• No results found

Effects of crude glycerin on milk composition, nutrient digestibility and ruminal fermentation of dairy cows fed corn silage-based diets

N/A
N/A
Protected

Academic year: 2021

Share "Effects of crude glycerin on milk composition, nutrient digestibility and ruminal fermentation of dairy cows fed corn silage-based diets"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Animal

Feed

Science

and

Technology

journalhomepage:www.elsevier.com/locate/anifeedsci

Short

communication

Effects

of

crude

glycerin

on

milk

composition,

nutrient

digestibility

and

ruminal

fermentation

of

dairy

cows

fed

corn

silage-based

diets

P.G.

Paiva

a,∗

,

T.A.Del

Valle

b

,

E.F.

Jesus

a

,

V.P.

Bettero

a

,

G.F

Almeida

b

,

I.C.S.

Bueno

c

,

B.J.

Bradford

d

,

F.P.

Rennó

b,∗∗

aDepartmentofAnimalScience,UNESP—UniversidadeEstadualPaulista“JúliodeMesquitaFilho”/CampusJaboticabal,Rod.Prof.Paulo

DonatoCastellanekm5,Rural,14884-900Jaboticabal,SP,Brazil

bDepartmentofAnimalNutritionandProduction,SchoolofVeterinaryMedicineandAnimalScience,UniversityofSaoPaulo(USP),Av.

DuquedeCaxiasNorte,225-CampusdaUSP,13635-900,Pirassununga,SP,Brazil

cDepartmentofAnimalScience,CollegeofAnimalScienceandFoodEngineering,UniversityofSaoPaulo,Pirassununga,SP,Brazil

dDepartmentofAnimalSciencesandIndustry,KansasStateUniversity,66506Manhattan,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2May2015 Receivedinrevisedform 18December2015 Accepted21December2015 Keywords: Biofuels By-product Fiberdigestibility Glycerol Milkcomposition

a

b

s

t

r

a

c

t

Theobjectiveofthecurrentstudywastoevaluatetheeffectsofincreasinglevelsofcrude glycerinondrymatterintake,nutrientdigestibility,ruminalparameters,blood metabo-lites,milkyieldandcompositionofdairycowsfedcornsilage-baseddiets.Twenty-four Holsteincows(16non-cannulatedand8rumen-cannulated;184±50daysinmilk[DIM] and594±39kgofbodyweight[BW])wereassignedtoareplicated4×4Latinsquaredesign experiment,consistingof14daysforadaptationtodietsand7daysforsampling.Cowswere assignedtoreceiveoneofthediets:0(Control),70,140or210gofcrudeglycerin/kgof dietdrymatter(DM).Drymatterintakeandmilkyieldlinearlydecreasedwiththe inclu-sionofcrudeglycerin.However,crudeglycerindidnotaffectmilkcomposition.Total-tract digestibilityofDM,crudeprotein(CP)andetherextract(EE)linearlyincreased,and neu-traldetergentfiber(NDF)digestibilitylinearlydecreasedaccordingtodietaryinclusionof crudeglycerin.Feedingcrudeglycerinchangedvolatilefattyacidconcentrations:linearly increasedpropionate,quadraticallyaffectedbutyrate,andlinearlydecreasedacetate con-centrations,resultinginloweracetatetopropionateratio.Totalvolatilefattyacidwasnot affectedbycrudeglycerin.RuminalNH3-Nlinearlydecreasedaccordingtocrudeglycerin

dietarylevels.Crudeglycerinlinearlyincreasedbloodglucoseconcentration.Inclusionof highlevelsofcrudeglycerin(210g/kg)indietsofmid-lactatingcows,increaseddry mat-terdigestibilityandruminalpropionateconcentrations,butnegativelyaffecteddrymatter intakeandmilkyield.

©2015ElsevierB.V.Allrightsreserved.

Abbreviations: BCFA,branchedchainfattyacids;BUN,bloodureanitrogen;BW,bodyweight;CP,crudeprotein;DIM,daysinmilk;DMI,drymatter

intake;EE,etherextract;aNDF,neutraldetergentfiberwithresidualash;NFC,non-fibercarbohydrate;VFA,volatilefattyacids.

∗ Correspondingauthor.Fax:+551935654368.

∗∗ Correspondingauthor.

E-mailaddresses:bocazoo@hotmail.com,pagppaiva@gmail.com(P.G.Paiva),francisco.renno@usp.br(F.P.Rennó).

http://dx.doi.org/10.1016/j.anifeedsci.2015.12.016

(2)

1. Introduction

Thegrowthofthebiofuelindustryhasincreasedthedemandforcorn,affectingpricesandthelivestocksector(USDA, 2014).Therefore,newalternativefeedsourcesarerequiredinordertoreduceanimalfeedcosts.Crudeglycerinisa by-productobtainedfromoilprocessinginthebiodieselindustry,whereinforeachliterofbiodieselproduced,0.1lofcrude glycerinisformed(Dasarietal.,2005).Crudeglycerincontains800–880gofglycerol/kg(Donkin,2008)andglycerolor purifiedglycerin(>95%glycerol)hasbeenusedtopreventmetabolicproblemsintransitioncows(GoffandHorst,2003; PiantoniandAllen,2015).

Crudeglycerincanbeconvertedintovolatilefattyacid(VFA)inrumen,mainlyintopropionate(Wangetal.,2009),orcan beabsorbedthroughtherumenepitheliumandoxidizedintheliver,increasingtheenergyavailableforanimalutilization (Remondetal.,1993).Severalstudieshavereportedthatreplacingcornwithglycerinincreasedtheruminalmolarproportion ofpropionate(DeFrainetal.,2004;Shinetal.,2015;Boydetal.,2013).

