Bis­(DL me­thioninium) sulfate

11 

(1)organic papers Bis(DL-methioninium) sulfate. Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. N. Srinivasan,a B. Sridharb and R. K. Rajaramb* a Department of Physics, Thiagarajar College, Madurai - 625 009, India, and bDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India. Correspondence e-mail: sshiya@yahoo.com. Key indicators Single-crystal X-ray study T = 293 K Ê Mean (C±C) = 0.009 A Disorder in solvent or counterion R factor = 0.051 wR factor = 0.147 Data-to-parameter ratio = 7.8 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2001 International Union of Crystallography Printed in Great Britain ± all rights reserved. o746. N. Srinivasan et al.. . In the title compound, 2 C5H12NO2S+SO42ÿ, the sulfate anions form strong hydrogen bonds with both the cations. A head-to-tail sequence is observed in both the molecules. The three sulfate anions on threefold axes link the amino-N atom through normal hydrogen bonds.. Received 5 July 2001 Accepted 16 July 2001 Online 20 July 2001. Comment Methionine is one of the few amino acids containing sulfur; it also has straight-chain aliphatic -amino acids. The crystal structure of dl-methionine (Mathieson, 1952), L-methionine (Torii & Iitaka, 1973), dl-methionine hydrochloride (Di Blasio et al., 1977), dl-methionine nitrate (Mostad & Natarajan, 1985) and bis(dl-methionine dihydrogen phosphate) (Asath Bahadur, 1992) have already been reported. In the present study, the structure of bis(dl-methioninium) sulfate, (I), was determined .. The two crystallographically independent methionine cations (A and B) have similar geometries (Fig. 1). The C and S atoms of molecule B are disordered. The minor contributing disordered atoms are denoted as primed atoms. The conformation angle 2 is ÿ148.5 (5) and 166.7 (4) for molecules A and B, respectively, which agrees well with bis(dlmethionine dihydrogen phosphate). The 1 straight-chain conformation is in the trans form [ÿ154.7 (5) & ÿ159.6 (9)] for both the A and B molecules. The 2 conformation is in the gauche I form [63.1 (7) ] for molecule A, and in the trans [161.4 (10) ] and gauche I [75 (2) ] forms for the unprimed and primed atoms of molecule B. The 3 conformation is in the gauche I form [70.8 (7) ] for molecule A, and in the gauche II [ÿ82 (2) ] and gauche I [70 (2) ] forms for the unprimed and primed atoms of molecule B (Lakshminarayanan et al., 1967). The carboxyl groups of the methionine cations A and B (Fig. 2 and Table 2) form strong hydrogen bonds with the sulfate anions. The three sulfate anions sitting on the threefold axis link the amino-N atom of both the molecules (A and B) and stabilize the structure. Bifurcated hydrogen bonds are. 2C5H12NO2S+SO42ÿ. DOI: 10.1107/S1600536801012016. Acta Cryst. (2001). E57, o746±o748.

