• No results found

Roadstone - which rock? Investigating the best rock type for the wearing course of roads

N/A
N/A
Protected

Academic year: 2021

Share "Roadstone - which rock? Investigating the best rock type for the wearing course of roads"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Ask the pupils to suggest properties that the wearing course must have.

It must provide a durable, skid-resistant surface and must prevent water percolating down to the lower layers.

A much higher quality of rock is needed for this layer than for the other layers; only a few rock types are suitable, especially for motorways and other roads carrying much traffic.

Give the pupils copies of the Pupil Information Sheet (page 4), Table 3 (page 5) and, if possible, provide the samples listed. If required, also give them copies of Tables 2a: Composition of rocks and Table 2b: Hardness of minerals and volcanic glass (page 3). Without Tables 2a and 2b this is a good revision exercise.

The pupils should now complete Table 3 and decide which rocks are suitable for the wearing course of a road and which are not.

Roadstone - which rock?

Investigating the best rock type for the wearing course of roads

Roads are made of various types of rock aggregate (crushed rock fragments). Quarries provide the aggregate used in the construction of our roads. The rock type has to be carefully chosen so that it has suitable properties for the job it has to do.

Pupils are asked to work out which rocks are the most suitable for use as roadstone aggregate.

Show pupils the diagram of the cross section through a road surface (below) and provide them with copies of Table 1 (page 3) and tell them that many rock types are suitable for the lower three layers providing they have sufficient strength and are packed in such a manner as to be permeable.

However, the top layer on which the traffic runs, the wearing course, takes much higher pressures and all the wear and tear of the traffic and of the weather. It is this wearing course which forms the main focus of this activity. Cross section through a typical road surface

Diagrams by P. and M. Williams and reproduced with permission from ‘Teaching Earth Sciences’, Vol 39 No.2 2014

40mm bitumen matrix with fillers rock fragments (aggregate) Detail of the mineral grains within the rock fragment magnification x c.15

Cross section through the wearing layer of a road with a detail of a rock fragment Provides a skid- and wear-resistant surface for the traffic and protects the lower layers. Bitumen-bonded aggregate Distributes the traffic loads on the road base. Bitumen-bonded aggregate

Main load-bearing layer. made of rocks with high crushing strength

35mm

75mm

200mm

Thicknesses of these layers are typical values and depend on the amount of traffic the road has to take. The rock aggregate and the bitumen matrix that hold it together are called asphalt

road base base course wearing course

(2)

The back up

Title: Roadstone - which rock?

Subtitle: Investigating the best rock type for the wearing course of roads

Topic: This investigation can be carried out as a revision exercise of the major rock types in science, environmental science, geography or economics lessons.

Age range of pupils: 12 years and upwards

Time needed to complete activity: 30 minutes

Pupil learning outcomes: Pupils can: • measure grain size of a selection of rocks;

• use six criteria to determine the best choice of rock for the wearing course of a road;

• appreciate that limestone is extensively used for the base course and road base because it is readily available. It is also used for the wearing course in areas where a lower specification is acceptable, such as car parks and private driveways.

Context:

Basalt, dolerite (and some other igneous rocks), and greywacke fulfil all six criteria and so are the best rocks to use for the wearing course, but their outcrops are not evenly distributed so transport costs are high. Rocks that are very poor are shale and oolitic

limestone. Flint is very strong but would not be a good rock to use. It is made of one mineral and breaks into sharp angular pieces to which bitumen does not readily adhere.

Following up the activity:

Pupils could investigate local aggregate quarries to find out how the rock is used. It might be possible to arrange a visit.

Underlying principles:

• Rocks used for aggregate for the wearing course of the best quality roads

must:-- have most minerals with hardness greater than 5 to resist abrasion

- be made of two or more minerals

with different hardnesses so that the surface does not become polished

- be fine- or medium-grained

- be well-cemented or made of interlocking crystals to resist pressures and stresses - have rough surfaces so that bitumen will

adhere

- not be porous. If water could get in then frost would cause it to shatter in winter.