Thereisalackofdataexaminingcrudeglycerinasaprimaryenergysourceingredientinrationsofdairycows,mainly indietarylevelshigherthan100g/kg(drymatter[DM]basis).Thus,theobjectiveofthepresentstudywastoevaluatethe effectsofincreasingdietarylevelsofcrudeglycerin(upto210g/kgdietDM)ondrymatterintake(DMI),nutrientdigestibility, ruminalparameters,bloodmetabolites,milkyieldandcompositionoflactatingdairycowsfedcornsilage-baseddiets.Our hypothesiswasthatcowsfedcrudeglycerincouldmaintainmilkyieldandcompositionwithoutimpairingDMIandnutrient digestibility.

2. Materialsandmethods

ExperimentalprocedureswereapprovedbytheEthicsCommitteeoftheSchoolofVeterinaryMedicineandAnimal ScienceoftheUniversityofSãoPaulo(approvalnumber3058/2013).

2.1. Animals,dietsandexperimentaldesign

Twenty-fourmultiparousHolsteincows(184±50daysinmilk[DIM]and594±39kgbodyweight[BW],mean±SD),16 non-cannulatedand8rumencannulated,wereassignedtoareplicated4×4Latinsquaredesignexperimentwith21day periods(14dayofadaptationand7dayofsampling).Thecowsweregroupedaccordingtomilkyieldandthenassignedto eachsquareaccordingtoBW,exceptfor2squaresthatwereformedbytherumencannulatedcows.Thus,24repetitionsper treatmentwereusedforstatisticalanalysis.Theanimalswereassignedwithineachsquaretoreceiveoneofthefollowing diets:0(Control),70,140or210gofcrudeglycerin/kgofdietDM.DietswereformulatedaccordingtoNRC(2001),and ingredientsandchemicalcompositionaredescribedinTable1.Thecrudeglycerincontained806g/kgofglycerol,63g/kg ofashand124.6g/kgofwater,andwasobtainedfromsoybeanoil(ADM,Rondonopolis,Brazil).Thecrudeglycerinwas mixedintotheconcentratebeforethemorningfeeding.Cowswereindividuallyfedtwicedaily(50%oftotaldietDMin eachfeeding)at0700and1300htosupply105–110%ofexpectedfeedintake(onasfed-basis).Thefeedwasindividually Table1

Ingredientsandchemicalcompositionofexperimentaldiets.

Item,g/kgofdietDM Glycerininclusion,g/kgofDM

0 70 140 210 Cornsilagea 501.4 500.3 505.9 504.0 Groundcorn 300.5 219.2 125.1 45.0 Soybeanmeal 162.1 174.6 192.8 204.8 Crudeglycerinb 0.0 69.9 140.2 210.2 Mineralpremixc 29.8 29.8 29.8 29.8 Urea 5.30 5.30 5.30 5.30 Ammoniumsulphate 0.90 0.90 0.90 0.90 Composition Drymatter 586.4 587.6 585.0 586.6

Neutraldetergentfiber 301.1 290.5 281.9 271.0

Nonfibercarbohydrated 455.7 464.1 468.1 468.1

Crudeprotein 162.3 160.7 161.2 159.5

Etherextract 31.1 31.2 31.0 31.2

Ash 66.3 70.1 74.3 78.0

Netenergye(Mcal/kgDM) 1.74 1.75 1.75 1.75

aComposition:293.0ofdrymatter(DM);70.5ofcrudeprotein(CP);556.7ofneutraldetergentfiber(NDF);29.7ofetherextract(EE)and38.6ofash. bComposition:806g/kgofglycerol,63g/kgofashand124.6g/kgofwater,obtainedfromsoybeanoil(ADM,Rondonopolis,Brazil).

cContainedperkg:88.0gofCa;42.0gofP;18.0gofS;45.0gofMg;123.0gofNa;14.0mgofCo;500.0mgofCu;20.0mgofCr;1050.0mgofFe;28.0mg

ofI;1400.0mgofMn;18.0mgofSe;2800.0mgdeZn;80.0mgofBiotin;200.000,00UIvitaminA;40.000,00UIvitaminD;1.200,00UIvitaminE.

dNonfibercarbohydrate=1000–([CP-CPofurea+urea]+NDF+EE+ash),Hall(2000). eEstimatedusingtheNRC(2001)model.

(3)

weighed,andthesilageandconcentrateofeachcowwereindividuallyhandmixedtoprepareatotalmixedration(TMR). Animalswerehousedinsandedbedfree-stallbarncontainingindividualpens(17.5m2),forcedventilationandfreeaccess towater.

2.2. Datacollection,samplingandanalysis

Samplesofingredients(0.5kg)werecollectedonceaweekduringthepreparationofconcentrate.Samples(0.5kg)ofsilage andortsfromeachcowweretakenoncedailyduringthemorningfeedingfromday15untilday21ofeachexperimental period,andcompositesamples(onasfed-basis)ofsilageandortsfromeachcowwereformedandstoredat−20◦Cfor furtherchemicalanalysis.Feedintakewasrecordeddailyasthedifferencebetweenfeedofferedandrefused.Sampleof feedandortsweredriedina55◦Cforced-airovenfor72handgroundtopassthrougha1mmscreen(WileyMill,ArthurH. Thomas,Philadelphia,PA,USA)andthenanalyzedfordrymatter([DM]method930.15;AOAC,2000),crudeprotein([CP]Nx 6.25;method984.13;AOAC,2000),etherextract([EE]method920.39;AOAC,2000),andash(method942.05;AOAC,2000). Neutraldetergentfiber(aNDF)wasdeterminedasdescribedbyMertensetal.(2002),using␣-amylase,withoutadditionof sodiumsulfitetothedetergent(AnkomTech.Corp.,Fairport,NY,USA),andwasexpressedwithresidualash.

