ContentslistsavailableatScienceDirect
Sensors
and
Actuators
A:
Physical
j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a
An
FPGA-based
versatile
development
system
for
endoscopic
capsule
design
optimization
C.
Cavallotti
a,∗,
P.
Merlino
b,
M.
Vatteroni
a,
P.
Valdastri
a,
A.
Abramo
c,
A.
Menciassi
a,
P.
Dario
aaTheBioRoboticsInstitute,ScuolaSuperioreSantAnna,Pisa56100,Italy bPTLab,AgemontS.p.A.,Amaro33020,Italy
cDIEGM,Universita’diUdine,Udine33100,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received30September2010
Receivedinrevisedform11January2011 Accepted12January2011
Available online 31 January 2011 Keywords:
FPGA
WirelessCapsuleEndoscopy Sensor
a
b
s
t
r
a
c
t
Thisworkpresentsadevelopmentsystem,basedonFieldProgrammableGateArray(FPGA),thatwas specificallydesignedfortestingtheentireelectronicstobeintegratedinanendoscopiccapsule,suchasa camera,animagecompressionengine,ahigh-speedtelemetricsystem,illuminationandinertialsensors. Thankstoitshighflexibility,severalfeaturesweretestedandevaluated,thusallowingtofindtheoptimal configuration,intermsofpowerconsumption,performancesandsize,tobefitinacapsule.Asfinalresult, anaverageframerateof19framepersecond(fps)overatransmissionchannelof1.5Mbit/swaschosen asthebestchoiceforthedevelopmentofaminiaturizedendoscopiccapsuleprototype.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction
WirelessCapsuleEndoscopy(WCE)isanemergingtechnology
which is producing a bigimpact onthepracticeof endoscopy.
A typicalendoscopiccapsule isequipped withanimaging
sen-sor,anilluminationsystem,animageprocessor,aradio-frequency
transmitter and a power sourcewhich provides energy to the
wholesystem[1].WCEseemstobesuperiorinthediagnosisof
thesmallbowelpathologiestootherpainlessimagingmodalities,
suchasX-ray,computerizedtomographicenterographyand
mag-neticresonanceenteroclysis,becauseitprovidesadirectvisionof
somegastrointestinal(GI)tractsotherwisedifficulttoreach
with-outsurgery[2].Thistechnologyhashelpeddoctorstodiagnose
pathologies suchas obscure GIbleeding, small-bowel tumours,
Crohn’s disease,and celiac disease[3]. Moreover,WCE reduces
theinvasivenessandpainoftraditionalproceduresresultingmore
acceptableforpatients.
Sinceitscommercialdistributionin2002,differentcapsulesare
nowavailableonthemarket[4].Despiteofseveralenhancements
[5],mainlimitationsarestillrelatedtocorepartssuchasthevision
system.Thecommerciallyavailableendoscopiccapsuletransmits
theimagesattheresolutionof256-by-2568-bitpixelswitha
maxi-mumframerateof7fps.Thisframerateisnotenoughforarealtime
videostreaming,whichishighlydesirableforacorrectdiagnosis.
However,theselimitationsmustbeovercometakingintoaccount
∗Correspondingauthor.
E-mailaddress:c.cavallotti@sssup.it(C.Cavallotti).
thelimitedpowersupplyandthemaximumdimensions(11mm
in diameter(d)×31mminlength(l))suitable fora swallowable
device.
OuraimistodevelopaWCEdevicewithrealtimevision,thus
framerateatleastof15fpsmustbeguaranteedinordertoavoid
flashingimages[6].Moreover,ahighimagequalityintermsof
fea-tureperception,noiseandsufficientilluminationhastobeassured
toachieveacorrectdiagnosis.
Asapreliminarywork,wedevelopedaversatiledevelopment
system,basedonanFPGAdevice,fortestingdifferent
configura-tionsofsomesub-moduleswhicharecorepartsinthecapsule,
suchasacamera,anilluminationsystem,butalsoahighdatarate
transmitterandacompressorenginewhicharecrucialtoreachthe
desiredframerate.Themainfeatureoftheproposedsystemisthe
highflexibility,whichallowstoinvestigatethewholevision
sys-temchainandtohighlightthecriticalissues.TheFPGAcoremakes
developmentsystemeasy-fittingtodifferentconfigurationswhich
canbetestedwithoutanyphysicalhardwarechange.Thissystem
canbeusedasacasestudyforassessingtheoptimumconfiguration
intermsofperformance,powerconsumptionandoverall
dimen-sions,andtosolvethecriticalaspectsbeforetostartthedesignof
theminiaturizedversionsuitableforWCEapplications.