• Economics often determines which rocks are used. If the transport costs are too high for the best quality rocks to be used, then inferior quality

• The best quality aggregate is used on motorways and on roads which bear a great deal of traffic. • Although crystalline limestone is not the best rock

for the wearing course, it is widely distributed across the country and is extensively used for the lower courses of roads of all types. In practice, one of the best rocks for the wearing course of major roads is a type of sandstone, known as greywacke, quarried at Ingleton in North Yorkshire and in mid-Wales, among other sites. Greywacke is composed of quartz and feldspar grains, with some clay matrix, cemented by iron oxides to form a tough rock. Its different components mean that it is worn away at different rates, so that it always maintains its skid resistant surface.

Fine and medium-grained igneous rocks are extensively quarried from Charnwood Forest in Leicestershire. The central location in the country, and nearness to the motorway network, mean that the Charnwood roadstone features widely in English roads, in areas where other suitable rocks do not occur.

Thinking skill development:

By completing Table 3, the pupils are recognizing patterns. Discussion involves metacognition and looking at rocks that are unsuitable may cause cognitive conflict. Applying the relevant criteria to the sample rocks (or sample list) and working out which rocks are most suitable requires bridging skills.

Resource list:

• copies of Table 1, the Pupil Information Sheet and Table 3. Tables 2a and 2b are optional

• samples of the rocks listed in Table 3, if possible • hand lenses or magnifying glasses if rock samples

are available

• grain scale cards or rulers.

Useful links:

The design and construction of roads

-http://community.dur.ac.uk/~des0www4/cal/roads/index.html

An idiot’s guide to road maintenance

-http://www.highwaysmaintenance.com/design.htm

A guide to aggregate testing

-http://www.northstonematerials.com/filestore/documents/aggre gate-tests.pdf

SoE unit Bulk Constructional Minerals, York e-library

http://www.nationalstemcentre.org.uk/elibrary/resource/1147/b ulk-constructional-minerals

Source:

Adapted from an original article by Dr. Mike Tuke, re-published by Peter and Maggie Williams in ‘Blasts from the past 3: Roadstones’, ‘Teaching Earth Sciences’, Vol 39, No.2 2014.

The Earthlearningidea Team is grateful to Clive Nicholas and Julian Smallshaw for their helpful advice in updating this activity. Julian Smallshaw is Head of

(3)

TABLE 2B: HARDNESS OF MINERALS AND VOLCANIC GLASS

Augite 6 Calcite 3 Clay minerals 2·5 Feldspar 6 Hornblende 6 Mica 2·5 Quartz 7 Volcanic glass 6

Name and thickness of layer

Purpose and composition of layer

Wearing course 13 - 38mm

Provides a skid- and wear-resistant surface for the traffic and protects the lower layers.

Bitumen-bonded aggregate Base course

38 - 76mm

Distributes the traffic loads on to the road base. Bitumen-bonded aggregate

Road base 102 - 204mm

Main load-bearing layer.

Made of rocks with high crushing strength Sub-base

Variable

Builds surface up to approximately the correct level. Made of large fragments so that water cannot rise by capillary action

TABLE 1 - ROAD LAYERS

TABLE 2A: COMPOSITION OF ROCKS Igneous rocks Main minerals

Andesite feldspar, hornblende, augite Basalt feldspar, augite

Dolerite feldspar, augite Gabbro feldspar, augite Granite feldspar, quartz, mica

Rhyolite feldspar, quartz, mica, volcanic glass Obsidian volcanic glass

Pumice volcanic glass

Metamorphic rocks

Marble calcite

Gneiss quartz, feldspar, mica, hornblende Quartzite quartz Schist mica Slate mica Sedimentary rocks Flint quartz Limestone calcite Sandstone quartz

Greywacke quartz, feldspar, clay minerals Shale clay minerals

FROM QUARRY …..

….. TO ROAD

Top photo: Bardon Hill Quarry, Leicestershire, Peter Williams Bottom photo: Road mending in Sheffield, Peter Kennett

(4)

Earthlearningidea - http://www.earthlearningidea.com

Roadstones - which rock? Pupil information sheet

Good roadstone for making the wearing course of roads must have the following properties: 1. The majority of the minerals in the rocks must have a hardness greater than 5 so that the rock is able to

resist the abrasion caused by the tyres of the vehicles.