Fecalsamples(0.5kgonwetbasis)werecollectedtwicedaily(0630hand1630h)fromday16untilday18ofeach experimentalperiod.Thesixfecalsamplesofeachcowwerecompositedintoasample(1.5kgonwetbasis)andstored at−20◦C.Indigestibleaciddetergentfiber(iADF)wasusedasaninternalmarkertoestimatefecalexcretionandapparent nutrientdigestibility.Samplesoffeeds,ortsandfecesweredriedat55◦Cinaforced-airovenfor72handgroundtopass througha2mmscreen(Wileymill,ArthurH.Thomas,Philadelphia,PA,USA).Thesesampleswereplacedinbagsof non-woventextile(100g/m2)followingtherecommendationofamaximumof20mgofdrysamplepercm2(Nocek,1988)and wereincubatedforaperiodof264hintherumenof2Holsteincows,previouslyadaptedtoahighconcentratediet,according tothetechniquedescribedbyCasalietal.(2008).After264h,bagswereremovedandwashedinrunningwater,driedat 55◦Cinaforced-airovenandsubjectedtoaciddetergenttreatment(Mertensetal.,2002).Totalfecalexcretionwasobtained asfollows:DMfecalexcretion(kg/d)=iADFintake(correctedfororts)/iADFcontentinfeces.

Cowsweremechanicallymilkedtwicedaily(0600hand1600h)andmilkyieldwasrecordedbyanautomaticmilkmeter (Alpro®,DeLaval–Tumba,Sweden).Milksampleswereautomaticcollected(Alpro®,DeLavalTumba,Sweden)fromday 16untilday18ofeachexperimentalperiod,accordingtomilkyieldofeachcowineachmilking.Sampleswererefrigerated afterthemorningmilkingandmixedwithsamplesoftheafternoonmilkingandanalyzedfreshforfat,crudeproteinand lactoseaccordingtoKaylegianetal.(2006).Milkyieldwascorrectedfor3.5%offataccordingtoSklanetal.(1992).

Bloodsampleswerecollectedond15ofeachperiodfromthecoccygealvesselsbeforethemorningfeeding,centrifuged at3000×gfor10minandplasmawasseparatedandstoredfrozenat−20◦Cuntilanalysis,asdescribedbyColaketal. (2013).Analyseswereperformedusingcolorimetriccommercialkits(Glucose:cat.no.K-082;Urea:cat.no.K-056;allfrom theBioclin,BeloHorizonte,Brazil),andreadingwasperformedwithasemi-automaticspectrophotometer(SBA200,CELM, SãoCaetanodoSul,Brazil).

Onday16and17ofeachexperimentalperiod,spoturinesampleswerecollectedfromeachcow4hafterthemorning feedingandthenfilteredtoobtain10mLaliquotswhichwereimmediatelydilutedin40mLof0.036Nsulfuricacid,toavoid bacterialdestructionofthepurinederivativesandprecipitationoftheuricacid,andthenstoredat20◦Cforsubsequent analysisofuricacidandallantoinaccordingtoChenandGomes(1992).Apuresampleofurinewasstoredfordetermination oftotalnitrogen(N)andcreatinine.Concentrationsofuricacidandcreatinineweredeterminedusingcommercialkits(uric acidstableliquid:cat.no.k-052;kineticcreatinine:cat.no.K-067;Bioclin).Thedailyurinevolumewasestimatedfromthe dailycreatinineexcretionas24.05mgkg−1ofbodyweight(Chizzottietal.,2008).Theexcretionofuricacid,allantoinin urineandmilkwereconsideredasthetotalexcretionofpurinederivatives.Microbialproteinsynthesiswasestimatedas describedbyChenandGomes(1992).

Dataoftwosquarescomposedofcannulatedcowswereusedtoevaluateruminalfermentation,resultingin8repetitions foreachtreatmentpertime.Onday20ofeachexperimentalperiod,ruminalfluidsampleswerecollectedfromeight rumen-cannulatedcows(216±54DIMand596±27kgofBW)before(0h)and2,4,6,8,10and12hafterthemorningfeeding. TheruminalfluidpHvaluesweredeterminedusingapotentiometer(MB-10,MarteCientífica,SantaRitadoSapucaí,Brazil). Aliquotsofsamplesweremixedwithmetaphosphoricacid(0.25mol/LHPO3),centrifugedat7000×g,andsupernatant storedat−20◦CforanalysisofvolatilefattyacidsaccordingtomethoddescribedbyErwinetal.(1961)andadaptedby Getachewetal.(2002).Theremainingaliquotsofsamples(2mL)weremixedwith1mLofsulfuricacid(0.5mol/LH2SO4) andstoredat−20◦Ctodetermineammonianitrogen(NH3-N)byacolorimetricphenol-hypochloritemethod(Broderick andKang,1980).RuminalVFAweremeasuredusingagaschromatograph(GC-2014Shimadzu,Tokyo,Japan)equippedwith acapillarycolumn(Stabilwax,Restek,Bellefonte,PA,USA)at145◦C.Thegasesusedwerehelium(8.01mL/minflow)asthe carrier,hydrogen(pressureof60kPa)asthefuel,andsyntheticair(pressureof40kPa)astheoxidizer.Steamertemperature wassetat220◦C,ionizationdetectorflamesat250◦C,andtheseparationcolumnat145◦Cfor3min,whichwasthenraised 10◦C/minupto200◦C.Externalstandardwaspreparedwithacetic,propionic,isobutyric,butyric,isovalericandvaleric acids(Chemservice,WestChester,PA,USA).ThesoftwareGCsolution(Shimadzu,Japan)wasusedforcalculationofVFA concentrations.

