Odborna praâce. Laboratory of morphology and forensic anthropology, Department of Anthropology, Faculty of Science, Masaryk University Brno

Loading....

Loading....

Loading....

Loading....

Loading....

Full text

(1)

DatabaÂze trojrozmeÏrnyÂch modeluÊ oblicÏeje deÏtõÂ

a jejõÂ vyuzÏitõÂ v ortodoncii

Database of 3D models of children's faces

and its use in orthodontics

Mgr. Marie JandovaÂ, Mgr. et Mgr. Zuzana KotulanovaÂ, RNDr. Petra UrbanovaÂ, Ph.D.

LaboratorÏ morfologie aforenznõ antropologie, UÂstav antropologie, PrÏõÂrodoveÏdecka fakulta, Masarykova univer-zitaBrno

Laboratory of morphology and forensic anthropology, Department of Anthropology, Faculty of Science, Masa-ryk University Brno

Souhrn

Lidsky oblicÏej, nejvõÂce viditelna cÏaÂst lidskeÂho teÏla, podaÂva informace o identiteÏ sveÂho nositele, zdravotnõÂm stavu a soucÏasneÏ podleÂha vysokyÂm estetickyÂm pozÏadavkuÊm. Je prÏedmeÏtem zkoumaÂnõ mnoha klinickyÂch oboruÊ, vcÏetneÏ ortodoncie, ve kteryÂch jsou tradicÏnõ metody studia staÂle võÂce doplnÏovaÂny o pokrocÏile zaÂznamove metody spojene s pocÏõÂtacÏovou podporou. CõÂlem cÏlaÂnku je nastõÂnit mozÏnosti novyÂch technologiõÂ, mezi neÏzÏ patrÏõ mimo jine opticke 3D skenovaÂnõ doplneÏne o vytvaÂrÏenõ digitaÂlnõÂch databaÂzõ trojrozmeÏrnyÂch (3D) modeluÊ, a zaÂrovenÏ prÏedstavit databaÂzi 3D modeluÊ deÏtskyÂch oblicÏejuÊ, jezÏ vznika v raÂmci projektu LaboratorÏe morfologie a forenznõ antropologie UÂstavu antropologie PrÏõÂrodoveÏdecke fakulty Masarykovy univerzity. Jedna se o modely porÏõÂzene stereofotogram-metrickyÂm prÏõÂstrojem Vectra M1. Do databaÂze bylo doposud zahrnuto 992 jedincuÊ mladsÏõÂch 18 let, ke kteryÂm jsou k dispozici zaÂkladnõ demograficke a biologicke uÂdaje jako je datum narozenõÂ, pohlavõÂ, mõÂsto narozenõ a trvaleÂho bydlisÏteÏ, naÂrodnost, vyÂsÏka postavy nebo teÏlesna hmotnost. PocÏetneÏ bohata a staÂle se rozruÊstajõÂcõ databaÂze po-kryÂva sÏiroke spektrum variability lidskeÂho oblicÏeje a umozÏnÏuje tak dalsÏõ vyuzÏitõ v antropologii a v klinickyÂch leÂkarÏ-skyÂch oborech(Ortodoncie 2015, 24, cÏ. 1, s. 14-21).

Abstract

Human face, the most visible part of a human body, gives information about the identity of the person, their health condition, and at the same time it is subject to high esthetic demands. Human face is the subject of re-search of a number of clinical fields, including orthodontics. Traditional forms of rere-search are innovated by ad-vanced recording methods related to computer support. The aim of the work is to survey new technologies, in-cluding optical 3D scanning and creation of digital databases of 3D models, and to introduce the 3D models of children`s faces database that is being developed at Laboratory of morphology and forensic anthropology, De-partment of Anthropology of Faculty of Science, Masaryk University in Brno. The models are made with stereo-photogrammetric 3D imaging system Vectra M1. The database already includes 992 individuals below 18 years together with basic demographic and biological data (e.g. date of birth, sex, place of birth and permanent add-ress, nationality, body height or body weight). The continually growing database covers a wide spectrum of va-riability of human face, and can be used in anthopology and clinical medicine(Ortodoncie 2015, 24, No. 1, p. 14-21). KlõÂcÏova slova:3D modely, morfologie oblicÏeje, variabilita oblicÏeje, cÏeska populace

(2)

Introduction

Human face is the source of information about the person; it serves as the clue determining sex, age, ac-tual health or emotional condition. Human face is an important part of non-verbal communication, and the basis for individual identification [1, 2]. Human face is the subject of study of anumber of fields, e.g. cognitive psychology, neuroscience, orthodontics, clinical fields and anthropology [3-10].

Biological characteristics of human face may be examined from the viewpoint of its variability, differen-ces between populations, sexual dimorphism, and changes related to age. The traditional approach to the study of the differences is represented by measu-rement, i.e. somatometry, the outcome of which are numerical values of standardized dimensions [11]. In the traditional direct somatometry the dimensions are measured directly in an individual's face. The indi-rect somatometry uses e.g. standardized photographs with a scale [12]. Photographs are widely used in me-dical documentation and research. Nowadays, the tra-ditional direct and indirect somatometry is supplemen-ted - or even substitusupplemen-ted - with various 3D devices. Face or body 3D scans enable the non-contact evalua-tion of body parameters (metric, shape, as well as vi-sual), and thus represent a number of advantages for the examiner and the examined.

3D imaging systems may be divided into two main categories: non-contact (e.g. laser and optical scan-ners, stereophotogrammetric devices), and contact (e.g. electromagnetic and electromechanical digiti-zers) [13]. While the contact devices are suitable for the recording of stable motionless objects, non-con-tact optical devices are used to scan human body and face. The vehicle of information transfer in the lat-ter is reflected light. Digital data obtained through 3D devices are then used to create 3D virtual objects, re-cording not only the body surface shape, but also its outer texture or colour (Fig. 1). 3D digital models may be transformed into a physical form by 3D print tech-nology. This rapidly developing technology shows a great potential for a number of medical specializa-tions [14], including orthodontics [15].