(2) organic papers. Figure 1. ORTEP (Johnson, 1976) plot of the molecular structures of the two independent dl-methionine cations showing the atomic numbering scheme with 50% probability displacement ellipsoids.. observed in the case of the amino-N atom and the sulfate- and carboxyl-O atoms of both the A and B molecules (Jeffrey & Saenger, 1991). The A and B molecules are both engaged in a head-to-tail sequence since the hydrogen bonds N11Ð H11B  O12(ÿy ‡ 1; x ÿ y ÿ 1; z) and N21ÐH21B  O22 (ÿy; x ÿ y ÿ 1; z), connect the amino acids along ab plane (Vijayan, 1988).. Figure 2. Packing diagram of the molecule viewed down the a axis. Table 1. Ê ,  ). Selected geometric parameters (A. Experimental The title compound crystallized in an aqueous solution of methionine and sulfuric acid in the stoichiometric ratio of 2:1. The density of the sample was measured by ¯otation using a liquid mixture of carbon tetrachloride and xylene. Crystal data 2C5H12NO2S+SO42ÿ Mr = 396.49 Trigonal, P3 Ê a = 10.281 (3) A Ê b = 10.281 (3) A Ê c = 14.788 (6) A Ê3 V = 1353.5 (8) A Z=3 Dx = 1.459 Mg mÿ3 Dm = 1.454 Mg mÿ3. Dm measured by ¯otation Cu K radiation Cell parameters from 25 re¯ections  = 14.5±23.4  = 4.12 mmÿ1 T = 293 (2) K Needle, colourless 0.50  0.35  0.20 mm. Rint = 0.066 max = 70.0 h = 0 ! 12 k = ÿ12 ! 10 l = 0 ! 17 25 standard re¯ections every 3 re¯ections frequency: 60 min intensity decay: none. Re®nement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.051 wR(F 2) = 0.147 S = 1.09 1786 re¯ections 229 parameters H-atom parameters constrained. Acta Cryst. (2001). E57, o746±o748. 1.312 (7) 1.198 (7). O11ÐC11ÐC12ÐN11 N11ÐC12ÐC13ÐC14 C11ÐC12ÐC13ÐC14 C12ÐC13ÐC14ÐS11 C13ÐC14ÐS11ÐC15 O21ÐC21ÐC22ÐN21 N21ÐC22ÐC23ÐC240. w = 1/[ 2(Fo2) + (0.1004P)2 + 0.3922P] where P = (Fo2 + 2Fc2)/3 (/)max < 0.001 Ê ÿ3 max = 0.60 e A Ê ÿ3 min = ÿ0.51 e A Flack parameter for absolute structure determination = ÿ0.01 (3) (Flack, 1983). ÿ148.4 (5) ÿ154.7 (5) 84.5 (6) 63.1 (7) 70.8 (7) 166.7 (4) 173.9 (10). O21ÐC21 O22ÐC21. 1.289 (7) 1.202 (7). C21ÐC22ÐC23ÐC240 N21ÐC22ÐC23ÐC24 C21ÐC22ÐC23ÐC24 C22ÐC23ÐC24ÐS21 C22ÐC23ÐC240 ÐS210 C23ÐC24ÐS21ÐC25 C23ÐC240 ÐS210 ÐC25. 53.6 (12) ÿ159.6 (9) 80.1 (10) 161.4 (10) 74.6 (17) ÿ82.4 (15) 70.0 (15). Table 2. Ê ,  ). Hydrogen-bonding geometry (A DÐH  A i. Data collection Enraf±Nonius sealed-tube diffractometer !±2 scans Absorption correction: scan (North et al., 1968) Tmin = 0.221, Tmax = 0.438 2818 measured re¯ections 1786 independent re¯ections 1690 re¯ections with I > 2(I). O11ÐC11 O12ÐC11. O11ÐH11  O2 N11ÐH11A  O3ii N11ÐH11B  O2ii N11ÐH11B  O12iii N11ÐH11C  O6 N11ÐH11C  O6iv O21ÐH21  O4v N21ÐH21A  O4vi N21ÐH21B  O1vii N21ÐH21B  O22viii N21ÐH21C  O6ix. DÐH. H  A. D  A. DÐH  A. 0.82 0.89 0.89 0.89 0.89 0.89 0.82 0.89 0.89 0.89 0.89. 1.79 2.36 2.16 2.33 2.17 2.49 1.76 2.11 2.22 2.65 1.96. 2.569 (6) 3.233 (7) 2.964 (6) 2.816 (6) 2.989 (8) 3.209 (8) 2.576 (5) 2.956 (6) 3.079 (6) 3.083 (7) 2.839 (7). 158.9 169.0 150.6 114.5 152.8 138.0 170.8 159.1 162.4 110.8 167.8. Symmetry codes: (i) 2 ÿ y; 1 ‡ x ÿ y; z; (ii) x; y ÿ 1; z; (iii) 1 ÿ y; x ÿ y ÿ 1; z; (iv) 1 ÿ y; x ÿ y; z; (v) 1 ÿ x ‡ y; 1 ÿ x; z ÿ 1; (vi) 1 ÿ y; x ÿ y; z ÿ 1; (vii) x; y ÿ 1; z ÿ 1; (viii) ÿy; x ÿ y ÿ 1; z; (ix) x; y; z ÿ 1.. In molecule B, the atoms C24, S21 are disordered; the site-occupation factor for C24 and S21 is 0.58 (1), and for C240 and S210 is 0.42 (1). Since the geometry of these disordered atoms differs signi®cantly from expected values, the distances were ®xed by DFIX and the disordered group of atoms (with the associated H atoms) was treated using a split model. All H atoms were ®xed by geometric N. Srinivasan et al.. . 2C5H12NO2S+SO42ÿ. o747.

