

3 /

~2

VOLTAGE

L1

L2

L3

JOIN

HIGH

1

2

3

4&7,5&8,6&9,

10&11&12

LOW

1,7

2,8

3,9

4&5&6,

10&11 &12

:1

1~1

12

11

6V

~5

3 /

"'-2

DUAL VOLTAGE

WYE-CONNECTED START

DELTA·CONNECTED RUN

VOLTAGE

CONN.

L1

L2

L3

JOIN

HIGH

WYE

1

2

3

4&7,5&8,6&9,

10&11 &12

DELTA 1,12

2,10

3,11

4&7,5&8,6&9

LOW

WYE

1,7

2,8

3,9

4&5&6,

10&11&12

DELTA 1,6,7,

12

2,4,8,

10

3,5,9,

11

(7)

-TERMINAL MARKINGS AND CONNECTIONS

THREE-PHASE MOTORS-SINGLE SPEED

IEC NOMENCLATURE-6 AND 12 LEADS

SINGLE AND DUAL

VOLTAGE WYE-DELTA

I

U1

W2 \ U 1

CONNECTIONS

U2

SINGLE VOLTAGE

W2

V2

wy/

~V1

W1

/

V2

U2

V1

OPER.

MODE

CONN.

L1

L2

L3

JOIN

START

WYE

U1

V1

W1

U2&V2&W2

RUN

DELTA

U1,W2

V1,U2

W1,V2

-DUAL VOLTAGE>

VOLT.

CONN.

L1

L2

L3

JOIN

HIGH

WYE

U1

V1

W1

U2&V2&W2

LOW

DELTA

U1,W2

V1,U2

W1,V2

-'Voltage ratio: 1.73210 1.

U1

I

U2

W

6

~1

W6

W2WV

W V

I

U~6

U5

~5V2

~1

/

W5

W

72

W1

V6 V5

\U2

~5

\U6

W-V1

DUAL VOLTAGE WYE-CONNECTED START

DELTA-CONNECTED RUN

VOLT.

CONN. L1

L2

L3

JOIN

HIGH

WYE

U1

V1

W1

U2&U5,V2&V5,

W2&W5,U6&V6&W6

DELTA U1,W6

V1,U6

W1,V6

U2&U5,V2&V5,

W2&W5

LOW

WYE

U1,U5

V1,V5

W1,W5 U2&V2&W2,

U6&V6&W6

DELTA U1,U5,

W2,W6

V1,V5,

U2,U6

W1,W5,

V2,V6

-5

(8)

6

TERMINAL MARKINGS AND CONNECTIONS

THREE-PHASE MOTORS-TWO SPEED,

SINGLE WINDING

4

NEMA NOMENCLATURE-6 LEADS

3

n

1

CONSTANT TORQUE CONNECTION

Low-speed horsepower is half

of high-speed horsepower.'

5~6

SPEED

L1

L2 L3

TYPICAL

CONNECTION

HIGH

6

4

5

1&2&3 JOIN

2WYE

LOW

1

2

3

4-5-6 OPEN

1 DELTA

VARIABLE TORQUE CONNECTION

Low-speed horsepower is

one-fourth of high-speed

horsepower:

SPEED

L1

L2 L3

TYPICAL

CONNECTION

HIGH

6

4

5

1&2&3 JOIN

2WYE

LOW

1

2

3

4-5-6 OPEN

1 WYE

4

1

CONSTANT HORSEPOWER CONNECTION

:6:

Horsepower is the same

at both speeds,

5

2

6

SPEED

L1

L2

L3

TYPICAL

CONNECTION

HIGH

6

4

5

1-2-3 OPEN

1 DELTA

LOW

1

2

3

4&5&6 JOIN

2WYE

'CAUTION: On European motors horsepower variance with speed

may not be the same as shown above,

(9)

TERMINAL MARKINGS AND CONNECTIONS

THREE-PHASE MOTORS-TWO SPEED,

SINGLE WINDING

2U

IEC NOMENCLATURE-6 LEADS

CONSTANT TORQUE CONNECTION

jk

2V

1U

2W

SPEED

l1

L2

L3

TYPICAL

CONN.

HIGH

2W

2U

2V 1U&1V&1W JOIN 2WYE

LOW

1U

1V

1W 2U-2V-2W OPEN 1 DELTA

VARIABLE TORQUE CONNECTION

2U 1W

1V

2V

~

1U

2W

SPEED

L1

L2

L3

TYPICAL

CONN.

HIGH

2W

2U

2V 1U&1V&1WJOIN 2WYE

LOW

1U

1V

1W 2U-2V-2W OPEN 1 WYE

(10)

8

TERMINAL MARKINGSAND CONNECTIONS

SINGLE-PHASE MOTORS-CAPACiTOR-START

NEMA NOMENCLATURE

- - " " ' . - - - P1

THERMAL

SINGLE VOLTAGE

PROTECTOR

4 ~---- 8

O

AUXILIARY (START) WINDING

E--::::-:::::-

5 CAP SWITCH

ROTATION

L1

L2

CCW

1,8

4,5

CW

1,5

4,8

DUAL VOLTAGE

(MAIN WINDING ONLY)

Auxiliary winding is always

at low voltage rating;

capacitor should be

rated accordingly.

,...~---P1 THERMAL PROTECTOR ~---- 8

O

~Y~&~~Y

(START)

E----::::-::-

5 CAP SWITCH

VOLTAGE

ROTATION

L1

L2

JOIN

HIGH

CCW

1

4,5

2&3&8

CW

1

4,8

2&3&5

LOW

CCW

1,3,8

2,4,5

(11)

-TERMINAL MARKINGS AND CONNECTIONS

SINGLE-PHASE MOTORS-CAPACiTOR-START

NEMA NOMENCLATURE

DUAL VOLTAGE

(MAIN AND AUXILIARY WINDING)

Capacitors in auxiliary

windings are rated for

lower voltage.