The wide range of use of 3D scans of human body results in creation of 3D models digital databases. Usually anonymous scans of individuals in standardi-zed positions are supplemented with basic biological information (e.g. age, sex, nationality). They serve as the source of invaluable information on shape charac-teristics, rate of resemblance or difference between in-dividuals, impact of external factors, or as the basis for mathematical representation of the norm of the given population [16-20].

UÂvod

Lidsky oblicÏej je zdrojem velkeÂho mnozÏstvõ infor-macõ o sveÂm nositeli, slouzÏõ jako vodõÂtko pro urcÏenõ po-hlavõÂ, veÏku cÏi aktuaÂlnõÂho zdravotnõÂho nebo emocÏnõÂho stavu. Je duÊlezÏitou slozÏkou nonverbaÂlnõ komunikace av neposlednõ rÏadeÏ take zaÂkladem individuaÂlnõÂho roz-poznaÂvaÂnõ jedincuÊ [1, 2]. Studiu oblicÏeje se veÏnuje mnoho oboruÊ, patrÏõ mezi neÏ kognitivnõ psychologie, neuroveÏdy, ortodoncie, klinicke obory atake antropo-logie [3-10].

Biologicke vlastnosti lidskeÂho oblicÏeje je mozÏne zkoumat z hlediska jeho variability, mezipopulacÏnõÂch rozdõÂluÊ, sexuaÂlnõÂho dimorfismu cÏi veÏkovyÂch zmeÏn. Tra-dicÏnõ metodou zkoumaÂnõ teÏchto rozdõÂluÊ je meÏrÏenõÂ, tj. somatometrie, jejõÂmizÏ vyÂstupy jsou cÏõÂselne hodnoty standardizovanyÂch rozmeÏruÊ [11]. U klasicke prÏõÂme so-matometrie jsou rozmeÏry meÏrÏeny prÏõÂmo naoblicÏeji je-dince, neprÏõÂma somatometrie vyuzÏõÂva k zõÂskaÂnõ roz-meÏruÊ naprÏõÂklad standardizovane fotografie s meÏrÏõÂtkem [12]. VyuzÏitõ fotografickeÂho zaÂznamu je v leÂka rÏske do-kumentaci a vyÂzkumu velmi rozsÏõÂrÏeneÂ. V soucÏasne dobeÏ je vsÏak klasicka prÏõÂma i neprÏõÂma somatometrie doplnÏovaÂna nebo dokonce nahrazovaÂna ruÊznyÂmi 3D snõÂmacõÂmi zarÏõÂzenõÂmi. 3D zaÂznam oblicÏeje nebo cele postavy umozÏnÏuje podobneÏ jako klasicka fotografie bezkontaktnõ hodnocenõ teÏlesnyÂch znakuÊ (metrickyÂch, tvarovyÂch i vizuaÂlnõÂch) aprÏinaÂsÏõ tõÂm celou rÏadu vyÂhod pro vysÏetrÏovaneÂho i vysÏetrÏujõÂcõÂho.

TrojrozmeÏrna snõÂmacõ zarÏõÂzenõ mohou byÂt rozdeÏlena do dvou hlavnõÂch kategoriõÂ: bezkontaktnõ (naprÏ. lase-rove aopticke skenery, stereofotogrammetricke prÏõÂ-stroje) akontaktnõ prÏõÂstroje (naprÏ. elektromagneticke aelektromechanicke digitizeÂry) [13]. ZatõÂmco kontaktnõ prÏõÂstroje jsou vhodne pro zaÂznam stabilnõÂch nehyb-nyÂch objektuÊ, pro zaÂznam lidskeÂho teÏlapacientuÊ, vcÏetneÏ oblicÏeje, se pouzÏõÂvajõ bezkontaktnõ opticke prÏõÂ-stroje, u kteryÂch je nositelem informace odrazÏene sveÏtlo. DigitaÂlnõ data zõÂskana pomocõ 3D snõÂmacõÂch za-rÏõÂzenõ jsou naÂsledneÏ pouzÏitak vytvorÏenõ trojrozmeÏr-nyÂch virtuaÂlnõÂch objektuÊ, u kteryÂch je vedle tvaru po-vrchu teÏlavysÏetrÏovaneÂho zaznamenaÂnai jeho vneÏjsÏõ texturanebo barva(obr. 1). TrojrozmeÏrne digitaÂlnõ mo-dely mohou byÂt podle prÏaÂnõ prÏevedeny do fyzicke po-doby pomocõ technologie 3D tisku. Tato rychle se roz-võÂjejõÂcõ technologie prÏedstavuje velky potenciaÂl pro mnoho medicõÂnskyÂch oboruÊ [14], ortodoncii nevyjõÂ-maje [15].

SÏiroke vyuzÏitõ 3D zaÂznamuÊ lidskeÂho teÏlavede k vy-tvaÂrÏenõ digitaÂlnõÂch databaÂzõ trojrozmeÏrnyÂch modeluÊ. Obvykle anonymizovane skeny jedincuÊ ve standardi-zovane pozici jsou doplneÏny o zaÂkladnõ biologicke in-formace, jako je pohlavõÂ, veÏk nebo naÂrodnost. V teÂto podobeÏ pak slouzÏõ jako zdroj cennyÂch informacõ o tva-rovyÂch vlastnostech, mõÂrÏe podobnosti nebo rozdõÂlnosti

(3)

3D models of children's faces database

With regard to current trends and needs, in 2012 the Laboratory of morphology and forensic anthropology of the Department of Anthropology, Faculty of Science, Ma-saryk University (http://anthrop.sci.muni.cz) started to create the database of 3D models of human faces of Czech probands. Vectra M1 imaging system is employed (Canfield Scientific, Inc., Fig. 1), working on the stereop-hotogrammetric principle [21]. Vectra M1 makes shots with two differently oriented cameras, and the resulting 3D model is reconstructed from the shots. The advantage is seen in a very fast and high quality recording of face morphology and texture in 12 Mpx resolution [22].

In 2013 the laboratory purchased Vectra XT (Fig. 2), the device by the same manufacturer working on the same principle as Vectra M1. However, the new Vectra mezi jednotlivci, vlivu vneÏjsÏõÂch faktoruÊ prostrÏedõÂ nebo

jako zaÂklad pro vytvorÏenõ matematickeÂho vyjaÂdrÏenõ normy dane populace [16-20].