(3) organic papers restraints using HFIX, and allowed to ride on the preceding atom. Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell re®nement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.. The authors BS and RKR thank the Department of Science and Technology (DST), Government of India for ®nancial support.. References Asath Bahadur, S. (1992). Ph. D thesis, Madurai Kamaraj University, Madurai, India. Di Blasio, B., Pavone, V. & Pedone, C. (1977). Cryst. Struct. Commun. 6, 845± 849.. o748. N. Srinivasan et al.. . 2C5H12NO2S+SO42ÿ. Enraf±Nonius (1989). CAD-4 Software. Version5.0. Enraf±Nonius, Delft, The Netherlands. Flack, H. D. (1983). Acta Cryst. A39, 876±881. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg and New York: Springer-Verlag. Johnson, C. K. (1976). ORTEPII. Oak Ridge National Laboratory, Tennessee, USA. Lakshminarayanan, A. V., Sashisekharan, V. & Ramachandran, G. N. (1967). In Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press. Mathieson, A. McL. (1952). Acta Cryst. 5, 332±341. Mostad, A. & Natarajan, S. (1985). Z. Kristallogr. 172, 175±179. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351± 359. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany. Spek, A. L.(1999). PLATON for Windows. Utrecht University, The Netherlands. Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799±2807. Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71±99.. Acta Cryst. (2001). E57, o746±o748.

(4) supporting information. supporting information Acta Cryst. (2001). E57, o746–o748. [doi:10.1107/S1600536801012016]. Bis(DL-methioninium) sulfate N. Srinivasan, B. Sridhar and R. K. Rajaram S1. Comment Methionine is one of the few amino acids having sulfur; it also has straight-chain aliphatic α-amino acids. The crystal structure of DL-methionine (Mathieson, 1952), L-methionine (Torii & Iitaka, 1973), DL-methionine hydrochloride (Di Blasio et al., 1977), DL-methionine nitrate (Mostad & Natarajan, 1985) and bis(DL-methionine dihydrogen phosphate) (Asath Bahadur, 1992) have already been reported. In the present study, the structure of bis(DL-methioninium)sulfate (I) was determined. The two crystallographically independent methionine cations (A and B) have similar geometries (Fig. 1). The Cγ and Sδ atoms of molecule B are disordered. The minor contributing disordered atoms are denoted as primed atoms. The conformation angle ψ2 is -148.5 (5) and 166.7 (4) for molecules A and B, respectively, which agrees well with bis(DLmethionine dihydrogen phosphate). The χ1 straight-chain conformation is in trans form [-154.7 (5) & -159.6 (9)] for both the A and B molecules. The χ2 conformation is in gauche I form [63.1 (7)°] for molecule A, and in trans [161.4 (10)°] and gauche I [75 (2)°] forms for the unprimed and primed atoms of molecule B. The χ3 conformation is in gauche I form [70.8 (7)°] for molecule A, and in gauche II [-82 (2)°] and gauche I [70 (2)°] forms for the unprimed and primed atoms of molecule B (Lakshminarayanan et al., 1967). The carboxyl groups of the methionine cations A and B (Fig. 2 and Table 2) form strong hydrogen bonds with the sulfate anions. The three sulfate anions sitting on the threefold axis link the amino N atom of both the molecules (A and B) and stabilize the structure. Bifurcated hydrogen bonds are observed in the case of the amino N atom and the sulfateand carboxyl-O atoms of both the A and B molecules (Jeffrey & Saenger, 1991). Both the A and B molecules are engaged in a head-to-tail sequence since the hydrogen bonds N11—H11B···O12(-y + 1, x-y - 1, z) and N21—H21B···O22(-y, x-y 1,z), connect the amino acids along xy plane (Vijayan, 1988). S2. Experimental The title compound crystallized in aqueous solution of methionine and sulfuric acid in stoichiometric ratio of 2:1. The density of the sample was measured by flotation technique using a liquid mixture of carbon tetrachloride and xylene. S3. Refinement In molecule B, the atoms C24, S21 are disordered; the site-occupation factor for C24 and S21 is 0.58 (1), and for C24′ and S21′ is 0.42 (1). Since the geometry of these disordered atoms differs significantly from expected values, the distances were fixed by DFIX and the disordered group of atoms (with the associated H atoms) was treated using a split model. All H atoms were fixed by geometric restraints using HFIX, and allowed to ride on the preceding atom.. Acta Cryst. (2001). E57, o746–o748. sup-1.