(4)

Table2

Effectsofglycerinlevelsonintake,digestibilityandperformanceoflactatingdairycows.

Item Glycerininclusion,g/kgofDM SEMa P-valueb

0 70 140 210 Diet LIN

Drymatterintake,kg/day 21.97 21.97 21.42 21.06 0.32 0.05 0.04

Digestibility

Drymatter 0.696 0.703 0.717 0.724 0.003 <0.01 <0.01

Crudeprotein 0.734 0.736 0.755 0.772 0.003 <0.01 <0.01

Etherextract 0.729 0.761 0.841 0.869 0.008 <0.01 <0.01

Neutraldetergentfiber 0.599 0.580 0.571 0.543 0.005 <0.01 <0.01

Performance

Milkyield,kg/day 27.74 26.19 26.43 24.64 0.51 <0.01 <0.01

3.5%FCM,kg/dayc 31.74 30.24 30.30 27.89 0.52 <0.01 <0.01 Fat,kg/day 1.21 1.16 1.17 1.06 0.02 <0.01 <0.01 Protein,kg/day 0.87 0.82 0.83 0.78 0.02 <0.01 <0.01 Lactose,kg/day 1.31 1.21 1.24 1.16 0.02 <0.01 <0.01 FCM:DMId 1.49 1.38 1.42 1.33 0.03 0.01 <0.01 Milkcomposition Fat,g/kg 44.07 44.70 44.31 43.60 0.60 0.77 0.59 Protein,g/kg 31.41 31.38 31.40 31.52 0.12 0.84 0.52 Lactose,g/kg 47.10 47.04 47.00 47.17 0.17 0.87 0.75

Milknitrogen,g/day 136.52 126.78 130.15 121.38 2.51 <0.01 <0.01

Nitrogenefficiencye 23.69 22.00 22.48 22.08 0.41 <0.01 <0.01

aStandarderrorofmeans.

bTreatmenteffect(Diet).Linearcontrast(LIN).Quadraticcontrastsweretestedbutwerenotsignificant(P>0.05). c3.5%fatcorrectedmilk(FCM)=(0.432+0.165×fatcontent)×kgofmilk(Sklanetal.,1992).

dFatcorrectedmilktodrymatterintakeratio.

eNitrogen(N)efficiency=100×milkN(g/day)/Nintake(g/day).

2.3. Statisticalanalyses

ThedatawereanalyzedwithPROCMIXED(StatisticalAnalysisSystemforWindows9.0-SAS-SASInstituteInc.,Cary, NC,USA),accordingtothefollowingstatisticalmodel:

Yiklm=+Ti+Pk+Sl+Am(Sl)+eijklm

whereYiklmistheobservedvalueintheanimalm,fromlsquare,inthekthperiod,whichreceivedtheithglycerinlevel;

=overallmean;Ti=fixedeffectofglycerinlevel(3DF);Pk=fixedeffectofexperimentalperiod(3DF);Sl=fixedeffect ofsquare(5DF);Am(Sl)=randomeffectofanimalwithinsquare(18DF),andeijklm=randomresidualerror.Theruminal fermentationvariables(pH,NH3-NandVFA)wereanalyzedasrepeatedmeasuresusingPROCMIXEDofSAS9.0,considering inthestatisticalmodeltheeffectsofanimal,period,square,treatment(glycerinlevel),beyondtheeffectsoftimewith theirinteractionswiththetreatment.Compoundsymmetrywasthebestcovariancestructurebaseduponthesmallest Akaike’sinformationcriterionvalues.Othercovariancestructurestestedincludedheterogeneouscompoundsymmetry, unstructured,autoregressive1andheterogeneousautoregressive1.Resultsarereportedasleastsquaresmeans.Responses toglycerinlevelweretestedwithlinearandquadraticcontrasts,whichweredeclaredsignificantatP<0.05.

3. Results

InclusionofcrudeglycerininthedietslinearlydecreasedtheDMI(P=0.04;Table2).Cowsfeddietscontaining210g/kg ofcrudeglycerinreducedDMIby4.1%or0.910g/dcomparedtocowsfedcontroldiet.TotaltractdigestibilityofDM,CP,and EElinearlyincreased(P<0.01),butneutraldetergentfiber(NDF)digestibilitylinearlydecreased(P<0.01)accordingtothe inclusionofdietarycrudeglycerin.Neutraldetergentfiberdigestibilityreduced5.6%incowsfeddietscontaining210g/kg ofcrudeglycerincomparedtocontrol.Increasingthedietaryinclusionofcrudeglycerinlinearlydecreasedmilkyield, fat-correctedmilk(FCM),milkefficiency(FCM:DMI),fat,proteinandlactose(P<0.01,Table2).However,milkfat,proteinand lactoseproportionweresimilaramongtreatments(P>0.05).DailyNmilkexcretionandNefficiencywerelinearlydecreased (P<0.01)withcrudeglycerininclusioninthediet.