DatabaÂze trojrozmeÏrnyÂch modeluÊ oblicÏeje deÏtõÂ

S ohledem nasoucÏasne trendy apotrÏeby bylo v roce 2012 v LaboratorÏi morfologie aforenznõ antropologie UÂstavu antropologie PrÏõÂrodoveÏdecke fakulty Masary-kovy univerzity (http://anthrop.sci.muni.cz) zahaÂjeno budovaÂnõ databaÂze 3D modeluÊ lidskyÂch oblicÏejuÊ cÏes-kyÂch probanduÊ. K tomuto uÂcÏelu je vyuzÏõÂvaÂn prÏõÂstroj Ve-ctraM1 (od vyÂrobce Canfield Scientific, Inc., obr. 1), ktery funguje naprincipu stereofotogrammetrie [21]. VectraM1 porÏizuje snõÂmky pomocõ dvou odlisÏneÏ orien-tovanyÂch kamer, na jejichzÏ zaÂkladeÏ je naÂsledneÏ rekon-struovaÂn vyÂsledny trojrozmeÏrny model. VyÂhodou je velmi rychly akvalitnõ zaÂznam morfologie i textury ob-licÏeje s rozlisÏenõÂm 12 Mpx [22].

V polovineÏ roku 2013 byl do laboratorÏe porÏõÂzen prÏõÂ-stroj VectraXT (obr. 2) od stejneÂho vyÂrobce, ktery fun-guje nashodneÂm principu jako Vectra M1. Novy prÏõÂ-stroj je vsÏak vybaven celkem sÏesti kamerami, cÏõÂmzÏ snõÂma mnohem veÏtsÏõ rozsah teÏla. Vedle nastavenõ pro zaÂznam oblicÏeje umozÏnÏuje zachytit azÏ polovinu lid-skeÂho teÏla(trupu, dolnõÂch koncÏetin). NevyÂhodou prÏõÂ-stroje VectraXT jsou veÏtsÏõ rozmeÏry atõÂm vysÏsÏõ naÂroky naprÏepravu prÏi pouzÏõÂvaÂnõ mimo prostory laboratorÏe.

PrÏi budovaÂnõ databaÂze se cÏaÂst projektu zameÏrÏilana zaÂznam oblicÏeje deÏtõ ve veÏku od 6 do 18 let. K tomuto uÂcÏelu jsme oslovili peÏt brneÏnskyÂch zaÂkladnõÂch sÏkol, s nimizÏ bylana sledneÏ navaÂzaÂnaspolupra ce. Jejich prostrÏednictvõÂm byly rodicÏuÊm (zaÂkonnyÂm zaÂstupcuÊm) adeÏtem prÏedaÂny informace o projektu, informovany souhlas a dotaznõÂk. Pomocõ dotaznõÂku byly zjisÏt'ovaÂny zaÂkladnõ uÂdaje o deÏtech - pohlavõÂ, datum narozenõÂ, mõÂsto narozenõÂ, meÏsto bydlisÏteÏ a na rodnost. Pokud ro-dicÏe a deÏti souhlasili se zarÏazenõÂm do databaÂze, doru-cÏili do sÏkoly vyplneÏny dotaznõÂk a podepsany informo-vany souhlas. Celkem bylo v peÏti sÏkolaÂch rozdaÂno cca1 700 dotaznõÂkuÊ ainformovanyÂch souhlasuÊ, sou-hlas se zarÏazenõÂm do databaÂze byl zõÂskaÂn pro cca 1 100 deÏtõ (64,5 %). Z toho byl u jedne sÏkoly zõÂskaÂn souhlas pouze od 5 rodicÏuÊ (z 300 mozÏnyÂch), cozÏ bylo zaprÏõÂcÏineÏno neduÊveÏrou vzniklou naza kladeÏ sÏpatnyÂch zkusÏenostõ s prÏedchozõÂm sÏkolnõÂm fotografovaÂnõÂm deÏtõÂ. CÏaÂst deÏtõÂ(prÏiblizÏneÏ 10 %) naÂsledneÏ nebyla do databaÂze zarÏazena z duÊvodu absence ve sÏkole v den porÏizovaÂnõ 3D zaÂznamuÊ. DalsÏõÂch 42 deÏtõ (4,2 %) bylo naskenovaÂno

Obr. 1.ScheÂmapostupu prÏi vytvaÂrÏenõ vyÂsledneÂho 3D modelu s vy-uzÏitõÂm prÏõÂstroje VectraM1. Hrube modely jsou nejprve upraveny tak, zÏe jsou odstraneÏny technicky nevyhovujõÂcõ cÏaÂsti. Upravene dõÂlcÏõ modely jsou naÂsledneÏ spojeny do vyÂsledneÂho modelu.

Fig. 1.Scheme of the process of creating the resulting 3D model with Vectra M1. First, the technically inappropriate parts are cut off. The partial models are then joined into the resulting model.

(4)

has got six cameras so that a greater part of body is scanned. Apart from face scanning it can record a half of human body (torso, lower limbs). The disadvantage of Vectra XT is in its dimensions and therefore greater demands on transport when it is used outside the lab. When creating the database, the part of the project focused on scanning the faces of children between 6 and 18 years. We addressed five elementary schools in Brno. Parents (legal representatives) and children were informed about the project; they were given an in-formed consent form and a questionnaire. The que-stionnaire summarized basic data on children (sex, date of birth, place of birth, permanent address and na-tionality). In case parents and children agreed to co-operate they sent the filled in questionnaire and signed informed consent to the respective school. We distri-buted approx. 1,700 questionnaires and informed con-sents, 1,100 (64.5%) children and young adults (their legal representatives) agreed to participate in the pro-ject. In one case only five parents (out of 300 addres-sed) agreed to participate in the project. The low num-ber was due to their distrust resulting from the previous bad experience with taking photographs of the child-ren. Approx. 10% of children were not included in the database due to their non-attendance at school on mimo spolupraÂci se sÏkolami, avsÏak pruÊbeÏh skenovaÂnõÂ

byl obdobnyÂ.