(5) supporting information. Figure 1 ORTEP (Johnson, 1976) plot of the molecular structures of the two independent DL-methionine cations showing the atomic numbering scheme with 50% probability displacement ellipsoids.. Figure 2 Packing diagram of the molecule viewed down the a axis. Acta Cryst. (2001). E57, o746–o748. sup-2.

(6) supporting information Bis(DL-Methioninium)sulfate Crystal data 2C5H12NO2S+·SO42− Mr = 396.49 Trigonal, P3 a = 10.281 (3) Å c = 14.788 (6) Å V = 1353.5 (8) Å3 Z=3 F(000) = 630. Dx = 1.459 Mg m−3 Dm = 1.454 Mg m−3 Dm measured by flotation Cu Kα radiation, λ = 1.5418 Å Cell parameters from 25 reflections θ = 14.5–23.4° µ = 4.12 mm−1 T = 293 K Needle, colourless 0.5 × 0.35 × 0.2 mm. Data collection 1786 independent reflections 1690 reflections with I > 2σ(I) Rint = 0.066 θmax = 70.0°, θmin = 5.0° h = 0→12 k = −12→10 l = 0→17 25 standard reflections every 3 reflections intensity decay: none. Enraf-Nonius sealed tube diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω–2θ scans Absorption correction: ψ scan (North et al., 1968) Tmin = 0.221, Tmax = 0.438 2818 measured reflections Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.051 wR(F2) = 0.147 S = 1.09 1786 reflections 229 parameters 7 restraints Primary atom site location: structure-invariant direct methods. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters not refined w = 1/[σ2(Fo2) + (0.1004P)2 + 0.3922P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.60 e Å−3 Δρmin = −0.51 e Å−3. Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). S1 O1 O2. x. y. z. Uiso*/Ueq. 0.3333 0.3333 0.4427 (4). 0.6667 0.6667 0.8170 (4). 0.77391 (13) 0.8717 (5) 0.7397 (3). 0.0310 (4) 0.0434 (14) 0.0438 (9). Acta Cryst. (2001). E57, o746–o748. Occ. (<1). sup-3.

(7) supporting information S2 O3 O4 S3 O5 O6 O11 H11 O12 N11 H11A H11B H11C C11 C12 H12 C13 H13A H13B C14 H14A H14B S11 C15 H15A H15B H15C O21 H21 O22 C21 C22 H22 N21 H21A H21B H21C C23 H23A H23B H23C H23D C24 H24A H24B C24′ H24C H24D. 1.0000 1.0000 0.8825 (4) 0.6667 0.6667 0.5636 (6) 1.0169 (5) 1.0871 1.0378 (5) 0.7559 (5) 0.8198 0.6772 0.7249 0.9748 (6) 0.8326 (6) 0.8634 0.7291 (7) 0.7296 0.6273 0.7749 (9) 0.8768 0.7100 0.7659 (3) 0.5623 (13) 0.5370 0.5198 0.5228 0.7156 (4) 0.7936 0.6232 (5) 0.6119 (6) 0.4706 (5) 0.4987 0.3763 (5) 0.2925 0.3528 0.4270 0.3778 (7) 0.3766 0.2753 0.2941 0.3353 0.4590 (16) 0.4908 0.5479 0.432 (3) 0.5274 0.3595. Acta Cryst. (2001). E57, o746–o748. 1.0000 1.0000 0.8538 (4) 0.3333 0.3333 0.1826 (5) 0.3728 (5) 0.4506 0.2760 (5) 0.0500 (5) 0.0413 −0.0406 0.1078 0.2651 (6) 0.1193 (5) 0.0524 0.1375 (7) 0.2301 0.0550 0.1408 (9) 0.2231 0.1609 −0.0287 (3) −0.1487 (12) −0.2475 −0.1074 −0.1545 0.0723 (5) 0.0769 −0.0585 (5) 0.0030 (6) 0.0103 (5) 0.1148 −0.0402 (5) −0.0367 −0.1339 0.0199 −0.0877 (9) −0.1826 −0.1074 −0.0698 −0.1905 0.007 (3) 0.1114 −0.0006 −0.086 (2) −0.0844 −0.1749. 