2. Developmentsystemarchitecture
The system is composedby three units: a dedicated vision
board, a main control board and a third board for debug
pur-poses(Figs.1and2).Inthefollowingsectionstheseboardswill
bedescribedindetails.
0924-4247/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.sna.2011.01.010
Fig.1. Developmentsystemwithopticsandilluminationsystem. 2.1. Visionboard
ThecoreofthevisionboardisacustomComplementary
Metal-Oxide Semiconductor(CMOS)imagesensor,calledVector2.The
chip was produced in the UMC 0.18!-CIS (CMOS Image
Sen-sor)technologyandincludesaQuarterofVGA(QVGA)320×240
pixel array witha Bayer Color Filter Array(CFA) up, the
com-pletereadoutchannel,a10-bitAnalog-to-Digitalconverter(ADC),
aseriesofDigital-to-Analogconverters(DAC)forinternal
refer-encesanddigitalblocksforthechipcontrol[7].AnI2C-likeinput
isusedforsettingand controlwhilea seriallow-voltage
differ-entialsignaling (LVDS) output interface allows totransmit the
data.Arollingshutterread-outisimplementedinorderto
max-imize sensitivity of the sensor. Its highsensitivity, low power
consumptionandasimplecontrolofthefullchipmakeitsuitable
for WCE applications. Taking into account thephysical
dimen-sion of the Vector2 sensing area (1.408mminhorizontal(d)×
1.056mminvertical(
v
))andthedepthoffocusfrom1mmto10mmwhichisdrivenbythefinalapplication,acommercial
posi-tivefocallens(NT45-589,EdmundOptics,NewJersey,USA)was
chosen,withafocallengthof1mmandadiameterof1mm,thus
achievingafieldofviewof82◦(h)×61◦(
v
).Aplastic,unreflectiveholderwasalsodesignedinordertofixandaligntheoptical
mod-uleinfrontofthechip.Thevisionboardallowstoconnectdifferent
types ofilluminationsystems. Fourwhite light-emittingdiodes
(LED)werearrangedontoaroundshapeprintedcircuitboard(PCB).
Thedesignofthisilluminationsystemwascarriedoutconsidering
atrade-offbetweenpowerconsumption,sizeandtheamountof
lightnecessaryfordiagnosticpurposes.Takingintoaccountthese
features high efficiency LEDs (Nesw007AT, Nichia, Nokushima,
Japan) were chosenwith a dimensionof 1.2mminheight(h)×
2mminwidth(w)×1.3mminthickness(t)andlightintensityof
1000mcdwithapowerconsumptionof15mA@3.3V[8].
ThewhiteLEDsboardcanbereplacedwithcolorLEDsboard
withnomajordesignchangesinthehardware,inordertoobtain
whitelightbycolorlightcombination[9]ortoenablespectroscopic
imaging,suchasautofluorescenceimaging[10].Inthesecases,the
colorLEDsarecontrolledbyindependentdrivingcircuits
imple-mentedontheFPGAenablingaprecisecontrolontheamountof
lightprovidedtothescene,aswillbeexplanedinmoredetailsin
Section3.1.
2.2. ControlboardandFPGAarchitecture
ThecontrolboardisbasedonaFPGAwhichimplementsthe
mainfunctionalitiesofthewholesystem.FPGAswereintroducedas
analternativetodigitalcustomIntegratedCircuits(ICs)for
imple-mentingtheentiresystemononechipandtoprovideflexibility
of re-programmabilitytotheuser[11]. Therefore,thanksto its
high-flexibilityandlowcost,FPGArepresentsthebestchoicefor
testingdifferentsolutionstoselecttheoptimalforourapplication.
AdetailedbenchmarkanalysiswascarriedouttochooseanFPGA,
suitablenotonlyfortestingpurposebutalsotobeintegratedin
afutureminiaturizedversionofthesystem,whichwillbefitted
inanendoscopicpill.Asconsequence,parameterssuchaspower
consumption,physicalsizeandoverallgatecountweretakeninto
account.AcompactsystemfromSiliconBlue(iCE65L08)was
cho-senbeing4.79(h)×4.37(
v
)mmin sizewitha verylow powerconsumption(12mA@32MHz).ThesefeaturesmaketheiCE65L08
suitabletobefitinanendoscopicpill.