Samotny sbeÏr dat probõÂhal v obdobõ od konce ledna do cÏervna2013 prÏõÂmo v prostoraÂch zaÂkladnõÂch sÏkol, v mõÂstnostech poskytnutyÂch sÏkolou (volna ucÏebna, sÏkolnõ druzÏina). ZaÂkladnõÂm pozÏadavkem na tyto mõÂst-nosti byl prÏõÂstup dennõÂho sveÏtlas mozÏnostõ jeho regu-lace pomocõ zÏaluziõÂ. SkenovaÂnõ probõÂhalo v dopoled-nõÂch hodinaÂch. DõÂky pouzÏitõÂvestaveÏnyÂch zaÂbleskovyÂch sveÏtel jsou skenery Vectrarobustnõ vuÊcÏi zmeÏnaÂm okol-nõÂch sveÏtelnyÂch podmõÂnek. NaÂrocÏneÏjsÏõ regulace sveÏ-telnyÂch podmõÂnek proto nebylanutnaÂ.

DeÏtem byly nejprve upraveny vlasy tak, aby neprÏe-kryÂvaly cÏelo ausÏnõÂboltce, daÂle byly pozÏaÂdaÂny o odstra-neÏnõ naÂusÏnic, bryÂlõ ao zachova nõ neutraÂlnõÂho vyÂrazu aotevrÏenyÂch ocÏõ po dobu snõÂmaÂnõÂ. Samotne snõÂmaÂnõ oblicÏeje probõÂhalo vsedeÏ naotocÏne stolicÏce (obr. 2). Kamery Vectry M1 jsou optimalizovaÂny pro urcÏitou vzdaÂlenost objektu (oblicÏeje) od kamer, jezÏ je prÏesneÏ urcÏovaÂnapomocõ sveÏtelneÂho zameÏrÏovacõÂho zarÏõÂzenõÂ, ktere je soucÏaÂstõ prÏõÂstroje. PrÏed zahaÂjenõÂm snõÂmaÂnõ byly deÏti do teÂto vzdaÂlenosti (prÏiblizÏneÏ 70 cm od kamer) na-staveny. Spolu s 3D zaÂznamem byla u deÏtõÂdaÂle meÏrÏena vyÂsÏkapostavy ateÏlesna hmotnost. Cely proces u jed-noho dõÂteÏte trval 5 azÏ 10 minut. NaÂsledneÏ deÏti dostaly

Obr. 2.UkaÂzkaskenovaÂnõÂ dõÂteÏte v LaboratorÏi morfologie aforenznõÂ antropologie, vlevo prÏõÂstrojem VectraM1 avpravo prÏõÂstrojem VectraXT.

(5)

the day when 3D records were made. Additional 42 children (4.2%) were scanned outside the cooperation with schools; however, the procedure was similar.

The data were collected from the end of January 2013 till June 2013 on the schools premises (in lecture rooms, school club rooms, etc.). The recording was made by daylight (in the morning hours) that could be regulated with blinds. Thanks to the built-in photoflash Vectra scanners are resistant to the changes of the light condition. Therefore, a more demanding regula-tion of light was not necessary.

The hair of the children was adjusted so that it did not cover the forehead and earlobes; they were asked to re-move earrings, glasses, and to maintain a neutral expression and open eyes during the scanning. They sat on a swivel chair (Fig. 2). Vectra M1 cameras are opti-mized for a given distance of an object (face) from the cameras. The distance is precisely set with the help of ranging light assembly that is a part of Vectra M1. In case of this recording, the distance between a child and the cameras was about 70 cm. We also measured body height and weight. The whole process took between 5 and 10 minutes per a child. Subsequently, the children were given the password for the special website from which they can download the movable 3D model of one's own face in pdf format, and in the form of a simple application for touch devices (smart phone, tablet, etc.). It was required (for the database as well as for the fol-lowing use) that the 3D model represent a face also from profile together with earlobes. The angle of view of Vectra M1 is 100°, and thus it is not possible to record the overall face including earlobes at once. Therefore, each proband was recorded en face and from both half-profiles. During the process of scanning there - in peripheral areas of the scan - artefacts occur in the form of moderately distorted or blurred parts. Before the three partial models were uni-fied into one, the unsatisfactory parts of models were cut off. In half-profiles it was the reverse part of a face, areas around the eyes. In en face scans they were lateral parts of anose. The modified 3D models were subsequently joined in the programme MeshLab, v.1.3.2 - for the recon-struction of asurface out of points we used Poisson filter the parameters of which were set to maintain as many de-tails as possible (Fig. 1).

To register the factors affecting the development and variability of a child's face, we provided the parents (af-ter the scanning was completed) with the electronic questionnaire on the child's living conditions. The que-stions included the type of housing, parents' education, number of siblings and their order, eating habits, how much time the child spends outside the town, whether the parents are divorced or whether they smoke. This questionnaire was voluntary and was not a precondition to include the child in the database.

prÏõÂstupove heslo do speciaÂlneÏ vytvorÏene internetove schraÂnky, ze ktere bylo mozÏne si staÂhnout pohyblivy 3D model vlastnõÂho oblicÏeje ve formaÂtu pdf av podobeÏ jednoduche aplikace pro dotykova za rÏõÂzenõ (mobilnõ te-lefon, tablet).