0.98814 (13) 0.8912 (5) 1.0219 (3) 0.86420 (13) 0.9608 (5) 0.8286 (4) 0.6607 (3) 0.6810 0.7908 (3) 0.7821 (3) 0.8188 0.7715 0.8080 0.7207 (4) 0.6949 (4) 0.6669 0.6291 (4) 0.6428 0.6375 0.5302 (5) 0.5224 0.4923 0.49214 (15) 0.4901 (8) 0.4702 0.4493 0.5497 0.0797 (3) 0.0624 −0.0462 (3) 0.0200 (4) 0.0384 (3) 0.0509 −0.0446 (3) −0.0353 −0.0576 −0.0905 0.1178 (4) 0.1179 0.1146 0.1240 0.0970 0.2046 (6) 0.1938 0.2165 0.2133 (11) 0.2126 0.2462. 0.0305 (4) 0.062 (2) 0.0452 (9) 0.0314 (4) 0.0534 (17) 0.0715 (14) 0.0501 (9) 0.075* 0.0515 (10) 0.0437 (10) 0.066* 0.066* 0.066* 0.0399 (11) 0.0400 (10) 0.048* 0.0532 (14) 0.064* 0.064* 0.0708 (19) 0.085* 0.085* 0.0864 (7) 0.109 (4) 0.164* 0.164* 0.164* 0.0503 (10) 0.075* 0.0535 (10) 0.0366 (10) 0.0375 (10) 0.045* 0.0411 (10) 0.062* 0.062* 0.062* 0.0641 (18) 0.077* 0.077* 0.077* 0.077* 0.093 (7) 0.112* 0.112* 0.079 (7) 0.095* 0.095*. 0.576 (10) 0.576 (10) 0.424 (10) 0.424 (10) 0.576 (10) 0.576 (10) 0.576 (10) 0.424 (10) 0.424 (10) 0.424 (10). sup-4.

(8) supporting information S21 S21′ C25 H25A H25B H25C H25D H25E H25F. 0.3392 (7) 0.4523 (12) 0.2501 (18) 0.1459 0.2943 0.2593 0.1994 0.1998 0.2492. −0.0573 (9) 0.0817 (10) 0.038 (2) −0.0318 0.0988 0.1009 −0.0416 0.0070 0.1259. 0.3016 (3) 0.2647 (5) 0.2777 (9) 0.2665 0.2250 0.3280 0.3210 0.2204 0.2983. 0.121 (3) 0.126 (4) 0.166 (8) 0.250* 0.250* 0.250* 0.250* 0.250* 0.250*. 0.576 (10) 0.424 (10) 0.576 (10) 0.576 (10) 0.576 (10) 0.424 (10) 0.424 (10) 0.424 (10). Atomic displacement parameters (Å2). S1 O1 O2 S2 O3 O4 S3 O5 O6 O11 O12 N11 C11 C12 C13 C14 S11 C15 O21 O22 C21 C22 N21 C23 C24 C24′ S21 S21′ C25. U11. U22. U33. U12. U13. U23. 0.0239 (5) 0.042 (2) 0.0301 (17) 0.0256 (5) 0.071 (3) 0.0293 (16) 0.0262 (5) 0.059 (3) 0.072 (3) 0.045 (2) 0.044 (2) 0.048 (3) 0.042 (3) 0.040 (3) 0.042 (3) 0.070 (5) 0.0890 (15) 0.104 (8) 0.0334 (19) 0.042 (2) 0.030 (2) 0.033 (2) 0.032 (2) 0.053 (3) 0.078 (10) 0.098 (16) 0.143 (5) 0.199 (10) 0.27 (2). 0.0239 (5) 0.042 (2) 0.0283 (17) 0.0256 (5) 0.071 (3) 0.0269 (17) 0.0262 (5) 0.059 (3) 0.035 (2) 0.038 (2) 0.053 (2) 0.031 (2) 0.034 (2) 0.036 (2) 0.052 (3) 0.068 (4) 0.0899 (15) 0.079 (6) 0.066 (3) 0.073 (3) 0.030 (2) 0.037 (2) 0.049 (2) 0.104 (5) 0.20 (2) 0.098 (16) 0.211 (7) 0.139 (7) 0.225 (19). 0.0451 (10) 0.047 (3) 0.067 (2) 0.0403 (9) 0.043 (4) 0.079 (3) 0.0419 (10) 0.042 (3) 0.070 (3) 0.050 (2) 0.059 (2) 0.051 (3) 0.047 (3) 0.044 (2) 0.058 (4) 0.060 (4) 0.0657 (11) 0.099 (7) 0.056 (2) 0.054 (2) 0.045 (3) 0.043 (2) 0.045 (2) 0.043 (3) 0.018 (5) 0.066 (13) 0.0429 (18) 0.065 (4) 0.088 (8). 