Inordertohavearealtimevideo streaming,aframerateof
atleast15fpsisneeded.However,increasingtheamountofdata
causeshugeincreaseinpowerconsumptionintheRFtransmission
[12],thatisthemainconstraintinWCE.Hence,applyingimage
compressionisnecessaryforlimitingthetransmissionworkload
andsavingthepowerdissipation.
A compression engine which is well suited for WCE must
havelowpowerconsumption,logicresourcesandlimited
mem-orysizeneededforthecompression.CurrentJPEGcompression
chipsrequiretheavailabilityofaconsiderableamountofhardware
resourcesresultinginahighpowerconsumption(typicallymore
than 100mW),which is notacceptablein this application[13].
Amongsimplededicatedalgorithms,wechosethelow-complexity
compressionenginedevelopedby[14]becauseitsperformances
arecomparablewithJPEG2000,butloweringthecomplexity
allow-ingitsimplementationonthechosenFPGA.
TheFPGAisalsousedtodistributetheclocktothewhole
sys-tem. The imagesensor is then driven by a 8MHz@1.8V clock,
whiletheFPGAinternallogicbya16MHz@1.8Vwithanexternal
32MHz@3.3VoscillatorininputtotheFPGA.
AsinFig.2,severallogicblockswereimplementedontheFPGA
inordertocarryoutsomebasictaskssuchastheVector2
config-uration,theimageacquisitionandilluminationcontrol.Moreover,
asimplePC-basedsoftwareallowstheusertoconfiguretheFPGA
andthevisionchipandtoshowtheacquiredimagesonscreen
throughtheUSBconnection.TheVector2configurationtaskis
per-formedbytheUSBInterface,theInstruction(n.b.)ControlandI2C
Masterblocks.Theconfigurationdata,sentbytheuserthroughthe
developedsoftware,arereceivedbytheUSBInterfaceblockthat
interconnectstheFPGAwiththeexternalCypress FX2USB
con-troller.TheInstructionControlblockdecodestheinstructionsand
sendstheconfigurationdatatotheI2CMasterblock.Finally,theI2C
MasterconfigurestheVector2chipthroughtheI2Cbus.The Instruc-tionControlblocksendsconfigurationdataalsototheLEDDriverin
ordertocontroltheLEDsandtheamountoflightprovidedtothe
scene,asitwillbeexplainedinSection3.1.Aftertheconfiguration
phase,theVector2Receiverdecodesthedataacquiredbythevision
chip,convertingtheLVDSsignalstoa10-bitparallelformat.Then
theacquiredframesarestoredintheexternalSRAMchip,whichis
usedasaframebuffer.Thememorizedframescanbereadfromthe
SRAMbytheMemoryControllerblockandsenttothePCthrough theUSBInterfaceblockandexternalUSBcontroller.
Thelogicblocksimplementedinthisconfigurationarewritten
withVHSICHardwareDescriptionLanguage(VHDL),anduse31%1
ofthetotalFPGA(2400logiccells)andcanoperateatamaximum
frequencyofabout41MHz.Thepowerconsumptionofthe
devel-opedsystemislessthan360mWanditsplitsasfollows:40mW
fortheVector2chip,about10mWfortheFPGAand310mWfor
debugblockswhichwillbenotforeseeninthefinalminiaturized
prototype.
2.3. Debugboard
Thesystemisalsoequippedwithadebugboardtoincreasethe
flexibilityofthesystem.TheboardisequippedwiththeCypress
FX2USBcontrollerthatprovideshigh-speedconnectionandfully
configurabilitybytheintegrated8051microcontroller.Thedebug
boardisalsoequippedbytheCypressCY7C1339GSRAMchipthat
isusedasframebufferfortheacquisitionofimagesfromthe
sen-sorchipandtostoreadditionaldataforimageprocessing.Finally,
severalconnectorsareusedtomonitoreachpinoftheFPGA.The
1WeusethelogiccellsasameasureoftheFPGAresourcesoccupation.The
pre-sentedareaoccupationreferstothebasicconfiguration,withoutthecompressor, brightnesscontrolblockorwirelesstransmitterblock.
Fig.3.Acquiredimagesfromdifferentgastrointestinaltracts,duringexvivotests.
purposeofthisboardistoprovidearealtimedebugplatformforthe
wholedemosystem.APC-basedsoftwareisusedtosetupthe
reg-istersoftheFPGAandoftheVector2chipandtomonitorthestatus
ofthesystemthroughtheUSBconnection.Theacquiredimagesare
storedintheSRAM,senttothePCandshownonthescreen.Finally,
theUSBconnectionisusedalsoforthecontroloftheillumination
andtheLEDdrivers.