;-A< - - - P l

THERMAL PROTECTOR

VOLTAGE

ROTATION

L1

L2

JOIN

HIGH

CCW

1,8

4,5

2&3,6&7

CW

1,5

4,8

2&3,6&7

LOW

CCW

1,3,6,8

2,4,5,7

-~

CW

1,3,5,7

2,4,6,8

-The switch in the auxiliary winding circuit has been omitted from

this diagram. The connections to the switch must be made so

that both auxiliary windings become de-energized when the

switch is open.

ROTATION:

CCW - Counter-clockwise

CW

- Clockwise

The direction of shaft rotation can be determined by facing the

end of the motor opposite the drive.

TERMINAL MARKINGS IDENTIFIED BY COLOR

1-Blue

5-Black

Pl-No color assigned

2-White

6-No color assigned

P2-Brown

3-0range

7-No color assigned

4-Yellow

8-Red

NEMA MG 1-2003, 2.41. Note: May not apply for some definite­

purpose motors.

(12)

10

TERMINAL MARKINGS AND CONNECTIONS

FOR DC MOTORS (NEMANOMENCLATURE)

SHUNT MOTOR

INTERPOLES

F~

__

"t

j

A1

ARMATURE

SHUNT FIELD

A2 -

F2

LINE

LINE

COMPOUND MOTOR

SHUNT FIELD

INTERPOLES

SERIES

FIELD

ARMATURE

A2

Sl

S2 -

F2

Fj _

t_IA1

LINE

LINE

SERIES MOTOR

SERIES

FIELD

ARMATURE

S1

S2 _

A2

+

A1

LINE

LINE

All connections are for counterclockwise rotation facing the end

opposite thedrive. Forclockwise rotation, interchange A1 andA2.

Somemanufacturers connectthe interpole winding onthe A2 side

of the armature.

When the shunt field is separately excited, the same polarities

must beobserved fora given rotation,

(13)

TERMINAL MARKINGS AND CONNECTIONS

FOR DC GENERATORS (NEMA NOMENCLATURE)

SHUNT GENERATOR

INTERPOLES

F~

__

"t

j

A1 ARMATURE SHUNT FIELD A2 - F2 LINE LINE

COMPOUND GENERATOR

SHUNT FIELD INTERPOLES

+

I

ARMATURE Fj A1 A2 LINE LINE

All connections are for counterclockwise rotation facing the end

opposite the drive. For clockwise rotation, interchange A 1 and

A2.

Some manufacturers connect the interpole winding on the A2

side of the armature.

For the above generators, the shunt field may be either self­

excited or separately excited. When it is self-excited, connections

should be made as shown by the dotted lines. When the shunt

field is separately excited, it is usually isolated from the other

windings of the machine, but the polarity orthe voltage applied

to the shunt field should be as shown for the particular rotation

and armature polarity.

NEMA MG 1-2003,2.14, Note 5.

(14)

12

FIELD POLARITIES OF DC MACHINES

W ..J

~

Z

Ci

:;:

POLARITY OF MAIN

ANDINTERPOLES

The diagram above shows the polarity of interpoles with respect

to the polarity of the main poles.

For a

motor, the polarity of the interpole is the same as that of

the main pole

preceding it in the direction of rotation.

For a

generator, the polarity of the interpole is the same as that

of the main pole

following it in the direction of rotation.

(15)

FULL-LOAD CURRENTS OF DC MOTORS*

(RUNNING AT BASE SPEED)

'For conductor sizing only. FULL-LOAD CURRENT IN AMPEREst

RATED ARMATURE VOLTAGE HP 90V 120V 180V 240V 500V 550V .25 4.0 3.1 2.0 1.6

-

-.33 5.2 4.1 2.6 2.0

-

-.5 6.8 5.4 3.4 2.7

-

-.75 9.6 7.6 4.8 3.8

-

-1 12.2 9.5 6.1 4.7

-13.2 8.3 6.6 1.5

-

-

-- 17 8.5 2 10.8

-

-- 25 16 12.2

-

-3 -27 5

-

40 20

-7.5 58

-

29 13.6 12.2 76 10

-- 38 18 16 - 27 15

-

55 24 20

-

- 72 34

-

-

31 -25

-

89 43 38 - -30

-

106 51 46 -40

-

140 67 61

-

-173 50

-

-

83 75 60

-

-

-

206 99 90 -75

-

-

255 123 111 100

-

341 164 148

-

-

-- 425 125

-

205 185

--

506 246 222 150

-

-675

-

330 294 OVER 200 HP Approx. 200

-1.7 1.5

-

-

-

3.4 Amps/hp

t

Tnese are average direct-current quantities.

Branch-circuit conductors supplying a single motor shall have an ampacity not less than 125 percent of the motor full-load current rating. Armature current varies inversely as applied voltage. Example: 40 hp motor, 300 volt armature

240

Armature current s t-tu x -~112amps

300

The above table is based on Table 430.147 of the National Electrical

Code", 2002. National Electrical Code® and NEC® are registered trade

marks of the National Fire Protection Association, Inc. Quincy, MA 02269.