0.0119 (3) 0.0208 (10) 0.0100 (14) 0.0128 (3) 0.0353 (15) 0.0136 (14) 0.0131 (3) 0.0295 (13) −0.002 (2) 0.0078 (16) 0.0254 (18) 0.0185 (19) 0.022 (2) 0.019 (2) 0.018 (2) 0.023 (4) 0.0337 (12) 0.011 (6) 0.0283 (19) 0.035 (2) 0.0121 (18) 0.019 (2) 0.0219 (19) 0.045 (4) 0.081 (14) 0.067 (14) 0.114 (5) 0.103 (7) 0.19 (2). 0.000 0.000 0.0006 (15) 0.000 0.000 0.0040 (16) 0.000 0.000 −0.008 (2) −0.0025 (17) −0.0045 (17) 0.0105 (19) 0.006 (2) 0.008 (2) −0.005 (2) −0.007 (3) 0.0030 (10) −0.015 (6) −0.0085 (16) −0.0054 (17) 0.0041 (19) 0.003 (2) 0.0037 (17) 0.017 (3) 0.005 (5) 0.017 (10) 0.034 (2) −0.014 (4) 0.050 (11). 0.000 0.000 0.0090 (16) 0.000 0.000 0.0077 (17) 0.000 0.000 −0.003 (2) 0.0016 (17) 0.0022 (18) −0.0022 (18) 0.000 (2) 0.001 (2) −0.003 (3) 0.007 (3) −0.0215 (11) −0.024 (5) −0.021 (2) −0.021 (2) 0.0045 (18) −0.003 (2) 0.0101 (18) 0.016 (3) −0.004 (8) 0.031 (11) 0.043 (3) −0.021 (4) 0.015 (10). Geometric parameters (Å, º) S1—O1 S1—O2i S1—O2. Acta Cryst. (2001). E57, o746–o748. 1.446 (7) 1.474 (3) 1.474 (3). C15—H15C O21—C21 O21—H21. 0.9600 1.289 (7) 0.8200. sup-5.

(9) supporting information S1—O2ii S2—O3 S2—O4iii S2—O4iv S2—O4 S3—O5 S3—O6v S3—O6 S3—O6vi O11—C11 O11—H11 O12—C11 N11—C12 N11—H11A N11—H11B N11—H11C C11—C12 C12—C13 C12—H12 C13—C14 C13—H13A C13—H13B C14—S11 C14—H14A C14—H14B S11—C15 C15—H15A C15—H15B. 1.474 (3) 1.433 (8) 1.466 (3) 1.466 (3) 1.466 (3) 1.429 (8) 1.469 (4) 1.469 (4) 1.469 (4) 1.312 (7) 0.8200 1.198 (7) 1.494 (7) 0.8900 0.8900 0.8900 1.529 (7) 1.521 (8) 0.9800 1.532 (10) 0.9700 0.9700 1.789 (9) 0.9700 0.9700 1.823 (12) 0.9600 0.9600. O22—C21 C21—C22 C22—N21 C22—C23 C22—H22 N21—H21A N21—H21B N21—H21C C23—C24′ C23—C24 C23—H23A C23—H23B C23—H23C C23—H23D C24—S21 C24—H24A C24—H24B C24′—S21′ C24′—H24C C24′—H24D S21—C25 S21′—C25 C25—H25A C25—H25B C25—H25C C25—H25D C25—H25E C25—H25F. 1.202 (7) 1.517 (7) 1.486 (7) 1.530 (8) 0.9800 0.8900 0.8900 0.8900 1.517 (16) 1.574 (14) 0.9700 0.9700 0.9700 0.9700 1.787 (12) 0.9700 0.9700 1.803 (17) 0.9700 0.9700 1.678 (13) 1.903 (15) 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600. O1—S1—O2i O1—S1—O2 O2i—S1—O2 O1—S1—O2ii O2i—S1—O2ii O2—S1—O2ii O3—S2—O4iii O3—S2—O4iv O4iii—S2—O4iv O3—S2—O4 O4iii—S2—O4 O4iv—S2—O4 O5—S3—O6v O5—S3—O6 O6v—S3—O6 O5—S3—O6vi O6v—S3—O6vi O6—S3—O6vi C11—O11—H11. 110.08 (18) 110.08 (19) 108.85 (19) 110.08 (18) 108.85 (19) 108.85 (19) 109.9 (2) 109.9 (2) 109.1 (2) 109.9 (2) 109.1 (2) 109.1 (2) 111.0 (2) 111.0 (2) 107.9 (2) 111.0 (2) 107.9 (2) 107.9 (2) 109.5. C22—N21—H21C H21A—N21—H21C H21B—N21—H21C C24′—C23—C22 C24′—C23—C24 C22—C23—C24 C24′—C23—H23A C22—C23—H23A C24—C23—H23A C24′—C23—H23B C22—C23—H23B C24—C23—H23B H23A—C23—H23B C24′—C23—H23C C22—C23—H23C C24—C23—H23C H23A—C23—H23C H23B—C23—H23C C24′—C23—H23D. 109.5 109.5 109.5 127.2 (12) 32.4 (9) 104.9 (8) 80.0 110.8 110.8 113.8 110.8 110.8 108.8 105.5 105.5 93.0 128.6 21.6 105.5. Acta Cryst. (2001). E57, o746–o748. sup-6.