3. Testsandsub-modulesintegration
Some experiments were done totest separately and finally
togethereachsub-modulewhichwillbeintegratedinthefinalpill.
3.1. Imagesacquisitionandbrightnesscontrol
Atfirst,imagesfromexvivoanimaltissuewereacquiredusing
thevisionboard,withtheopticsandwhiteillumination,inorder
todefinetheimagerandilluminationcontrolsettingsnecessaryto
achieveasuitableimagequalityfordiagnosticpurposes(Fig.3(a)
and(b)).AsimpleLEDdriverwasimplementedintheFPGAable
tosettheamountoflightdrivingtheLEDsbyaPulseWidth
Fig.4.Imageblocksusedtobrightnesslevelestimationandbrightnesscontrolarchitecture.
illuminationduringtheintegrationtimeoftheopticalsensor,thus
modulatingtheaveragecurrentprovidedtotheLEDs.Thelength
ofthecurrentpulsesprovidedtotheilluminationsystemandtheir
numberaresetbyafewinternalregisters,whichcanbemodifided
inrealtimewiththeUSBconnection.However,theillumination
isswitchedononlywhentheopticalsensorisinitsintegration
phaseinordertoavoidflickeringeffects.InthecaseofRGBLEDs,
threedriverscontrolledbythreedifferentgroupsofregistersare
implementedontheFPGAinordertodriveeach groupof LEDs
independentely.SinceinarealapplicationsuchasWCE,itisnot
desirabletomanuallysettheproperamountoflight,wealso
imple-mentedanautomaticbrightnesscontrolsystem.
Inmodernvisionsystems,thebrightnessoftheacquiredimages
dependsonseveralfactors.Amongothers,themostimportantones
arethelens,thesensitivityandintegrationtimeofthevisionsensor
andtheillumination.Inourprototypethelensischosenbasedon
thefieldofviewandsizerequirements,whiletheintegrationtime
ofthesensorisfixedinordertoachievethedesiredframerate.Asa
consequence,wecansetthebrightnessoftheimagesbycontrolling
theamountoflightprovidedtothescene.Thisisequivalentto
con-troltheexposuretimeinstandarddigitalcameras.Exposurecontrol
algorithmstypicallydividetheacquiredimageinseveralblocksand
computetheaverageluminancesignalineachblock.Thentheblock
luminancevaluesarecombinedwithdifferentweightsinorderto
estimatebacklitorfrontlitscene[15].Sinceinourapplicationthe
onlypossiblecaseisthefrontlitbecausetheonlysourceoflightare
theLEDs,wedecidedtocomputetheaverageluminancesignalof
asingle128×128pixelsblockinthecentreoftheimage(Fig.4).
Moreover,wecannotcomputetheluminancevaluesofthepixels
becauseoftheBayerCFAmountedontheVector2chipandthe
lackofthedemosaicingblock.Consequently,wedecidedto
esti-matethebrightnessbasedonlyonthegreenpixelvaluesbecause
thegreencomponentmostlycontributestotheluminanceofan
image[16]andinaBayerfiltertheirnumberaredoublethanthe
redand blueones.Thebrightness controlblockreadsthepixel
valuesrecoveredbythereceiveranddrivestheLEDdriverblock
accordinglywiththeestimatedbrightnesslevel.Hence,theLEDs
intensityiscontrolledtomaintainthebrightnesswithinadefined
interval.TheLEDsaredrivenbythedefinedsequenceofcurrent
pulsesonlyduringthesensorintegrationtimeinorder to
min-imizethepowerconsumption. Thisstrategy allowsnot only to
accuratelycontroltheamountoflightprovidedtothescenebut
alsotosimulateaglobalshutter.Theentiresensorstartsgathering
lightwhentheLEDsareturnedon,whilethecontentsofthe
sen-sorarereadoutwhentheyareturnedoff,thusminimizingimage
artefacts[17].
TheFPGA implementationoftheproposedbrightness control
blockuses320logiccells,whiletheimpactonthemaximumclock
frequencyisminimal.