(16)

FULL-LOAD CURRENTS

THREE-PHASE SQUIRREL CAGE

AND WOUND-ROTOR MOTORS'

'For conductor sizing only

FULL-LOAD CURRENT IN AMPERES

HP

200V

208V

230V

460V

575V

2300V 4000V

.5

2.5

2.4

2.2

1.1

0.9

-

-.75

3.7

3.5

3.2

1.6

1.3

-

-1

4.8

4.6

4.2

2.1

1.7

-

-1.5

6.9

6.6

6.0

3.0

2.4

-

-2

7.8

7.5

6.8

3.4

2.7

-

-3

11.0

10.6

9.6

4.8

3.9

-

-5

17.5

16.7

15.2

7.6

6.1

-

-7.5

25.3

24.2

22

11

9

-

-10

32.2

30.8

28

14

11

-

-15

48.3

46.2

42

21

17

-

-20

62.1

59.4

54

27

22

-

-25

78.2

74.8

68

34

27

-

-30

92

88

80

40

32

-

-40

120

114

104

52

41

-

-50

150

143

130

65

52

-

-60

177

169

154

77

62

16

9

75

221

211

192

96

77

20

11

100

285

273

248

124

99

26

14

125

359

343

312

156

125

31

18

150

414

396

360

180

144

37

21

200

552

528

480

240

192

49

28

250

-

-

-

302

242

60

35

300

-

-

-

361

289

72

41

350

-

- -

414

336

83

48

400

-

-

-

477

382

95

55

450

-

- -

515

412

103

59

500

-

-

-

590

472

118

68

OVER 200 HP

Approx.

Amps/hp

2.75

2.64

2.4

1.2

.96

.24

.14

Branch-circuit conductors supplying a single motor shall have an

ampacity not less than 125 percent of the motor full-load current rating.

Based on Table 430.150 of the National Electrical Code." 2002.

(17)

FULL-LOAD CURRENTS

THREE-PHASE SYNCHRONOUS MOTORS (UNITY

POWER FACTOR) AND SINGLE-PHASE MOTORS'

"For conductor sizing only

THREE-PHASE SYNCHRONOUS MOTORS

FULL·LOAD CURRENT IN AMPERES

HP

RATED VOLTAGE

460V

575V

2300V

4000V

100

100

80

20

12

125

125

100

25

14

150

150

120

30

17

200

200

160

40

23

250

250

200

50

29

300

300

240

60

35

350

353

282

71

41

400

403

322

80

46

500

500

400

100

58

600

600

480

120

69

700

705

564

141

81

800

805

644

161

93

900

905

724

181

104

1000

960

768

192

110

SINGLE·PHASE MOTORS

FULL·LOAD CURRENT IN AMPERES

RATED VOLTAGE

HP

115V

200V

20BV

230V

.167

.25

.34

4.4

5.8

7.2

2.5

3.3

4.1

2.4

3.2

4.0

2.2

2.9

3.6

.5

.75

1

1.5

2

3

9.8

13.8

16

20

24

34

5.6

7.9

9.2

11.5

13.8

19.6

5.4

7.6

8.8

11

13.2

18.7

4.9

6.9

8

10

12

17

I

5

7.5

10

56

80

100

32.2

46

57.5

30.8

44

55

I

28

40

50

I

I

Branch-circuit conductors supplying a single motor shall have an ampacity

not less than 125 percent of the motor full-load current rating.

Based on Table 430.148 of the National Electrical

code",

2002.

(18)

MAXIMUM LOCKED·ROTOR CURRENTS

THREE-PHASE SQUIRREL CAGE MOTORS

t\lEMA DESIGNS B, C AND D

LOCKED·ROTOR CURRENT IN AMPERES

HP

1

2

3

5

10

15

20

25

30

40

50

60

75

100

125

150

1

200

250

300

350

400

450

500

RATED VOLTAGE, 60 Hz

I

200V

230V

460V

575V

2300V 4000V

.5

23

20

10

8

.75

29

25

12

10

34

30

15

12

1.5

46

40

20

16

1

57

50

25

20

74

64

32

26

106

92

46

37

7.5

146

127

63

51

186

162

81

65

267

232

116

1

93

333

290

145

116

420

365

182

146

1

500

435

217

174

667

580

290

232

834

725

362

290

1000

870

435

348

87

50

1250

1085

542

434

108

62

1665

1450

725

580

145

83

2085

1815

907

726

181

104

2500

2170

1085

868

217

125

3335

2900

1450

1160

290

167

4200

3650

1825

1460

365

210

1

5060

4400

2200

1760

440

253

5860

5100

2550

2040

510

293

6670

5800

2900

2320

580

333

7470

6500

3250

2600

650

374

8340

7250

3625

2900

725

417

The locked-rotor currentof DesignB,C and Dconstant-speed induction

motors, when measured with rated voltage and frequency impressed

and with rotorlocked, shall not exceed the above values.

Reference: NEMA MG 1-2003,12.35.1.See NEMA MG 1-2003,12.35.2

for 50 Hz,380volts.

16

(19)

C

GENERAL SPEED-TORQUE

CHARACTERISTICS

THREE-PHASE INDUCTION MOTORS

100

¥

80 Q. Ul Ul

5

60 l:

e

.s::: u ~ 40 Ul

'5

'if.

:; 20

~

Ul

o

o

-,.

~"":"':":~:

..

:::~::::-:.:':::

..

::::",:,,-

..

...

"'.,",.

Design D "",,:...;:- (5 % slip)

\'

\

'"''

".

i

J

i

\~

i/

t'

./

/1

/

/

,

,

i

,../·'IDoS;gn A

,

i

,

,.\

I.

,

,

.'

Design B ---..{ , /

\.---

Design C I \ , I I \

,

,

\.

\

,

\

•...•... ,.~.

\.

300 250 200 150 100 50

Torque (% of full-load torque)

NEMA DESIGN LOCKED ROTOR TORQUE BREAKDOWN TORQUE LOCKED ROTOR CURRENT SLIP RELATIVE EFFICIENCY B 70·275%­ 175 - 300%­ 600 - 800% 0.5-5% Medium or High

Applications: Fans, blowers, centrifugal pumps and compressors,

motor-generator sets, etc., where starting torque requirements are relatively low.