Pro potrÏeby databaÂze i dalsÏõÂho vyuzÏitõÂ bylo vyzÏado-vaÂno, aby 3D model zobrazoval oblicÏej i z profilu spolu s usÏnõÂmi boltci. PrÏõÂstroj VectraM1 maÂuÂhel zaÂbeÏru 100°

a tak nenõ schopen zachytit najednou cely oblicÏej vcÏetneÏ usÏnõÂch boltcuÊ. KazÏdy jedinec byl proto snõÂmaÂn nejen zeprÏedu, ale i z obou poloprofiluÊ. SoucÏasneÏ prÏi skenovaÂnõ dochaÂzõ v perifernõÂch oblastech skenu (ty cÏaÂsti oblicÏeje, ktere se beÏhem skenovaÂnõ nenachaÂzõ v ideaÂlnõ pozici vuÊcÏi kameraÂm prÏõÂstroje) ke vzniku arte-faktuÊ ve formeÏ mõÂrneÏ deformovanyÂch nebo rozmaza-nyÂch cÏaÂstõÂ. PrÏed tõÂm nezÏ byly trÏi dõÂlcÏõ modely spojeny do modelu jedineÂho, byly nejprve orÏezaÂny technicky nevyhovujõÂcõ cÏaÂsti modeluÊ. U poloprofiluÊ se jednalo prÏedevsÏõÂm o odvraÂcenou cÏaÂst oblicÏeje ao cÏaÂsti okolo ocÏõ au zobrazenõ zeprÏedu pak o postrannõ cÏaÂsti nosu. Takto upravene trojrozmeÏrne modely byly naÂsledneÏ spojeny v programu MeshLab, v1.3.2, kde byl pro re-konstrukci povrchu z boduÊ pouzÏit algoritmus vyhlazenõ (Poisson filtr) s nastavenyÂmi parametry tak, aby bylo zachovaÂno co nejvõÂce detailuÊ (obr. 1).

Ve snaze podchytit faktory ovlivnÏujõÂcõ vyÂvoj a varia-bilitu oblicÏeje deÏtõ byl rodicÏuÊm deÏtskyÂch probanduÊ po probeÏhnuteÂm snõÂmaÂnõ poskytnut elektronicky dota-znõÂk, zjisÏt'ujõÂcõ informace o zÏivotnõÂch podmõÂnkaÂch dõÂ-teÏte. DotazovaÂn byl typ bydlenõÂ, vzdeÏlaÂnõ rodicÏuÊ, pocÏet sourozencuÊ aporÏadõ narozenõÂ, stravovacõ naÂvyky, jak cÏasto je dõÂteÏ mimo meÏsto, zdase rodicÏe rozvedli nebo jestli jsou rodicÏe kurÏaÂci. ZodpoveÏzenõÂtohoto dotaznõÂku bylo dobrovolne anepodminÏovalo zacÏleneÏnõ do data-baÂze.

Demograficke slozÏenõ databaÂze 3D modeluÊ obli-cÏeje

V staÂle se rozsÏirÏujõÂcõÂ databaÂzi je v soucÏasnosti cel-kem 1 737 jedincuÊ zaznamenanyÂch prÏõÂstrojem Vectra M1, cÏaÂst (6,4 %) soucÏasneÏ i prÏõÂstrojem VectraXT. Z cel-kem 992 jedincuÊ mladsÏõÂch 18 let bylo ve sÏkolaÂch ske-novaÂno 535 dõÂvek a442 chlapcuÊ. Jejich oblicÏej byl za-znamenaÂn pouze prÏõÂstrojem VectraM1.

PrÏesny veÏk jedincuÊ byl urcÏen odecÏtenõÂm data naro-zenõ od data porÏõÂnaro-zenõ 3D modelu. NejveÏtsÏõ zastoupenõ majõ deÏti ve veÏku od 7 do 12 let (84,6 %). Celkem 85,5 % deÏtskyÂch probanduÊ je z Brna(395 chlapcuÊ a454 dõÂvek) apouze 28 deÏtõ (2,8 %) ma trvale bydlisÏteÏ v jine cÏaÂsti republiky nezÏ v JihomoravskeÂm kraji. Cel-kem 24 deÏtõ (2,4 %) ma jinou nezÏ cÏeskou nebo morav-skou naÂrodnost, acÏkoliv trvale bydlisÏteÏ majõ na uÂzemõ CÏeske republiky. V databaÂzi je 21 deÏtõ (2,1 %), jezÏ se narodily v zahranicÏõÂ, z cÏehozÏ 4 jedinci se narodili ve

(6)

Slo-Demographics of the 3D face models database

In the ever extending database there are currently 1,738 individuals scanned with Vectra M1, a part of them (6.4%) scanned also by Vectra XT. There are 992 people under 18 years; 535 girls and 442 boys were scanned at school. Their faces were scanned only by VectraM1.

The precise age of each individual was calculated as subtraction of the date of birth from the date the 3D mo-del was scanned. Majority of children is between 7 and 12 years (84.6%). 85.5% of the probands come from Brno (395 boys and 454 girls), and only 28 children (2.8%) has a permanent address outside the South Mo-ravian region. 24 children (2.4%) is of different nationa-lity (nor Czech or Moravian), though they reside on the territory of the Czech Republic. There are 21 children (2.1%) born abroad (4 of them in the Slovak Republic). There are also 10 pairs of twins in the database: 5 pairs of mixed gender, 4 pairs of girls, and one pair of boys. The additional questionnaire focusing on the living con-ditions was filled in for 99 children (10.1%).

Applications of the database

Models of children's faces in the database serve pri-marily as the input data for the comprehensive review on the development of face size and shape of the current Czech population. The primary aim is to follow the gene-ral trends in the face development without focusing on the development of an individual. Therefore we opted for the summary report, not for longitudinal or semilon-gitudinal research that is more demanding from the viewpoint of time, technology and organization. Timing, quickness and character of the changes in face morpho-logy during a child growth are individually, sexually, and population specific [22]. Faces analyses will lead to creation of prediction rules of growth and development of craniofacial area of the Czech individuals from the age of six to their adulthood. The parameters monitored will be the changes in shape and size of face and its parts. With regard to sexual dimorphism of a human face, the age changes will be predicted separately for boys and for girls. Prediction rules serve to estimate the age of an individual and to predict the growth and development of a given face, which may be used in clinical practice, either surgical or orthodontic [23-25].

Models from the databases may be also used to form average shapes of face. Studies analyzing ave-rage faces examine e.g. sexual dimorphism in children of a given age [26], or they deal with average faces as the mathematical representation of the population norm and compare the norm with individuals of dispro-portionate face. The procedure may be also applied in orthodontic diagnostics or treatment [27]. Comparison of models has a wide potential use in clinical practice. It venske republice. DatabaÂze take obsahuje 10 paÂruÊ

dvojcÏat. Jedna se o peÏt paÂruÊ se smõÂsÏenyÂm pohlavõÂm, cÏtyrÏi paÂry dõÂvek ajeden paÂr chlapcuÊ. DodatecÏny dota-znõÂk zjisÏt'ujõÂcõÂzÏivotnõÂpodmõÂnky dõÂteÏte vyplnili rodicÏe cel-kem pro 99 deÏtõ (10,1 %).