3.2. Columnpatternnoisecorrection
TheCMOSimagersoftensufferfromFixedPatternNoise(FPN)
[18].FPNisanon-temporalspatialnoise,anditiscausedbythe
non-uniformityofthetransistor’scharacteristicswithinthepixels
andthecolumnamplifier,thisresultingfromfabricationprocess
tolerances.ThepixelFPNnoiseisusuallyremovedatthepixellevel
byhardwaresubtraction,whileawaytoeliminatethecolumnFPN
isasubtractionbetweentheacquiredimageandareferencedark
image.Thissimplemethodrequiresthatthedarkimageisacquired
and stored intotheFPGA or intheexternal SRAM. Sincea full
framecannotbememorizedinsidetheFPGAbecauseofthelack
ofmemoryandintherealapplicationitisnotdesirabletousean
externalSRAM,wedevelopedandtestedanalternativeversionof
thealgorithmthatreducesthememoryrequirements.Ourideais
tocomputethemeanvaluesoftheevenandoddrowsofadark
imageandtorecursivelysubtractthesefromtheacquiredimages.
Inthisway,thememoryrequirementsofthearchitecturecanbe
reducedtotworowsonly(2×320×10bits).Wecomputetwo
dif-ferentmeanvaluesforevenandoddrowsbecausetheCFAmounted
ontheimagerusesapatternof2×2pixels.
Atfirst,theilluminationisswitchedoffandtheFPGAstartsto
acquireadarkimage.Eachcoupleofrowsisaccumulatedina
two-rowsmemoryinsidetheFPGA.Attheendoftheacquisition,the
averagevaluesarecomputed.ThentheLEDsareswitchedonand
whenthenextimageisreceivedbytheFPGA,thereferencedark
rowsaresubstractedfromeachcoupleofrowacquired.Fig.5(a)
showstheimagewiththeFPN,whileFig.5(b)showstheresult
ofthecorrectionstrategy.Theresultingimageisbetterinterms
ofperceivedresolution.Inordertoevaluatetheeffectivenessof
ouralgorithmwecalculatedthestandarddeviationofthe
origi-nalimageandtheelaboratedone.Since thefixedpatternnoise
isashort-rangenoise,weacquiredawhiteimagewithanuniform
illuminationinordertoexcludethecontributionofimagecontrasts
anddarkfixedpatternnoise.Weobservedthatthestandard
devi-ationoftheimageafterelaborationis20%lessthantheoriginal
one.
3.3. Compressorimplementation
In ordertofulfiltheframeraterequirements, a image
Fig.5. Originalimageanddenoisedimagewithreconstructeddarkimage.
tested[13,19]takingintoaccountthepowerlimitationandsmall
sizeconditionswhicharethemainfeaturesofWCE.Forthese
rea-sons,alow-power,low-complexitylossycompressorspecifically
developed for capsule endoscopy was chosen [14]. The
imple-mentedcompressorisbasedonintegerversionofdiscretecosine
transform(DCT)andperformssequentiallyfouroperations:color
transformation, image transformation, coefficients quantization
andentropycoding.Thisconfigurationconsumesabout77%ofthe
resourcesoftheFPGAand25blockRAMsandcanworkata
fre-quencyofupto39MHz.
Finally,theresultsoftheimplementationofthechosen
com-pressorcanbeseeninFig.6(a)and(b).Thefirstpictureshows
animage acquiredwithan integrationtimeof 50ms and LEDs
switchedonfor25ms,whilethesecondoneshowsthesameimage
afterthecompressionstagewitharatioofabout8.Ascanbeseen,
thecompressorintroducessomeartifactsduetothelossynatureof
thecompressionalgorithm,butthequalityoftheimageissufficient
fordiagnosticpurposes.Asafinalremark,itcanbenotedthatthe
compressionratiocanbesetthroughaproperchoiceofthe
com-pressorparameters,thusallowingthereductionoftheamountof
databetween8and20[14].
Fig.6.Acquiredimagesbeforeandaftercompression.
Fig.7. Miniaturizedprototype. 4. Conclusionsandfutureworks
AnFPGA-baseddevelopmentsystemwasdesignedinorderto
test a complete wireless imaging acquisition chain suitable for
WCE.Thefinalgoalistoachieveasmoothrealtimevideostream
Themainchallengefacedintegratingthesystem,inorder to
enablearealtimediagnosis,wasrelatedtoimagecompressionand
wirelessvideostreamtransmissionvs.theoriginaldatapayload.
After the analysis of several wireless technologies [20], we
decidedtoimplementthetransmitterpresentedinRef.[21].The
chosensolutionisbasedonnear-fieldtechnologyandpresentsthe
bestperformanceintermsofdatarateandthebestefficiencyin
termsofpowerconsumptionvs.datarate[20],enablinga
trans-missionof1.5Mbit/swithapowerconsumptionof2mW@1.8V.