TotalruminalVFAconcentrationwassimilaramongtreatments(P>0.05;Table3).However,theinclusionofcrude glyc-erinindietslinearlydecreasedruminalacetate,acetatetopropionateratio(P<0.01),whereaspropionateandbranchedchain fattyacids(BCFA)linearlyincreased(P<0.01)withcrudeglycerininclusion.Butyratewasquadraticallyaffected(P<0.01)by crudeglycerin,withhighestvalueobservedwiththedietaryinclusionof70g/kgDMofcrudeglycerin.Therewasdiet*time interactionforruminalpH,butyrateproportionandacetatetopropionateratio(P<0.01).RuminalNH3-Nconcentration linearlydecreased(P<0.01)withcrudeglycerininthediet.Microbialproteinsynthesiswasnotaffectedbycrudeglycerin treatments(P>0.05).Bloodconcentrationofglucoselinearlyincreased(P<0.01;Table3)from78.84(control)to86.40mg/dL

(5)

Table3

Effectsofglycerinlevelsonruminalparametersandbloodmetabolitesinlactatingdairycows.

Item Glycerininclusion,g/kgofDM SEMa P-valueb

0 70 140 210 Diet Time Diet*Time LIN QUAD

pH 6.31 6.38 6.38 6.32 0.03 0.65 <0.01 <0.01 0.89 0.22

NH3-N,mg/dL 23.74 21.52 18.05 17.54 0.49 <0.01 <0.01 0.19 <0.01 0.39

TotalVFA,mmol/L 119.11 111.40 108.16 113.87 2.26 0.41 <0.01 0.85 0.37 0.16

Acetate,mol/100mol 62.41 52.51 51.13 47.16 0.58 <0.01 <0.01 0.44 <0.01 0.05

Propionate,mol/100mol 20.61 22.47 24.02 29.12 0.32 <0.01 <0.01 0.06 <0.01 0.06

Butyrate,mol/100mol 12.13 19.25 18.93 17.56 0.35 <0.01 <0.01 <0.01 <0.01 <0.01

BCFA,cmol/100mol 4.85 5.77 5.92 6.16 0.07 <0.01 <0.01 0.07 <0.01 0.11

C2:C3d 3.05 2.39 2.21 1.73 0.05 <0.01 <0.01 <0.01 <0.01 0.20

MicrobialCP,eg/day 2446 2415 2250 2323 67.18 0.43 0.20 0.57

Bloodmetabolites

Glucose,mg/dL 78.84 83.93 83.96 86.40 0.74 <0.01 – – <0.01 0.30

BUN,fmg/dL 36.95 32.50 32.26 33.36 0.76 0.01 0.13 0.01

aStandarderrorofmeans.

b Treatmenteffect(Diet).Timeeffect.Dietandtimeinteractioneffect(Diet*Time).Linearcontrast(LIN).Quadraticcontrasts(QUAD). c BCFA:branchedchainfattyacids(includedvalerate,isovalerateandisobutyrate).

d Acetatetopropionateratio. eMicrobialcrudeprotein. f BUN:bloodureanitrogen.

(210g/kgDMofcrudeglycerin);ontheotherhand,bloodureanitrogenconcentrationwasquadraticallyaffectedbycrude glycerin(P=0.01),withlowestvalueobservedwhen140g/kgDMofcrudeglycerinwassupplied.

4. Discussion

Currently,thegrowthofthebiodieselindustryhasresultedingreateravailabilityofcrudeglycerin,aby-productanda potentialreplacertostarchindietsofdairycows.InthecurrentstudyalineardecreaseinDMIwasobservedwhencows werefedupto210g/kgDMofcrudeglycerin.Ezequieletal.(2015)reportedareductionof15%inDMIofdairycowsfed crudeglycerinupto300g/kgofdietDMcomparedtocontrol.Thenegativeeffectsofcrudeglycerinonanimalmetabolism andperformancemightbeattributedtothreefactors:thequalityofcrudeglycerinduetoimpurities,includingmethanol andsalts(ThompsonandHe,2006;Chungetal.,2007);thespeedinwhichglycerolisfermentedinrumen(Remondetal., 1993;Wangetal.,2009;Shinetal.,2012);andtheabilityofrumenepitheliumtoabsorbglyceroltobemetabolizedinliver (Krehbiel,2008).Ezequieletal.(2015)demonstratedthatdietswith300g/kgDMofcrudeglycerinincreased500%ofNaCl dietarycontentanddecreasedfeedintakeofdairycows.Furthermore,highsaltsandsodiumdietarylevelscouldresultinan electrolyteunbalanceinanimalsandaffectacceptabilityofthedietwithcrudeglycerin(Chungetal.,2007;Dasari,2007). Ontheotherhand,crudeglycerinhashighenergycompounds,andcaninfluenceoxidationreactionsandincreaseKrebs cycleintermediatesproductionintheliver,stimulatingsatietyandreducingDMI(Bensonetal.,2002;Trabueetal.,2007; Allenetal.,2009).