Prakticke vyuzÏitõ databaÂze

Modely deÏtskyÂch oblicÏejuÊ v databaÂzi slouzÏõ pri-maÂrneÏ jako vstupnõ data k pruÊrÏezove studii vyÂvoje veli-kosti atvaru oblicÏeje soucÏasne cÏeske populace. Pri-maÂrnõÂm cõÂlem je sledovat obecne trendy vyÂvoje obli-cÏeje, bez zameÏrÏenõ navyÂvoj individuaÂlnõÂ. Z tohoto duÊvodu bylo prÏistoupeno ke studii pruÊrÏezoveÂ, nikoliv longitudinaÂlnõ nebo semilongitudinaÂlnõÂ, ktere jsou cÏa -soveÏ, technicky a organizacÏneÏ naÂrocÏneÏjsÏõÂ. NacÏaso-vaÂnõÂ, rychlost a charakter zmeÏn morfologie oblicÏeje v pruÊbeÏhu ruÊstu dõÂteÏte jsou individuaÂlneÏ, pohlavneÏ apopulacÏneÏ specificke [22]. AnalyÂzy oblicÏejuÊ povedou k vytvorÏenõ predikcÏnõÂch pravidel ruÊstu avyÂvoje kranio-faciaÂlnõ oblasti cÏeskyÂch jedincuÊ od sÏesti let do dospeÏ-losti, kdy sledovanyÂmi parametry budou zmeÏny tvaru i velikosti oblicÏeje ajeho cÏaÂstõÂ. S ohledem nasexuaÂlnõ dimorfismus lidskeÂho oblicÏeje budou veÏkove zmeÏny predikovaÂny zvlaÂsÏt'pro chlapce a dõÂvky. PredikcÏnõ pra-vidlaslouzÏõÂjak k odhadu veÏku jedince, tak k predikci ruÊ-stu avyÂvoje konkreÂtnõÂho oblicÏeje, cozÏ je vyuzÏitelne praÂveÏ v klinicke praxi, at' jizÏ chirurgii nebo ortodoncii [23-25].

Modely z databaÂzõ lze vyuzÏõÂt rovneÏzÏ pro formovaÂnõ pruÊmeÏrnyÂch tvaruÊ oblicÏeje. Studie analyzujõÂcõ pruÊ-meÏrne oblicÏeje zjisÏt'ujõ naprÏ. sexuaÂlnõ dimorfismus deÏtõ urcÏiteÂho veÏku [26] nebo pruÊmeÏrne oblicÏeje chaÂpou jako matematicke vyjaÂdrÏenõ populacÏnõ normy aporovnaÂvajõ ji s jedinci s disproporcÏnõÂm oblicÏejem. Tento postup lze aplikovat v ortodoncii prÏi diagnostice nebo leÂcÏbeÏ [27]. SrovnaÂnõ modeluÊ ma pro klinickou praxi velky poten-ciaÂl vyuzÏitõÂ. Jednak muÊzÏe byÂt formou subjektivnõÂho vi-zuaÂlnõÂho hodnocenõÂ, kdy leÂka rÏ hodnotõÂmõÂru a charakter deformit oblicÏeje oproti pruÊmeÏrneÂmu oblicÏeji nebo srovnaÂva model oblicÏeje pacienta prÏed apo leÂcÏebneÂm zaÂkroku, prÏicÏemzÏ pro veÏtsÏõ naÂzornost jsou modely zo-brazovaÂny vedle sebe [28]. VyÂhodou pouzÏitõÂ3D modeluÊ v tomto prÏõÂpadeÏ take je, zÏe leÂka rÏ nenõ omezen nadobu prÏõÂtomnosti pacienta prÏi vysÏetrÏenõÂ. KvantitativneÏ je srovnaÂnõ modeluÊ analyzovaÂno pomocõ superpozice modeluÊ aznaÂzorneÏnõ zmeÏn prostrÏednictvõÂm 3D barev-nyÂch map. Barevne mapy jsou grafickou reprezentacõ vzdaÂlenostõ mezi dveÏmanasebe prÏilozÏenyÂmi 3D mo-dely ajsou vyuzÏitelne prÏi prÏedoperacÏnõÂm posouzenõ apla novaÂnõ operace, hodnocenõ vyÂsledkuÊ operace [29].

DalsÏõ objektivnõ metody hodnocenõ morfologie obli-cÏeje v klinicke praxi jsou zalozÏeny naprÏ. navyuzÏitõ tzv. vyÂznacÏnyÂch boduÊ (landmarkuÊ), ktere jsou umõÂsteÏny

(7)

can serve as the form of subjective assessment, when surgeons evaluate the range and characteristic featu-res of face deformities compared to an average face, or they compare the model of a patient's face prior and after the therapy - the models are then displayed next to each other [28]. The advantage of 3D models is seen in the fact that a surgeon is not limited by the patient's physical presence. Quantitatively, the models compa-rison is analyzed by their superimposition and repre-sentation of the changes with the help of 3D color maps. Color maps are graphical representations of the distance between two superimposed 3D models, and can be used in the evaluation prior to surgery and in treatment planning, as well as in the evaluation of the therapy results [29].

Other objective methods of evaluation of face morphology in clinical practice are based on e.g. the use of the so called landmarks that are located in the precisely defined places on 3D models, and subse-quently quantitatively and statistically processed [30]. All the methods of 3D models evaluation are inte-grated into Fidentis Analyst programme [31] develo-ped in the workplace of the authors. The current testing version of the programme can be downloaded free of charge at www.fidentis.cz.