SincetheVector2imagerresolutionisaQVGAandeachpixelis
decodedby10bits,theoriginalamountofdataforeachframeis
768kbit.Consideringanaveragecompressionratioof10,the
min-imumframerateis19.53fpswithanoverallpowerconsumption
of90mA@3.3Vand26mA@1.8V.
Consideringtheresultsobtainedwiththedevelopmentsystem,
aminiaturizedversionwasdesignedandnowundertest(Fig.7).
Theprototypeconsistsoftwoboardsconnectedbyapermanent
flexible interconnectionwitha diameterof9.9 mmin order to
fitinapillcasewithaninnerdiameterof10mm.Moreover,the
additionalthreeflexiblecircuitpartsallowtheconnectionofother
boardswithcomponentsrequiredbythesystem,suchasbattery
orwirelesspowersupply[22]andinertialsensors[23].
Acknowledgements
TheworkdescribedinthispaperwasfundedbytheEuropean
CommissionintheframeworkofVECTOR FP6Europeanproject
EU/IST-2006-033970.
References
[1]P.Swain,Thefutureofwirelesscapsuleendoscopy,WorldJournalof Gastroen-terology14(26)(2008)4142–4145.
[2]Z.Fireman,Y.Kopelman,Newfrontiersincapsuleendoscopy,Journalof Gas-troenterologyandHepatology22(8)(2007)1174–1177.
[3]S.D.Ladas,K.Triantafyllou,C.Spada,M.E.Riccioni,J.F.Rey,Y.Niv,M.Delvaux, R.deFranchis,G.Costamagna,theESGEClinicalGuidelinesCommittee, Euro-peansocietyofgastrointestinalendoscopy(esge):Recommendation(2009)on clinicaluseofvideocapsuleendoscopytoinvestigatesmall-bowel,esophageal andcolonicdiseases,Endoscopy42(2010)220–227.
[4]J.L.Toennies,G.Tortora,M.Simi,P.Valdastri,R.J.Webster,Swallowable med-icaldevicesfordiagnosisandsurgery:thestateoftheart,Proceedingsofthe InstitutionofMechanicalEngineers.PartC.JournalofMechanicalEngineering Science224(7)(2010)1397–1414.
[5]A.Moglia,A.Menciassi,M.O.Schurr,P.Dario,Wirelesscapsuleendoscopy:from diagnosticdevicestomultipurposeroboticsystems,BiomedicalMicrodevices 9(2)(2007)235–243.
[6]J.Y.C.Chen,J.E.Thropp,Reviewoflowframerateeffectsonhumanperformance, Systems,ManandCybernetics,PartA:SystemsandHumans,IEEETransactions on37(6)(2007)1063–1076.
[7]M.Vatteroni,D.Covi,C.Cavallotti,L.Clementel,P.Valdastri,A.Menciassi, P.Dario,A.Sartori,Smartopticalcmossensorforendoluminalapplications, SensorsandActuatorsA:Physical162(2)(2010)297–303.
[8]http://www.nichia.co.jp/.
[9]N.Narendran,N.Maliyagoda,L.Deng,R.M.Pysar,Characterizingledsfor gen-eralilluminationapplications:mixed-colorandphosphor-basedwhitesources, Proc.SPIE4445,(2001)137.
[10]M.Kato,M.Kaise,J.Yonezawa,K.Goda,H.Toyoizumi,N.Yoshimura,Y.Yoshida, M.Kawamura,H.Tajiri,Trimodalimagingendoscopymayimprove diagnos-tic accuracyofearlygastricneoplasia:afeasibilitystudy,Gastrointestinal Endoscopy70(5)(2009)899–906.
[11]N.Sulaiman,Z.A.Obaid,M.H.Marhaban,M.N.Hamidon,Designand implemen-tationoffpga-basedsystems–areview,AustralianJournalofBasicandApplied Sciences3(4)(2009)3575–3596.
[12]K.Wahid,S.B.Ko,D.Teng,Efficienthardwareimplementationofanimage compressorforwirelesscapsuleendoscopyapplications,in:NeuralNetworks, 2008.IJCNN2008.(IEEEWorldCongressonComputationalIntelligence).IEEE InternationalJointConferenceon,2008,pp.2761–2765.