200 - 250%-1190 - 225%- 1600 - 800% 11-5%

I

Medium

Applications: Conveyors, crushers, stirring machines, agitators,

reciprocating pumps and compressors, etc., where starting under load is required.

D 275% 1275% 1600 - 800% 1;'5%

I

Medium

Applications: High peak loads with or without flywheels, such as

punch presses, shears,elevators, extractors, winches, hoists, oil-well

pumping, and wire-drawing machines.

Based on NEMA MG 10-2001, Table 1. NEMA Design A is a variation of Design B having higher locked-rotor current.

"Hiqher values are for motors having lower horsepower ratings.

(20)

FULL-LOAD EFFICIENCIES

THREE-PHASE, SQUIRREL CAGE, ENERGY

EFFICIENT OPEN MOTORS (NEMA DESIGNS A AND B)

HP

2 POLE 4 POLE 6 POLE

NOMINAL MINIMUM NOMINAL MINIMUM NOMINAL MINIMUM EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY

1.0

82.5

80.0

80.0

77.0

1.5

82.5

80.0

84.0

81.5

84.0

81.5

2.0

84.0

81.5

84.0

81.5

85.5

82.5

3.0

84.0

81.5

86.5

84.0

86.5

84.0

5.0

85.5

82.5

87.5

85.5

87.5

85.5

7.5

87.5

85.5

88.5

86.5

88.5

86.5

10.0

88.5

86.5

89.5

87.5

90.2

88.5

15.0

89.5

87.5

91.0

89.5

90.2

88.5

20.0

90.2

88.5

91.0

89.5

91.0

89.5

25.0

91.0

89.5

91.7

90.2

91.7

90.2

30.0

91.0

89.5

92.4

91.0

92.4

91.0

40.0

91.7

90.2

93.0

91.7

93.0

91.7

50.0

92.4

91.0

93.0

91.7

93.0

91.7

60.0

93.0

91.7

93.6

92.4

93.6

92.4

75.0

93.0

91.7

94.1

93.0

93.6

92.4

100.0

93.0

91.7

94.1

93.0

94.1

93.0

125.0

93.6

92.4

94.5

93.6

94.1

93.0

150.0

93.6

92.4

95.0

94.1

94.5

93.6

200.0

94.5

93.6

95.0

94.1

94.5

93.6

250.0

94.5

93.6

95.4

94.5

95.4

94.5

300.0

95.0

94.1

95.4

94.5

95.4

94.5

350.0

95.0

94.1

95.4

94.5

95.4

94.5

400.0

95.4

94.5

95.4

94.5

450.0

95.8

95.0

95.8

95.0

500.0

95.8

95.0

95.8

95.0

The full load efficiency of Design A and B motors rated 600 volts or less, when operating at rated voltage and frequency, shall not be less than the minimum efficiency listed in the table above for the motor to be classified as "energy efficient." Nominal efficiency represents a value which should be usedto compute the energy consumption of a motor or group of motors. Reference: NEMAMG 1-2003,12.59, Table 12-11.

The Energy Policy Act of 1992 (USA): The nominal full-load efficiency of electric motors as specified in the Energy Policy Act of 1992 is the same

as that listed inthe tablefor 1.0to 200.0 hp motors.

18

(21)

FULL-LOAD EFFICIENCIES

THREE-PHASE, SQUIRREL CAGE, ENERGY EFFICIENT

ENCLOSED MOTORS (NEMA DESIGNS AAND B)

HP

2 POLE 4 POLE 6 POLE

NOMINAL MINIMUM NOMINAL MINIMUM NOMINAL MINIMUM EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY

1.0

75.5

72.0

82.5

80.0

80.0

77.0

1.5

82.5

80.0

84.0

81.5

85.5

82.5

2.0

84.0

81.5

84.0

81.5

86.5

84.0

3.0

85.5

82.5

87.5

85.5

87.5

85.5

5.0

87.5

85.5

87.5

85.5

87.5

85.5

7.5

88.5

86.5

89.5

87.5

89.5

87.5

10.0

89.5

87.5

89.5

87.5

89.5

87.5

15.0

90.2

88.5

91.0

89.5

90.2

88.5

20.0

90.2

88.5

91.0

89.5

90.2

88.5

25.0

91.0

89.5

92.4

91.0

91.7

90.2

30.0

91.0

89.5

92.4

91.0

91.7

90.2

40.0

91.7

90.2

93.0

91.7

93.0

91.7

50.0

92.4

91.0

93.0

91.7

93.0

91.7

60.0

93.0

91.7

93.6

92.4

93.6

92.4

75.0

93.0

91.7

94.1

93.0

93.6

92.4

100.0

93.6

92.4

94.5

93.6

94.1

93.0

125.0

94.5

93.6

94.5

93.6

94.1

93.0

150.0

94.5

93.6

95.0

94.1

95.0

94.1

200.0

95.0

94.1

95.0

94.1

95.0

94.1

250.0

95.4

94.5

95.0

94.1

95.0

94.1

300.0

95.4

94.5

95.4

94.5

95.0

94.1

350.0

95.4

94.5

95.4

94.5

95.0

94.1

400.0

95.4

94.5

95.4

94.5

450.0

95.4

94.5

95.4

94.5

500.0

95.4

94.5

95.8

95.0

The full load efficiency of Design A and B motors rated 600 volts or less, when operating at rated voltage and frequency, shall not be less than the minimum efficiency listed in the table above for the motor to be classified as "energy efficient." Nominal efficiency represents a value which should be used to compute the energy consumption of a motor orgroup of motors. Reference: NEMA MG 1-2003, 12.59, Table 12-11.

The Energy Policy Act of 1992 (USA): The nominal full-load efficiency of electric motors as specified in the Energy Policy Act of 1992 is the same

as thatlisted inthe table for 1.0to 200.0 hp motors.