Conclusion

The database of children's faces 3D models develo-ped in the Laboratory of morphology and forensic anthro-pology provides information on the morphology of cra-niofacial area of Czech children, and thus offers a number of possible practical applications in the fields that deal with population and development standards, and have to rely on a number of reference databases of anthropo-metric and statistical data. Creation of 3D models is quick and it is not time consuming for the probands compared to traditional methods of measurement. The database is already relatively extensive, and it is continually growing. With regard to the delicate biometric information included in the database, it can be approached only by authorized persons, and it is meant for scientific research done at the Department of Anthropology. The public version will be accessible to those interested in cooperation after sig-ning the contract on cooperation. This version will be launched in the beginning of 2015. The database will be approachable without the contract signature through the analytical tools of Fidentis Analyst programme. The anonymity and biometric data of volunteers will be pro-tected by protective elements of the programme.

The authors have no commercial, proprietary or financial interest in products or companies mentioned in the article.

Acknowledgement: Grant support of Nr. 151/2013 ± Interactive e-lerning materials with new dimension: So-matoscopic features of human face.

naprÏesneÏ definovanyÂch mõÂstech 3D modeluÊ apote kvantitativneÏ a statisticky zpracovaÂny [30].

VsÏechny tyto formy hodnocenõÂ 3D modeluÊ jsou za-komponovaÂny do programu Fidentis Analytik [31] vyvõÂjeneÂm napracovisÏti autoruÊ. SoucÏasnou testovacõÂ verzi programu lze bezplatneÏ staÂhnout naadrese www.fidentis.cz.

ZaÂveÏr

DatabaÂze 3D modeluÊ deÏtskeÂho oblicÏeje vytvaÂrÏena LaboratorÏõ morfologie aforenznõ antropologie posky-tuje informace o morfologii kraniofaciaÂlnõ oblasti cÏes-kyÂch deÏtõ a nabõÂzõ tak mnoho mozÏnostõ praktickeÂho vy-uzÏitõ v oborech, ktere vztahujõ sve vyÂstupy k populacÏ-nõÂm avyÂvojovyÂm standarduÊm ajsou odka zaÂny na pocÏetne referencÏnõÂdatabaÂze antropometrickyÂch asta-tistickyÂch uÂdajuÊ. VytvorÏenõ 3D modeluÊ je rychle a na probandy neklade vysoke cÏasove naÂroky, jak by tomu bylo u tradicÏnõÂho meÏrÏenõÂ. VytvorÏena databaÂze je jizÏ dnes relativneÏ rozsaÂhla apruÊbeÏzÏneÏ dochaÂzõ k jejõÂmu dalsÏõÂmu rozsÏirÏovaÂnõÂ. S ohledem nacitlivost biometric-kyÂch informacõ obsazÏenyÂch v databaÂzi, je vstup do da-tabaÂze omezen pouze na autorizovane osoby aurcÏen pro veÏdecko-vyÂzkumne uÂcÏely UÂstavu antropologie. VerÏejna verze databaÂze bude prÏõÂstupna zaÂjemcuÊm o spolupraÂci po podepsaÂnõ smlouvy o spolupraÂci. Jejõ zprÏõÂstupneÏnõ je plaÂnovaÂno nazacÏaÂtek roku 2015. PrÏõÂ-stup k uÂdajuÊm v databaÂzi bez nutnosti podpisu smlouvy bude mozÏne take prÏes analyticke naÂstroje programu Fidentis Analytik, kde anonymita a biome-tricke uÂdaje dobrovolnõÂkuÊ budou chraÂneÏny bezpecÏ-nostnõÂmi prvky programu.

AutorÏi nemajõ komercÏnõÂ, vlastnicke nebo financÏnõ zaÂjmy napro-duktech nebo spolecÏnostech popsanyÂch v tomto cÏlaÂnku.

Projekt vznikl s podporou Fondu rozvoje vysokyÂch sÏkol cÏ. 151/2013 ± Interaktivnõ e-learningove materiaÂly s novyÂm rozmeÏrem: Somatoskopicke znaky lidskeÂho oblicÏeje.

PodeÏkovaÂnõÂ:DeÏkujeme brneÏnskyÂm zaÂkladnõÂm sÏko-laÂm, ktere se zapojily do vyÂzkumu (ZSÏ Bakalovo naÂbrÏezÏõÂ, ZSÏ KotlaÂrÏskaÂ, ZSÏ KrÏõÂdlovickaÂ, ZSÏ Slovanske naÂmeÏstõ a ZSÏ NovolõÂsÏenÏskaÂ). Take velmi deÏkujeme vsÏem rodi-cÏuÊm a deÏtem za duÊveÏru a ochotu s naÂmi spolupracovat. ZvlaÂsÏt'deÏkujeme Jakubovi KraÂlõÂkovi za ochotu nasnõÂmat se pro ilustracÏnõ uÂcÏely a jeho rodicÏuÊm za svolenõ data pouzÏõÂt.

(8)

Literatura/ References

1. Alley, R.: Social and Applied Aspects of Perceiving Faces. 1st ed., Hillsdale, NJ: Lawrence Erlbaum Associates, 1988. 2. Bruce, V.; Young, A.: Face perception. 1st ed., London:

Psychology Press, 2012.

3. Baughan, B.; Demirjan, A.: Sexual dimorphism in the growth of the cranium. Amer. J. Phys. Anthropol. 1978, 49, cÏ. 3, s. 383-390.

4. Shaw, W. C.: The influence of children's dentofacial appea-rance on their social attractiveness as judged by peers and lay adults. Amer. J. Orthodont. 1981, 79, cÏ. 4, s. 399-415. 5. Farkas L. G.; Posnick, J. C.; Hreczko, T. M.: Growth

pa-tterns of the face: a morphometric study. Cleft Palate Craniofacial J. 1992, 29, cÏ. 4, s. 308-315.

6. Bishara, S. E.; Jakobsen, J. R.; Hession, T. J. et al.: Soft tis-sue profile changes from 5 to 45 years of age. Amer. J. Orthodont. Dentofacial Orthop. 1998, 114, cÏ. 6, s. 698-706. 7. Bulygina, E.; Mitteroecker, P.; Aiello, L.: Ontogeny of fa-cial dimorphism and patterns of individual development within one human population. Amer. J. Phys. Anthropol. 2006, 131, cÏ. 3, s. 432-443.