Inclusionofhighdietarylevelsofcrudeglycerin(210g/kg)indairycowdietsresultedinalargedecreaseofmilkyield (3.1kg/day).Similarly,Boydetal.(2013)foundreducedmilkyieldwhencrudeglycerinwasaddedtothedietofdairycows. However,thisresultcontrastedwithotherpreviousstudiesthatreportednodifferenceinmilkyieldwithglycerinadded tothedietsofmid-lactationdairycows(Donkinetal.,2009;Kassetal.,2012;Shinetal.,2012)whichusedupto150gof glycerinindietDM.Inthecurrentstudy,thedecreaseofmilkyieldcouldberelatedtoDMIanddietcomposition.Despite thedigestibilityofnutrientsincreasedwithcrudeglycerin,dietaryCPcontentandDMIdecreased,andconsequentlyaltered metabolizableproteinavailabletobeabsorbedintheduodenum.Oncethemilkcompositionwasnotaltered,theyieldof solidscomponentsinmilk(fat,proteinandlactose)wouldhavethesameresponseofmilkyield.

Apparenttotal-tractdigestibilityofDM,CPandEEincreasedwhenglycerinwasaddedtothediets.Theseresultsarein agreementwithapreviousstudyinwhichglycerincomprisedupto150g/kgofthediet,resultinginincreaseddigestibility ofDM(Donkinetal.,2009).DespitetheincreaseofDMdigestibilitywhencrudeglycerinwasaddedtodiets,theFCMtoDMI ratiolinearlydecreased.Thelatterreducedbecausethedecreaseofmilkyieldwasproportionallyhigherthanthedecrease ofDMI,mainlywhencowswerefedthehighestlevelofcrudeglycerin(−4.0%vs.−11.1%,respectively).Furthermore,in thecurrentstudy,highcrudeglycerinlevelshadanegativeeffectonNDFdigestibility.Invitrostudiesshowedthatglycerol hasaninhibitoryeffectontheactivityandgrowthofcellulolyticbacteria(Rogeretal.,1992;AboEl-Noretal.,2010),which mayimpairtheNDFdigestibility.OtherinvivostudiesalsoshoweddecreaseofNDFdigestibilitywithdietaryinclusionof glycerinupto150g/kgofDM(Donkinetal.,2009;Shinetal.,2012).Moreover,inthisstudythereducedNDFdigestibility mightbeassociatedwithchangesinpropionateandacetateconcentrations,suggestingthattherewereshiftsintheruminal microorganism;however,thisexplanationshouldbeevaluatedinfurtherstudies.

InclusionofcrudeglycerininthecurrentstudyalteredtheruminalVFAproportions.ThesechangesinVFAconcentrations aresimilartothosereportedinpreviousstudies.Decreaseinacetateandincreaseinpropionate,butyrateandBCFAruminal

(6)

fluidconcentrationswerefoundwhendairycowswerefedglycerin(Carvalhoetal.,2011;Kassetal.,2012;Shinetal.,2012). Theincreaseofruminalpropionateconcentrationisrelatedtothefactthat30–69%ofglycerolconsumedisfermentedin therumen,andmostglycerolisfermentedintopropionate(Remondetal.,1993),suggestingthatruminaldegradationof glycerinwasfasterthangroundcornandsoybeanmealdegradation.Propionateismorehypophagiccomparedtoacetate becauseofitsabilitytostimulateoxidationintheliver(Allen,2000).Furthermore,glycerolisaprecursorofglucoseand mayenterintothegluconeogenicpathwaybeingconvertedtoglucoseintheliver,providingenergyforthecow(Goofand Horst,2003;Allenetal.,2009).Therefore,anotherexplanationforthedecreasedDMIreportedinthecurrentexperimentis relatedtothehepaticoxidationtheory,whichstatesthathepaticfueloxidationincreasesATPconcentrationsinhepatocytes whichsendinhibitorysignalsviavagusnervetonucleustractussolitariesthatinhibithypothalamicsatietycenters(Allen etal.,2009).

ThedecreasedNH3-NruminalconcentrationinthepresentstudymayberelatedtodietcompositionandDMI.TheCP contentofdietsdecreasedandDMIlinearlydecreasedaccordingtotheinclusionofcrudeglycerin;thus,lessproteinwouldbe availableintherumenenvironmenttobedegradedintoNH3whencowswerefeddietswithcrudeglycerin.Indeed,microbial proteinsynthesiswasnotimpairedwhencrudeglycerinwasincludedupto150g/kgofthediet(Donkinetal.,2009;Shin etal.,2012),showingnoeffectsofcrudeglycerinonruminalNsupply.Plasmaglucoseconcentrationincreasedaccordingto dietaryinclusionofcrudeglycerinandthisresultcanberelatedwithincreaseinruminalpropionateconcentrations,which isaglucogenicprecursor.Bloodglucoseconcentrationwasdecreased(Carvalhoetal.,2011),unchanged(Kassetal.,2012; Shinetal.,2012;Boydetal.,2013),orincreased(Donkinetal.,2009)whenglycerinwasaddedupto150g/kgincowdiets. Thedifferencesamongthesestudiescouldberelatedtothepurityofglycerin,amountofglycerinadded,andthetimeof bloodsamplingrelativetomealtime.

5. Conclusion

Inclusionofhighlevelsofcrudeglycerin(210g/kg)inthedietsofmid-lactatingcowsincreaseddrymatterdigestibility andruminalpropionate,butnegativelyaffecteddrymatterintakeandmilkyield.Inaddition,resultssuggestthatcrude glycerinhasthepotentialtopartiallyreplacestarchindietarylevelsbelowof140g/kgDMwithoutlargelyreducedairycow performance.

Conflictofinterest

Theauthorsdeclarethatthereisnoconflictofinterest.