[13]D.Turgis,R.Puers,Imagecompressioninvideoradiotransmissionforcapsule endoscopy,SensorsandActuatorsA:Physical123-124(2005)129–136. [14]P.Turcza,T.Zielinski,M.Duplaga,Hardwareimplementationaspectsofnew
lowcomplexityimagecodingalgorithmforwirelesscapsuleendoscopy, Com-putationalScienceICCS(2008)476–485.
[15] R.Ramanath,W.E.Snyder,Y.Yoo,M.S.Drew,Colorimageprocessingpipeline, SignalProcessingMagazine,IEEE22(1)(2005)34–43.
[16]Q.K.Vuong,S.H.Yun,S.Kim,Anewautoexposuresystemtodetecthigh dynamicrangeconditionsusingcmostechnology,in:ConvergenceandHybrid InformationTechnology,2008.ICCIT’08.ThirdInternationalConferenceon, 2008,pp.577–580.
[17]S.Lauxtermann,A.Lee,J.Stevens,A.Joshi,Comparisonofglobalshutterpixels forCMOSimagesensors,in:Proc,2007InternationalImageSensorWorkshop, OgunquitMaine,USAJune7–10,2007.
[18] A.Theuwissen,Digitalimaging:imagecapturing,imagesensors,technologies andapplications,CEIEurope,2004.
[19] M.-C.Lin,L.-R.Dung,P.-K.Weng,Anultra-low-powerimagecompressorfor capsuleendoscope,BioMedicalEngineeringOnLine5(1)(2006)14. [20] M.R.Yuce,T.Dissanayake,H.C.Keong,Wirelesstelemetryforelectronicpill
technology,in:IEEESENSORS2009,2009.
[21] J.Thone,S.Radiom,D.Turgis,R.Carta,G.Gielen,R.Puers,Designofa2mbpsfsk near-fieldtransmitterforwirelesscapsuleendoscopy,SensorsandActuators A:Physical156(1)(2008)43–48.
[22]R.Carta,J.Thon,R.Puers,Awirelesspowersupplysystemforroboticcapsular endoscopes,SensorsandActuatorsA:Physical162(2)(2010)177–183. [23]G.Ciuti,P.Valdastri,A.Menciassi,P.Dario,Roboticmagneticsteeringand
locomotionofcapsuleendoscopefordiagnosticandsurgicalendoluminal pro-cedures,Robotica28(SpecialIssue02)(2010)199–207.
Biographies
CarmelaCavallottireceivedadegreeinbiomedicalengineering(withhonours) fromtheCampusBio-MedicoUniversityinRomeinDecember2007.Sheiscurrently aPhDstudentinbioroboticsattheCRIMLaboftheScuolaSuperioreSant’Annain Pisa.Hermainresearchinterestsareinthefieldsofvisionsystemsforbiomedical applications.
PierantonioMerlinowasborninUdine,Italy,in1980.Hereceivedthelaureadegree inelectricalengineering(summacumlaude)fromtheUniversityofUdine,Italy, in2005andthePhDdegreeinelectricalengineeringfromthesameInstitutionin 2009.Hisresearchinterestsincludesthestudyandrealizationofelectronic sys-temsforpervasivecomputingapplications,communicationandpowertechnologies forwireless/contactlessapplications.Currentlyheisworkingonvisionsystemsfor endoscopicapplications.
MonicaVatteroniwasborninLaSpezia,Italy,in1975.ShereceivedanM.S.degreein electricalengineeringfromtheUniversityofPisa(Italy)in2001andaPhDdegreein physicsfromtheUniversityofTrento(Italy),in2008.From2002to2008,sheworked forNeuriCam,Trento(Italy),aspixelengineerandanaloguedesigner,andin2005 shebecameresponsibleforthedevelopmentofCMOSImageSensors.Presently, sheworksfortheScuolaSuperioreSant’AnnainPisa(Italy)aspostdoctoralfellow, wheresheisresponsiblefortheresearchanddevelopmentofimagesensorsand visionsystemsforbiomedicalapplications.Sheistheauthorandco-authorof sev-eralconferenceandjournalpublicationsandofthreepatents.Herinterestsinclude CMOSimagesensors,lownoiseanalogueelectronics,highdynamicrangepixelsand endoscopicvisionsystems.