(22)

20

EFFECTOF VOLTAGE VARIATION

ON INDUCTION MOTOR CHARACTERISTICS

PERCENT VOLTAGE VARIATION

+5 +10 +15

-15 -10 -5 0

·20 I---+--+-+--+-+--+~, -15 -10 -5 0 +5 +10 +15

POWER SUPPLY AND MOTOR VOLTAGES

NOMINAL POWER

MOTOR UTILIZATION

SYSTEM VOLTAGE,

(NAMEPLATE) VOLTAGE,

VOLTS

VOLTS

120

115

208

200

240

230

480

460

600

575

2400

2300

4160

4000

6900

6600

Reference: NEMA MG 10-2001.

(23)

EFFECTOF VOLTAGE UNBALANCE

ON MOTOR PERFORMANCE

When the line voltages applied to a polyphase induction motor are not equal, unbalanced currents in the stator windings will result. A small percentage voltage unbalance will result in a much larger percentage current unbalance. Consequently, the temperature rise of the motor operating at a particular load and percentage voltage unbalance will be greater than for the motor operating under the same conditions with balanced voltages.

Should voltages be unbalanced, the rated horsepower of the motor should

be

multiplied by the factor shown in the graph below to reduce the possibility of damage to the motor. Operation of the motor at above a 5% voltage unbal­ ance condition is not recommended.

Alternating current, three-phase motors normally are designed to operate successfully under running conditions at rated load when the voltage unbal­ ance at the motor terminals does not exceed

1

%.

Performance will not nec­ essarily be the same as when the motor is operating with a balanced voltage at the motor terminals. (Note: NEMA MG 1-2003, 12.45 recommends against operating a motor with a voltage unbalance greater than

1

%. This will in­ crease operating temperature, vibration, nuisance trips and failures.)

MEDIUM MOTOR DERATING FACTOR DUE

TO UNBALANCED VOLTAGE

1.0

c::

f2

o

it

0.9 CJ

z

~

0.8

UJ

o

I"­

r---.

...

~

r-,

<,

-,

~

1 2 3 4

5

% VOLTAGE UNBALANCE

Percent voltage Max. volt. deviation from avg. volt.

unbalance

=

100 x Average volt.

Example: With voltages of 460, 467, and 450, the average is 459, the maximum deviation from the average is 9, and the

Percent unbalance

=

100 x

.JL

=

1.96% 459 Reference: N~MA

MG

1-2003, 14.36.

(24)

STARTING CHARACTERISTICS OF

SQUIRREL CAGE INDUCTION MOTORS

STARTING

VOLTAGE

LINE

MOTOR

METHOD

AT MOTOR

CURRENT TORQUE

Full-Voltage Value

100

100

100

Autotransformer

80% tap

80

64'

64

65% tap

65

42'

42

50% tap

50

25'

25

Primary Resistor

Typical Rating

80

80

64

Primary Reactor

80% tap

80

80

64

65% tap

65

65

42

50% tap

50

50

25

Series-Parallel

100

25

25

Wye-Delta

100

33

33

Part-Winding (1/2-1/2)

2 to 12 Poles

100

70

50

14 and more Poles

100

50

50

Solid-state Soft Start

Variable

Variable

Vairable

Variable Freq. Drive

v/Hz constant

Variable

Variable

• Autotransformer magnetizing current not included. Magnetizing cur­

rent is usuallyless than 25 percentof motorfull-load current.

(25)

ALLOWABLE STARTSAND STARTING

INTERVALS

DESIGN A AND B MOTORS

2 POLE

4 POLE

6

POLE

HP

A

B

C

A

B

C

A

B

C

1 15 1.2 75 30 5.8 38 34 15 33 1.5 12.9 1.8 76 25.7 8.6 38 29.1 23 34 2 11.5 2.4 77 23 11 39 26.1 30 35 3 9.9 3.5 80 19.8 17 40 22.4 44 36 5 8.1 5.7 83 16.3 27 42 18.4 71 37 7.5 7.0 8.3 88 13.9 39 44 15.8 104 39 10 6.2 11 92 12.5 51 46 14.2 137 41 15 5.4 16 100 10.7 75 50 12.1 200 44 20 4.8 21 110 9.6 99 55 10.9 262 48 25 4.4 26 115 8.8 122 58 10.0 324 51 30 4.1 31 120 8.2 144 60 9.3 384 53 40 3.7 40 130 7.4 189 65 8.4 503 57 50 3.4 49 145 6.8 232 72 7.7 620 64 60 3.2 58 170 6.3 275 85 7.2 735 75 75 2.9 71 180 5.8 338 90 6.6 904 79 100 2.6 92 220 5.2 441 110 5.9 1181 97 125 2.4 113 275 4.8 542 140 5.4 1452 120 150 2.2 133 320 4.5 640 160 5.1 1719 140 200 2.0 172 600 4.0 831 300 4.5 2238 265 250 1.8 210 1000 3.7 1017 500 4.2 2744 440 Where: A = Maximum number of starts per hour.

B = Maximum product of starts perhourtimes loadWk2. C = Minimum restor off timein seconds between starts.

Ailowable starts perhouris the lesser of(1)A or (2) B divided by the loadWk2,i.e., Starts perhour

s

A or _ _B _ , whichever is less.

Load Wk' Example: 25 hp,4 pole, loadWk2 ~ 50

From Table, A= 8.8, B = 122.

Starts per hour = 1 5

2J1

= 2.44

Calulaled value is lessthanA. Therefore ailowable starts/hour = 2.44.

Note: Tableis based on following conditions:

1. Applied voltage andfrequency in accordance withNEMA MG1-2003, f 2.44. 2. During theaccelerating period, theconnected load torque is equal to or lessthan

atorque which varies asthesquare ofthespeed andis equal to100 percent ofrated torque at rated speed.