8. Fink, B.; Neave, N.; Seydel, H.: Male facial appearance signals physical strength to women. Amer. J. Hum. Biol. 2007, 19, cÏ. 1, s. 82-87.

9. Windhager, S.; Schaefer, K.; Fink, B.: Geometric morpho-metrics of male facial shape in relation to physical strength and perceived attractiveness, dominance and masculinity. Amer. J. Hum. Biol. 2011, 23, cÏ. 3, s. 805-814.

10. Litsas, G.: Growth hormone therapy and craniofacial bo-nes: a comprehensive review. Oral Diseases 2013, 19, cÏ. 6, 559-567.

11. BlaÂha, P.; VignerovaÂ, J.; PaulovaÂ, M. et al.: VyÂvoj teÏles-nyÂch parametruÊ cÏeskyÂch deÏtõ amla dezÏe se zameÏrÏenõÂm narozmeÏry hlavy (0-16 let). 1. vyd., Praha: StaÂtnõ zdra-votnõ uÂstav, 1999.

12. Farkas, L. G.: Photogrammetry of the face. In: Farkas, L.G. (ed.): Anthropometry of the head and face. New York: Raven Press, 1994, s. 79-88.

13. Sforza, C.; Dellavia, C.; De Menezes, M. et al.: Three-Di-mensional Facial Morphometry: From Anthropometry to Digital Morphology. In Preedy, V.R. (ed.): Handbook of Anthropometry. New York: Springer, 2012, s. 611-624. 14. Rengier, E.; Mehndiratta, A.; Tengg-Kobligk, H. von et

al.: 3D printing based on imaging data: review of medical applications. Int. J. Computer Assisted Radiol. Surg. 2010, 5, cÏ. 4, s. 335-341.

15. Thurzo, A.: Prve skuÂsenosti s 3D skenmi tvaÂre a3D tla-cÏou v ortodoncii. Ortodoncie 2011, 20, cÏ. 4, s. 228-236. 16. Ersotelos, N.; Dong, F.: Building highly realistic facial modelling and animation: a survey. Visual Computer 2007, 24, cÏ. 1, s. 13-30.

17. Evison, M. P.; Vorder Bruegge, R. W.: The Magna data-base: a database of three-dimensional facial images for research in human identification and recognition

[online]. Forensic Sci. Commun. 2008, 10, cÏ. 2 [cit. 2014-03-19]. Dostupne na: http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/april2008 /research/2008_04_research01.htm/.

18. Savran, A.; AlyuÈz, N.; Dibeklioglu, H. et al.: Bosphorus Database for 3D Face Analysis. In: Schouten, B.; Juul, N. C.; Drygajlo, A. et al. (eds.): Biometrics and Identity Management. Berlin: Springer, 2008, s. 47-56.

19. Evison, M.; Dryden, I.; Fieller, N. et al.: Key Parameters of Face Shape Variation in 3D in a Large Sample. Forensic Sci. 2010, 55, cÏ. 1, s. 159-162.

20. Gupta, S.; Markey, M.K.; Bovik, A.C.: Anthropometric 3D Face Recognition. Int. J. Computer Vision 2010; 90, cÏ. 3, s. 331-349.

21. Kau, C. H.; Richmond, S.; Incrapera, A. et al.: Three-di-mensional surface acquisition systems for the study of facial morphology and their application to maxillofacial surgery. Int. J. Med. Robotics and Computer Assisted Surg. 2007; 3, cÏ. 2, s. 97-110.

22. Canfieldsci. VECTRA M1 Imaging System [online]. [cit. 2014-03-19]. Dostupne na: http://www.canfieldsci.com/ imaging_systems/facial_systems/VECTRA_M1_Imaging _System.html.

23. Enlow, D. H.; Hans, M. G.: Essentials of Facial Growth. 1st ed., Oxford: W. B. Saunders Company, 1996. 24. Farkas, L. G.; Posnick, J. C.: Growth and development of

regional units in the head and face based on anthropome-tric measurements. Cleft Palate-Craniofacial J. 1992, 29, cÏ. 4, s. 301-329.

25. Ferrario, V. F.; Sforza, C.; Poggio, C. E. et al.: Facial vo-lume changes during normal human growth and deve-lopment. Anat. Rec. 1998, 250, cÏ. 4, s. 480-487. 26. Nute, S.J.; Moss, J.P.: Three dimensional facial growth

studied by optical surface scanning. J. Orthodont. 2000, 27, cÏ. 1, s. 31-38.

27. Kau, C. H.; Zhurov, A.; Richmond, S. et al.: Facial templa-tes: anew perspective in three dimensions. Orthodont. Craniofacial Res. 2006, 9, cÏ. 1, s. 10-17.

28. Hajeer, M. Y.; Millett, D. T.; Ayoub, A. F. et al.: Current Pro-ducts and Practices Applications of 3D imaging in ortho-dontics: Part I. J. Orthodont. 2004, 31, cÏ. 1, s. 62-70. 29. Jayaratne, Y. S. N.; Zwahlen, R. A.; Lo, J. et al.:

Three-Di-mensional Color Maps: A Novel Tool for Assessing Cranio-facial Changes. Surg. Innovation 2010; 17, cÏ. 3, s. 198-205. 30. Shimomatsu, K.; Nozoe, E.; Ishihata, K. et. al.: Three-di-mensional analyses of facial soft tissue configuration of Ja-panese females with jaw deformity: A trial of polygonal view of facial soft tissue deformity in orthognathic patients. J. Cranio-Maxillo-Facial Surg. 2012, 40, cÏ. 7, s. 559-567. 31. ChalaÂs, I.; UrbanovaÂ, P.; KotulanovaÂ, Z. et al.: Forensic

3D facial identification software (FIDENTIS). In Procee-dings of the 20th World Meeting of the International As-sociation of Forensic Sciences. 2014.

Mgr. Marie JandovaÂ, UÂstav antropologie, PrÏF MU KotlaÂrÏska 2, 611 37 Brno

Figure

Updating...

References

Updating...

Related subjects :