2. The grains must wear in such a way that the exposed surface of the rock fragments (aggregate) does not become polished, otherwise the traffic would skid. This means that the rock must be made of two or more minerals with different hardnesses.

3. The rock needs to be fine- to medium-grained so that fragments 0.5cm in diameter contain grains of several different minerals.

4. The individual grains need to be strongly held together so that the aggregate does not crumble under the pressures and stresses exerted by the vehicles. This means the rock must be either well-cemented or made of interlocking crystals.

5. The aggregates must have rough surfaces so that the bitumen can adhere to them. Bitumen does not adhere well to glassy surfaces e.g. flint and obsidian, but it does adhere to most other rocks.

6. The rock of which the aggregate is made must not be porous otherwise freezing and thawing during the winter might shatter the rock.

surface of the road

quartz Mineral grains all the same i.e. in quartzite Rock fragments made of only one mineral wear to a flat surface which does not prevent vehicle skidding

surface of the road

plagioclase feldspar augite

Several mineral grains e.g. dolerite When rock fragments are made of several different mineral grains with different hardnesses, then the rock fragments wear to a stepped surface which is

skid-resistant

Worn road surface with aggregate raised above bitumen matrix £1 coin for scale

Diagram and photograph by P. and M. Williams and reproduced with permission from ‘Teaching Earth Sciences’, Vol 39 No.2 2014

Detail of crystal wear in a rock fragment 2cm

© Earthlearningidea team. The Earthlearningidea team seeks to produce a teaching idea regularly, at minimal cost, with minimal resources, for teacher educators and teachers of Earth science through school-level geography or science, with an online discussion around every idea in order to develop a global support network. ‘Earthlearningidea’ has little funding and is produced largely by voluntary effort.

Copyright is waived for original material contained in this activity if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team.

Every effort has been made to locate and contact copyright holders of materials included in this activity in order to obtain their permission. Please contact us if, however, you believe your copyright is being infringed: we welcome any

(5)

Examine each sample and for

each:-1. Measure its grain size (if it is too small to measure, put < 0.5mm) 2. Look up its mineral composition and list the minerals in the table below

3. Look up the hardness of each mineral and write it beside the mineral on the table

4. Complete the table by putting a tick where the rock satisfies the criteria 1 - 6 and a cross where it does not

Rock Grain

size Minerals with hardness of each 1 2 3 4 5 6

Granite Gabbro Dolerite

Basalt (not vesicular or amygdaloidal) Quartz sandstone, poorly cemented Greywacke, well cemented

Shale Oolitic limestone Flint Quartzite Schist Slate

Which are the best three rocks for making the wearing course of a major road?

1. most minerals with hardness > 5 2. two or more minerals

3. grain size < 2mm 4. strong rock

5. bitumen adheres well 6. low porosity

References

Related documents

– Rock Cycle (different rock types, processes that change from one rock type to another, etc.) – Sedimentary Rocks (examples, how they are formed, defining characteristics).. –

As the Regional Health System (RHS) for Central Singapore, it is vital for NHG to partner and collaborate with other stakeholders, community advisors, volunteer welfare

Especially for highly dynamic driving conditions the engine-out NO X emissions can be significantly higher than measured in NEDC and WLTC tests as.. depicted in Figure 2 for

We establish the asymptotic properties of our modified estimator based on the following four steps, following the analysis of the asymptotic distribution of Box–Cox quantile

With the Athens 2004 Olympics only weeks away, this article identifies the economic effects of hosting the Games, reviews the experience of past host cities, and reviews the outlook

In total, Maure et al [12] conclude that the loop region of Ndc80 is required for the formation of stable end-on kinetochore microtubule interactions via

Erosion and transportation of rock fragments can occur by water, ice, wind, and

3005915341 MXIM Maxim Integrated Prod Information Technology 3005972421 JDSU JDS Uniphase Corp. Information Technology 3006005171 DDR Developers Diversified