3. External load Wk2 equal to or less thanthevalues iisted in MG1-2003, 12.54.

Forotherconditions, consull themanufacturer. Reference: NEMA MG10·2001, Table 7.

(26)

~

NEMA FRAME ASSIGNMENTS

THREE-PHASE OPEN MOTORS-GENERAL PURPOSE

NEMA

PROGRAM

HP

36D0 RPM

1800 RPM

1200 RPM

900 RPM

ORIG.

-1952

RERATE

-1964

RERATE

-ORIG.

203

1952

RERATE

182

1964

RERATE

143T

ORIG.

204

1952

RERATE

184

1964

RERATE

145T

ORIG.

225

1952

RERATE

213

1964

RERATE

182T

1

1.5

203

204

182

184

143T

145T

204

224

184

184

145T

145T

224

225

184

213

182T

184T

254

254

213

215

184T

213T

2

3

224

225

184

213

145T

182T

225

254

213

215

182T

184T

254

284

215

254U

213T

215T

284

324

254U

256U

215T

254T

5

7.5

254

284

215

254U

184T

213T

284

324

254U

256U

213T

215T

324

326

256U

284U

254T

256T

326

364

284U

286U

256T

284T

10

15

324

326

256U

284U

215T

254T

326

364

284U

286U

254T

256T

364

365

324U

326U

284T

286T

365

404

326U

364U

286T

324T

20

(27)

-

-

-- -

-

-

--

-

-

-

--

-

-

-

-

-

-

-

-30

40

50

60

75

100

125

150

200

250

3648

3248

284T8

365

326U

286T

405

365U

326T

444

404U

364T

3658

3268

286T8

404

364U

324T

444

404U

364T

445

405U

365T

4048

364U8

324T8

4058

365U8

326T

445

405U

365T

504U

444U

404T

4058

365U8

326T8

4448

404U8 364T8

1

504U

444U

404T

505

445U

405T

4448

404U8

364T8

4458

405U8

365T8

1

505

445U

405T

- -

444T

4458

405U8

365T8

5048

444U8 404T8

1

-

-

444T

-

-

445T

5048

444U8

404T8

5058

445U8

405T8

1 - -

445T

5058

445U8

405T8

-

-

444T8

1

-- -

445T8

1

When motors are to be used with V-belts or chain drive, the correct frame size is the one shown but with the suffix letter 8

omitted. For the corresponding shaft extension dimensions, see Pages 28-31.

-

-

444T8

-

-

445T8

1

I\J

(28)

~

NEMA FRAME ASSIGNMENTS

THREE-PHASE TEFC MOTORS-GENERAL PURPOSE

NEMA

3600

RPM

1800

RPM

1200

RPM

900

RPM

PROGRAM HP

1952

1964

ORIG.

RERATE RERATE

-

-

-1952

1964

ORIG.

RERATE RERATE

203

182

143T

ORIG.

204

1952

1964

RERATE RERATE

184

145T

OR/G.

225

1952

1964

RERATE RERATE

213

182T

1

1.5

203

182

143T

204

184

145T

204

184

145T

224

184

145T

224

225

184

182T

213

184T

254

254

213

184T

215

213T

2

3

224

184

182T

225

213

184T

225

213

182T

254

215

184T

254

284

215

213T

254U

215T

284

324

254U

215T

256U

254T

5

7.5

254

215

213T

284

254U

215T

284

254U

213T

324

256U

215T

324

326

256U

254T

284U

256T

326

364

284U

256T

286U

284T

10

15

324

256U

254T

326

286U

256T

326

284U

254T

364

286U

256T

364

365

324U

284T

326U

286T

365

404

326U

286T

364U

324T

20

(29)

-

-

-- - -

-30

40

50

60

75

100

125

150

404S 326S

286TS

405S 364US 324TS

444S 365US 326TS

445S 405US 364TS

504S 444US 365TS

505S 445US 405TS

-

-

444TS

- -

445TS

404

326U

286T

405

364U

324T

444S 365US

326T

445S 405US

364TSt

504S 444US

365TSt

505S 445US

405TSt

-

-

444TSt

-

-

445TSt

405

365U

326T

444

404U

364T

445

405U

365T

504U

444U

404T

505

445U

405T

-

-

444T

-

-

445T

-444

404U

364T

445

405U

365T

504U

444U

404T

505

445U

405T

-

-

444T

-

-

445T

-tWhen motors are to be used with V-belt or chain drives, the correct frame size is the frame size shown but with the suffix letter

S omitted. For the corresponding shaft extension dimensions, see Pages 28-31.

I\)

(30)

S3

NEMA FRAME DIMENSIONS*

FOOT-MOUNTED AC MACHINES

* Dimensions in inches

FRAME

KEYSEAT

DESIGNATIONS

D

E

2F

BA

H"

U

N-W

VMIN.

R

ESMfN.