Acknowledgements

TheauthorsacknowledgetheUniversityofSãoPaulo(USP)andtheDairyCattleResearchLaboratory,forproviding allthephysicalstructureandstaffnecessaryforthisstudy.Inaddition,theauthorsexpressappreciationtotheBrazilian fundingagencyCAPES(‘Coordenac¸ãodeAperfeic¸oamentodePessoaldeNívelSuperior’)forscholarshiptoP.G.Paiva(grant numberBEX3664/14).

References

AboEl-Nor,S.,Abughazaleh,A.A.,Potu,R.B.,Hastings,D.,Khattab,M.S.A.,2010.Effectsofdifferinglevelsofglycerolonrumenfermentationandbacteria. Anim.FeedSci.Technol.162,99–105.

Allen,M.S.,2000.Effectsofdietonshort-termregulationoffeedintakebylactatingdairycattle.J.DairySci.83,1598–1624.

Allen,M.S.,Bradford,B.J.,Oba,M.,2009.Bord-invitedreview:thehepaticoxidationtheoryofthecontroloffeedintakeanditsapplicationtoruminants.J. Anim.Sci.87,3317–3334.

AOAC,2000.OfficialMethodsofAnalysis,17thed.AssociationofOfficialAnalyticalChemists,Arlington,VA.

Benson,J.A.,Reynolds,C.K.,Aikman,P.C.,Lupoli,B.,Beever,D.E.,2002.Effectsofabomasalvetatableoilinfusiononsplanchnicnutrientmetabolismin lactatingdairycows.J.DairySci.85,1804–1814.

Boyd,J.,Bernard,J.K.,West,J.W.,2013.Effectsoffeedingdifferentamountsofsupplementalglycerolonruminalenvironmentanddigestibilityoflactating dairycows.J.DairySci.96,470–476.

Broderick,G.A.,Kang,J.H.,1980.AutomatedSimultaneousdeterminationofammoniaandtotalamino-acidsinruminalfluidandinvitromedia.J.Dairy Sci.63,64–75.

Carvalho,E.R.,Schmelz-roberts,N.S.,White,H.M.,2011.Replacingcornwithglycerolindietsfortransitiondairycows.J.DairySci.94,908–916.

Casali,A.O.,Detmann,E.,ValadaresFilho,S.C.,Pereira,J.C.,Henrique,L.T.,Freitas,S.G.,Paulino,M.F.,2008.Influenceofincubationtimeandparticlessize onindigestiblecompoundscontentsincattlefeedsandfecesobtainedinsituprocedures.Braz.J.Anim.Sci.37,335–342.

Chen,X.B.,Gomes,M.J.,1992.Estimationofmicrobialproteinsupplytosheepandcattlebasedonurinaryexcretionofpurinederivatives—anoverview oftechnicaldetails.Bucksburnd,Aberdeen:InternationalFeedResearchUnit;RowettResearchInstitute.21p.

Chizzotti,M.L.,ValadaresFilho,S.C.,Valadares,R.F.D.,Chizzotti,F.H.M.,Tedeschi,L.O.,2008.Determinationofcreatinineexcretionandevaluationofspot urinesamplinginHolsteincattle.Livest.Sci.113,218–225.

Chung,Y.H.,Rico,D.E.,Martinez,C.M.,Cassidy,T.W.,Noirot,V.,Ames,A.,2007.EffectsoffeedingdryglycerintoearlypostpartumHolsteindairycowson lactationalperformanceandmetabolicprofiles.J.DairySci.90,5682–5691.

Colak,A.,Toprak,B.,Dogan,N.,Ustuner,F.,2013.Effectofsampletype,centrifugationandstorageconditionsonvitaminDconcentration.Biocem.Med. (Zagreb)23,321–325.

Dasari,M.A.,2007.Crudeglycerolpotentialdescribed.Feedstuffs15,1–3.

Dasari,M.A.,Kiatsimkul,P.P.,Sutterlin,W.R.,Suppes,G.J.,2005.Low-pressurehydrogenolysisofglyceroltopropyleneglycol.Appl.Cata.A:Gen.281, 225–231.

(7)

DeFrain,J.M.,Hippen,A.R.,Kalscheur,K.F.,Jardon,P.W.,2004.Feedingglyceroltotransitiondairycows:effectsonbloodmetabolitesandlactation performance.J.DairySci.87,4195–4206.

Donkin,S.S.,2008.Glycerolfrombiodieselproduction:thenewcornfordairycattle.Braz.J.Anim.Sci.SE.37,280–286.

Donkin,S.S.,Koser,S.L.,White,H.M.,Doane,P.H.,Cecava,M.J.,2009.Feedingvalueofglycerolasareplacementforcorngraininrationsfedtolactating dairycows.J.DairySci.92,5111–5119.

Erwin,E.S.,Marco,G.J.,Emery,E.M.,1961.Volatilefattyacidanalysesofbloodandrumenfluidbygaschromatography.J.DairySci.44,1768–1771.

Ezequiel,J.M.B.,Sancanari,J.B.D.,MachadoNeto,O.R.,Silva,Z.F.,Almeida,M.T.C.,Silva,D.A.V.,vanCleef,F.O.S.,vanCleef,E.H.C.B.,2015.Effectsofhigh concentrationsofdietarycrudeglycerinondairycowproductivityandmilkquality.J.DairySci.98,8009–8017.