PietroValdastrireceivedadegreeinelectronicengineering(withhonours)from theUniversityofPisainFebruary2002.InthesameyearhejoinedtheCRIMLab oftheScuolaSuperioreSant’AnnainPisaasaPhDstudent.In2006heobtained aPhDinbioengineeringfromtheScuolaSuperioreSant’Annadiscussinga the-sistitled“Multi-AxialForceSensinginMinimallyInvasiveRoboticSurgery”.Heis nowassistantprofessoratCRIMLab,withmainresearchinterestsinthefieldof implantableroboticsystemsandactivecapsularendoscopy.Heiscurrently work-ingonseveralEuropeanprojectsforthedevelopmentofminimallyinvasiveand wirelessbiomedicaldevices.
AntonioAbramowasborninBologna,Italy,in1962.Hereceivedthelaureadegree inelectricalengineering(magnacumlaude)fromtheUniversityofBologna,Italy, in1987,andthePhDdegreeinelectricalengineeringfromthesameInstitutionin 1995.HisexperienceincludesresearchperiodswiththeIntelCorporation,Santa Clara(CA),USA(1992),attheCenterforIntegratedSystems,StanfordUniversity, Stanford(CA),USA(2000).BetweenOctober1993andDecember1994hewas resi-dentscientistattheAT&TBellLaboratories,MurrayHill(NJ),USA,whilefrom1995 to1997hewaspost-docattheDepartmentofPhysics,UniversityofModena,Italy. AntonioAbramoisco-authorofabout70scientificpublicationsonInternational JournalsandConferences.Inyears2001–2002hehasbeenappointedmemberof the“ModelingandSimulation”technicalsub-committeeoftheIEEEInternational ElectronDeviceMeeting(IEDM)Conference,andinyear2003Chairofthesame sub-committee.Presently,heisassociateprofessorofelectronicsattheUniversity ofUdine,Italy.Afterabout10yearsofscientificactivityinthefieldofmodelingand simulationofcarriertransportinelectrondevices,startingfromyear2001his scien-tificinteresthasmovedtothedesignofcircuitandsystemforwirelessapplications, tothestudyofneuralnetworkscircuitsforreconfigurableplatforms,tothedesign ofwearablesystems,andtowardsthemethodologiesfordistributedcomputingin wirelesssensornetworks.
AriannaMenciassireceivedherlaureadegreeinphysics(withhonours)from the University of Pisa in 1995. In the same year, shejoined the CRIM Lab oftheScuolaSuperioreSant’AnnainPisaasaPhDstudentinbioengineering witharesearchprogramonthemicromanipulationofmechanicaland biologi-calmicroobjects.In1999,shereceivedherPhDdegreebydiscussingathesis
titled“MicrofabricatedGrippersforMicromanipulationofBiologicalandMechanical Objects”.CurrentlysheisaprofessorofbiomedicalroboticsattheScuola Supe-rioreSant’Anna,Pisa.Hermainresearchinterestsareinthefieldsofbiomedical microandnano-robotics,microfabricationtechnologies,micromechatronicsand microsystemtechnologies.SheisworkingonseveralEuropeanprojectsand interna-tionalprojectsforthedevelopmentofmicroandnano-roboticsystemsformedical applications.
PaoloDarioreceivedhislaureadegreeinmechanicalengineeringfromthe Univer-sityofPisain1977.Currently,heisaprofessorofbiomedicalroboticsattheScuola SuperioreSant’Anna,Pisa.Healsoestablishedandteachesthecourseon mechatron-icsattheSchoolofEngineering,UniversityofPisa.Hehasbeenavisitingprofessorat theEcolePolytechniqueFederaledeLausanne(EPFL),Lausanne,Switzerland,andat
WasedaUniversity,Tokyo,Japan.HeisthedirectoroftheCRIMLabofScuola Superi-oreSant’Anna,wherehesupervisesateamofabout70researchersandPhDstudents. Hismainresearchinterestsareinthefieldsofmedicalrobotics,mechatronicsand microengineering,andspecificallyinsensorsandactuatorsfortheabove applica-tions.HeisthecoordinatorofmanynationalandEuropeanprojects,theeditoroftwo booksonthesubjectofroboticsandtheauthorofmorethan200journalpapers.He isamemberoftheBoardoftheInternationalFoundationofRoboticsResearch.Heis anassociateeditoroftheIEEETransactionsonRoboticsandAutomation,amember oftheSteeringCommitteeoftheJournalofMicroelectromechanicalSystemsand aguesteditoroftheSpecialIssueonMedicalRoboticsoftheIEEETransactionson RoboticsandAutomation.HeservesaspresidentoftheIEEERoboticsand Automa-tionSocietyandastheco-chairmanoftheTechnicalCommitteeonMedicalRobotics ofthesamesociety.