S

1 - - - ­

42

2.62

1.75

1.69

2.06

0.28

0.3750

1.12

0.328

Flat

48

3.00

2.12

2.75

2.50

0.34

0.5000

1.50

0.453

Flat

48H

3.00

2.12

4.75

2.50

0.34

0.5000

1.50

0.453

Flat

56

3.50

2.44

3.00

2.75

0.34

0.6250

1.88

0.517

1.41

0.188

56H

3.50

2.44

5.00

2.75

0.34

0.6250

1.88

0.517

1.41

0.188

66

4.12

2.94

5.00

3.12

0.41

0.7500

2.25

0.644

1.91

0.188

143

3.50

2.75

4.00

2.25

0.34

0.7500

2.00

1.75

0.644

1.41

0.188

143T

3.50

2.75

4.00

2.25

0.34

0.8750

2.25

2.00

0.771

1.41

0.188

145

3.50

2.75

5.00

2.25

0.34

0.7500

2.00

1.75

0.644

1.41

0.188

145T

3.50

2.75

5.00

2.25

0.34

0.8750

2.25

2.00

0.771

1.41

0.188

182

4.50

3.75

4.50

2.75

0.41

0.8750

2.25

2.00

0.771

1.41

0.188

182T

4.50

3.75

4.50

2.75

0.41

1.1250

2.75

2.50

0.986

1.78

0.250

184

4.50

3.75

5.50

2.75

0.41

0.8750

2.25

2.00

0.771

1.41

0.188

184T

4.50

3.75

5.50

2.75

0.41

1.1250

2.75

2.50

0.986

1.78

0.250

203

5.00

4.00

5.50

3.12

0.41

0.7500

2.25

2.00

0.644

1.53

0.188

204

5.00

4.00

- - ~ . _ - - ~ ~

6.50

3.12

0.41

0.7500

2.25

2.00

0.644

1.53

0.188

(31)

213

5.25

4.25

5.50

3.50

0.41

1.1250

3.00

2.75

0.986

2.03

0.250

213T

5.25

4.25

5.50

3.50

0.41

1.3750

3.38

3.12

1.201

2.41

0.312

215

5.25

4.25

7.00

3.50

0.41

1.1250

3.00

2.75

0.986

2.03

0.250

215T

5.25

4.25

7.00

3.50

0.41

1.3750

3.38

3.12

1.201

2.41

0.312

224

5.50

4.50

6.75

3.50

0.41

1.0000

3.00

2.75

0.859

2.03

0.250

225

5.50

4.50

7.50

3.50

0.41

1.0000

3.00

2.75

0.859

2.03

0.250

254

6.25

5.00

8.25

4.25

0.53

1.1250

3.38

3.12

0.986

2.03

0.250

1-­

254U

6.25

5.00

8.25

4.25

0.53

1.3750

3.75

3.50

1.201

2.78

0.312

254T

6.25

5.00

8.25

4.25

0.53

1.625

4.00

3.75

1.416

2.91

0.375

256U

6.25

5.00

10.00

4.25

0.53

1.3750

3.75

3.50

1.201

2.78

0.312

256T

6.25

5.00

10.00

4.25

0.53

1.625

4.00

3.75

1.416

2.91

0.375

284

7.00

5.50

9.50

4.75

0.53

1.2500

3.75

3.50

1.112

2.03

0.250

284U

7.00

5.50

9.50

4.75

0.53

1.625

4.88

4.62

1.416

3.78

0.375

284T

7.00

5.50

9.50

4.75

0.53

1.875

4.62

4.38

1.591

3.28

0.500

284T8

7.00

5.50

9.50

4.75

0.53

1.625

3.25

3.00

1.416

1.91

0.375

286U

7.00

5.50

11.00

4.75

0.53

1.625

4.88

4.62

1.416

3.78

0.375

286T

7.00

5.50

11.00

4.75

0.53

1.875

4.62

4.38

1.591

3.28

0.500

286T8

7.00

5.50

11.00

4.75

0.53

1.625

3.25

3.00

1.416

1.91

0.375

324

8.00

6.25

10.50

5.25

0.66

1.625

4.88

4.62

1.416

3.78

0.375

324U

8.00

6.25

10.50

5.25

0.66

1.875

5.62

5.38

1.591

4.28

0.500

3248

8.00

6.25

10.50

5.25

0.66

1.625

3.25

3.00

1.416

1.91

0.375

324T

8.00

6.25

10.50

5.25

0.66

2.125

5.25

5.00

1.845

3.91

0.500

324T8

8.00

6.25

10.50

5.25

0.66

1.875

3.75

3.50

1.591

2.03

0.500

326

8.00

6.25

12.00

5.25

0.66

1.625

4.88

4.62

1.416

3.78

1

0.375

326U

8.00

6.25

12.00

5.25

0.66

1.875

5.62

5.38

1.591

4.28

0.500

3268

8.00

6.25

12.00

5.25

0.66

1.625

3.25

3.00

1.416

1.91

0.375

326T

8.00

6.25

12.00

5.25

0.66

2.125

5.25

5.00

1.845

3.91

0.500

326T8

8.00

6.25

12.00

5.25

0.66

1.875

3.75

3.50

1.591

2.03

0.500

ro

(0

(32)

~

NEMA FRAME DIMENSIONS

FOOT-MOUNTED AC MACHINES-CONTINUED

n ---

o

-.­

~'.

-

~

=

0

"H"DlA. 0 , @ J

t Dimensions in inches

--2F- BA" 4·HQlES -../ -E -E--­

FRAME

KEYSEAT

DESIGNATIONS

D

E

2F

SA

H**

U

N-W

V MIN.

R

ESMIN.