Getachew,G.,Makkar,H.P.S.,Becker,K.,2002.Tropicalbrowses:contentsofphenoliccompounds,invitrogasproductionandstoichiometricrelationship betweenshortchainfattyacidandinvitrogasproduction.J.Agric.Sci.139,341–352.

Goff,J.P.,Horst,R.L.,2003.Oralglycerolasaglucogenicprecursorinthetreatmentofketosisandfattylivercomplex.ActaVet.Scand.44,40–41.

Hall,M.B.,2000.Calculationofnon-structuralcarbohydratecontentoffeedsthatcontainnon-proteinnitrogen.UniversityofFlorida,pp.P.A-25(Bulletin 339,April2000).

Kass,M.,Ariko,T.,Rihma,E.,Ots,M.,Arnev,D.,Kart,O.,2012.Effectofreplacementofbarleymealwithcrudeglycerolonlactationperformanceof primaparousdairycowsfedagrasssilagebaseddiets.Livest.Sci.150,240–247.

Kaylegian,K.E.,Houghton,G.E.,Lynch,J.M.,Fleming,J.R.,Barbano,D.M.,2006.Calibrationofinfraredmilkanalyzers:modifiedmilkversusproducermilk. J.DairySci.89,2817–2832.

Krehbiel,C.R.,2008.Ruminalandphysiologicalmetabolismofglycerin.J.DairySci.86,supplement.

Mertens,D.R.,Allen,M.,Carmany,J.,Clegg,J.,Davidowicz,A.,Drouches,M.,Frank,K.,Gambin,D.,Garkie,M.,Gildemeister,B.,Jeffress,D.,Jeon,C.S.,Jones, D.,Kaplan,D.,Kim,G.N.,Kobata,S.,Main,D.,Moua,X.,Paul,B.,Robertson,J.,Tayson,D.,Thiex,N.,Williams,J.,Wolf,J.M.,2002.Gravimetric determinationofamylase-treatedneutraldetergentfiberinfeedswithrefluxinginbeakersorcrucibles:collaborativestudy.J.AOACInt85, 1217–1240.

NationalResearchCouncil,2001.Nutrientrequirementsofdairycattle,7thed.Nat.Acad.Press,WashingtonDC,pp.381.

Nocek,J.E.,1988.Insituandothermethodstoestimateruminalproteinandenergydigestibility.Areview.J.DairySci.71,2051–2069.

Piantoni,P.,Allen,M.S.,2015.Evaluationofpropyleneglycolandglycerolinfusionsastreatmentsforketosisindairycows.J.DairySci.98,1–11.

Remond,B.,Souday,E.,Jouany,J.P.,1993.InvitroandInvivofermentationofglycerolbyrumenmicrobes.Anim.FeedSci.Technol.41,121–132.

Roger,V.,Fonty,G.,Andre,C.,Gouet,P.,1992.Effectsofglycerolonthegrowth,adhesion,andcellulolyticactivityofrumencellulolyticbacteriaand anaerobicfungi.Curr.Microbiol.25,197–201.

Shin,J.H.,Wang,D.,Kim,S.C.,Adesogan,A.T.,Staples,C.R.,2012.Effectsoffeedingcrudeglycerinonperformanceandruminalkineticsoflactating Holsteincowsfedcornsilageorcottonseedhull-based,low-fiberdiets.J.DairySci.95,4006–4016.

Sklan,D.R.,Ashkenazi,R.,Braun,A.,Devorin,A.,Tabori,K.,1992.Fattyacids,calciumsoapsoffattyacids,andcottonseedsfedtohighyieldingcows.J. DairySci.75,2463–2472.

Thompson,J.C.,He,B.B.,2006.Characterizationofcrudeglycerolfrombiodieselproductionfrommultiplefeedstocks.Appl.Eng.Agric.22,261–265.

Trabue,S.,Kenwood,S.,Tjandrakusuma,S.,Rasmussen,M.A.,Reilly,P.J.,2007.Ruminalfermentationofpropyleneglycolandglycerol.J.Agric.FoodChem. 55,7043–7051.

USDA,2014.http://www.ers.usda.gov/topics/farm-economy/bioenergy/findings.aspxaccessedon8/6/2015.

Wang,C.,Liu,Q.,Huo,W.J.,Yang,W.Z.,Dong,K.H.,Huang,Y.X.,Guo,G.,2009.Effectsofglycerolonrumenfermentation,urinaryexcretionofpurine derivativesandfeeddigestibilityinsteers.Livest.Sci.121,15–20.

References

Related documents

She worked on the methodological aspects of risk identification and the proposed risk prevention and mitigation measures for the &#34; Plan for the Management and

A pilot study examined the effects of a 3-day standardized parent/teacher training program adapted for inpatient child and adolescent psychiatric unit nurses.. Findings indicated

Regarding the implementation process and the strategy of open innovation in SMEs there are two aspects we should consider: (1) when the senior management guide the implementation

The School Psychology Program uses portfolio assessments to monitor student progress at the end of each year of the program. Each portfolio is intended to address a

Earnings upgrade for 2010, 2010 profit growth outlook of 12.13% The successful new game launches in 2H10 prompt us to revise our 2010 revenue outlook for AS slightly upwards

Continuous Principle Component Analysis (CPCA) alignment algorithm is utilized during the normalization step to align the 3D an image descriptor, which comprises Zernike moments

Third, it is clear that no statute is able (1) to limit a school district’s pledge of its faith and credit to the payment of any of its general obligation indebtedness or (2) to

Registration methods can be classified into following types: algorithm that directly uses image pixels using correlation method; algorithm that use analysis in frequency