S

364

9.00

7,00

11.25

5.88

0.66

1.875

5.62

5.38

1.591

4.28

0.500

364S

9.00

7.00

11.25

5.88

0.66

1_625

3-25

3_00

1.416

1.91

0.375

364U

9.00

7,00

11.25

5.88

0.66

2_125

6.38

6.12

1.845

5.03

0.500

364US

9.00

7.00

11.25

5.88

0.66

1.875

3.75

3.50

1.5~~

2.03

0.500

364T

9.00

7.00

11-25

5.88

0.66

2.375

5.88

5.62

2.021

4.28

0.625

364TS

9.00

7.00

11.25

5.88

0.66

1.875

3.75

3.50

1.591

2.03

0.500

365

9.00

7.00

12.25

5.88

0.66

1.875

5.62

5.38

1.591

4.28

0.500

365S

9.00

7.00

12.25

5.88

0.66

1.625

3.25

3.00

1.416

1.91

0.375

365U

9.00

7.00

12.25

5.88

0.66

2.125

6.38

6.12

1.845

5.03

0.500

365US

9.00

7.00

12.25

5.88

0.66

1.875

3.75

3.50

1.591

2.03

0.500

365T

9.00

7.00

12.25

5.88

0.66

2.375

5_88

5.62

2.021

4.28

0.625

365TS

9.00

7.00

12.25

5.88

0.66

1.875

3.75

3.50

1.591

2.03

0.500

404

10.00

8.00

12.25

6.62

0.81

2.125

6.38

6.12

1.845

5.03

0.500

404S

10.00

8.00

12.25

6.62

0.81

1.875

3.75

3.50

1.591

2.03

0.500

404U

10.00

8.00

12.25

6.62

0.81

2.375

7.12

6.88

2.021

5.53

0.625

404US

10.00

8.00

12.25

6.62

0.81

2.125

4.25

'1.00

1.845

2.78

0.500

404T

10.00

8.00

12.25

6.62

0.81

2.875

7.25

7.00

2.450

5.65

0.750

404TS

10.00

8.00

12.25

6.62

0.81

2.125

4.25

4.00

1.845

2.78

0.500

405

10.00

8.00

13.75

6.62

0.81

2.125

6.38

6.12

1.845

5.03

0.500

405S

10.00

8.00

13.75

6.62

0.81

1.875

3.75

3.50

1.591

2.03

0.500

(33)

405U

10.00

8.00

13.75

6.62

0.81

2.375

7.12

6.88

2.021

5.53

0.625

405U5

10.00

8.00

13.75

6.62

0.81

2.125

4.25

4.00

1.845

2.78

0.500

405T

10.00

8.00

13.75

6.62

0.81

2.875

7.25

7.00

2.450

5.65

0.750

405T5

10.00

8.00

13.75

6.62

0.81

2.125

4.25

4.00

1.845

2.78

0.500

444

11.00

9.00

14.50

7.50

0.81

2.375

7.12

6.88

2.021

5.53

0.625

4445

11.00

9.00

14.50

7.50

0.81

2.125

4.25

4.00

1.845

2.78

0.500

444U

11.00

9.00

14.50

7.50

0.81

2.875

8.62

8.38

2.450

7.03

0.750

444U5

11.00

9.00

14.50

7.50

0.81

2.125

4.25

4.00

1.845

2.78

0.500

444T

11.00

9.00

14.50

7.50

0.81

3.375

8.50

8.25

2.880

6.91

0.875

444T5

11.00

9.00

14.50

7.50

0.81

2.375

4.75

4.50

2.021

3.03

0.625

445

11.00

9.00

16.50

7.50

0.81

2.375

7.12

6.88

2.021

5.53

0.625

4455

11.00

9.00

16.50

7.50

0.81

2.125

4.25

4.00

1.845

2.78

0.500

445U

11.00

9.00

16.50

7.50

0.81

2.875

8.62

8.38

2.450

7.03

0.750

445U5

11.00

9.00

16.50

7.50

0.81

2.125

4.25

4.00

1.845

2.78

0.500

445T

11.00

9.00

16.50

7.50

0.81

3.375

8.50

8.25

2.880

6.91

0.875

445T5

11.00

9.00

16.50

7.50

0.81

2.375

4.75

4.50

2.021

3.03

0.625

447T

11.00

9.00

20.00

7.50

0.81

3.375

8.50

8.25

2.880

6.91

0.875

447T5

11.00

9.00

20.00

7.50

0.81

2.375

4.75

4.50

2.021

3.03

0.625

449T

11.00

9.00

25.00

7.50

0.81

3.375

8.50

8.25

2.880

6.91

0.875

449T5

11.00

9.00

25.00

7.50

0.81

2.375

4.75

4.50

2.021

3.03

0.625

504U

12.50

10.00

16.00

8.50

0.94

2.875

8.62

8.38

2.450

7.28

0.750

5045

12.50

10.00

16.00

8.50

0.94

2.125

4.25

4.00

1.845

2.78

0.500

505

12.50

10.00

18.00

8.50

0.94

2.875

8.62

8.38

2.450

7.28

0.750

5055

12.50

10.00

18.00

8.50

0.94

2.125

4.25

4.00

1.845

2.78

0.500

Reference: NEMA MG 1-2003,4.4.1.

"Frames 48 to 66, inclusive: the Hdimension is Widthof Sial. Frames 143 to 5058, inciusive: the H dimensionis Diameter of Hole.

~

References

Related documents

As there was no increase in shear force, tenderness and flavor with high residual feed intake, so it is not related with the beef meat quality (Baker et al. 2006).Animal

The task force produced a series of “critical success factors for scaling up education and train- ing of health professionals within countries.” The Diploma in

Project Name: Long Term Care Rider Flyer Status of Filing in Domicile: Authorized Project Number: TC49649(0809) Date Approved in Domicile: 04/24/2000 Requested Filing Mode: File

In the normal heart, the superior rim of the defect, representing the area between the attach- ments of the superior caval vein and the pulmonary veins to the right and left

Section 2 contains the importance of cloud computing in the e-learning process section 3 contains the architecture of e-learning process via cloud computing

Systems GA22 7070 1 File No 4300 01 IBM 4300 Processors Principles of Operation for ECPS VSE Mode Second Edition (September 1980) This major revision obsoletes GA22 7070 0 The document

Both Rough and Spalt staining appeared normal within tsc1 clones (Figure 2B and data not shown), suggesting that the InR/TOR pathway does not affect the timing of differ- entiation

Linear programming is the common method of Least Cost Feed Formulation which compares the nutrients required by the animal to the nutrients supplied by the