(10) supporting information C12—N11—H11A C12—N11—H11B H11A—N11—H11B C12—N11—H11C H11A—N11—H11C H11B—N11—H11C O12—C11—O11 O12—C11—C12 O11—C11—C12 N11—C12—C13 N11—C12—C11 C13—C12—C11 N11—C12—H12 C13—C12—H12 C11—C12—H12 C12—C13—C14 C12—C13—H13A C14—C13—H13A C12—C13—H13B C14—C13—H13B H13A—C13—H13B C13—C14—S11 C13—C14—H14A S11—C14—H14A C13—C14—H14B S11—C14—H14B H14A—C14—H14B C14—S11—C15 S11—C15—H15A S11—C15—H15B H15A—C15—H15B S11—C15—H15C H15A—C15—H15C H15B—C15—H15C C21—O21—H21 O22—C21—O21 O22—C21—C22 O21—C21—C22 N21—C22—C21 N21—C22—C23 C21—C22—C23 N21—C22—H22 C21—C22—H22 C23—C22—H22 C22—N21—H21A C22—N21—H21B H21A—N21—H21B. Acta Cryst. (2001). E57, o746–o748. 109.5 109.5 109.5 109.5 109.5 109.5 124.9 (5) 121.0 (5) 114.1 (5) 112.0 (5) 105.7 (4) 115.1 (4) 107.9 107.9 107.9 112.7 (5) 109.0 109.0 109.0 109.0 107.8 114.5 (5) 108.6 108.6 108.6 108.6 107.6 98.5 (5) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 125.3 (5) 121.2 (5) 113.4 (4) 108.0 (4) 108.7 (4) 113.7 (5) 108.8 108.8 108.8 109.5 109.5 109.5. C22—C23—H23D C24—C23—H23D H23A—C23—H23D H23B—C23—H23D H23C—C23—H23D C23—C24—S21 C23—C24—H24A S21—C24—H24A C23—C24—H24B S21—C24—H24B H24A—C24—H24B C23—C24′—S21′ C23—C24′—H24C S21′—C24′—H24C C23—C24′—H24D S21′—C24′—H24D H24C—C24′—H24D C25—S21—C24 C24′—S21′—C25 S21—C25—S21′ S21—C25—H25A S21′—C25—H25A S21—C25—H25B S21′—C25—H25B H25A—C25—H25B S21—C25—H25C S21′—C25—H25C H25A—C25—H25C H25B—C25—H25C S21—C25—H25D S21′—C25—H25D H25A—C25—H25D H25B—C25—H25D H25C—C25—H25D S21—C25—H25E S21′—C25—H25E H25A—C25—H25E H25B—C25—H25E H25C—C25—H25E H25D—C25—H25E S21—C25—H25F S21′—C25—H25F H25A—C25—H25F H25B—C25—H25F H25C—C25—H25F H25D—C25—H25F H25E—C25—H25F. 105.5 137.8 29.8 84.6 106.1 111.9 (10) 109.2 109.2 109.2 109.2 107.9 105.4 (10) 110.7 110.7 110.7 110.7 108.8 95.3 (9) 103.1 (11) 46.4 (5) 109.5 147.1 109.5 70.1 109.5 109.5 101.0 109.5 109.5 65.6 109.5 63.4 167.0 83.5 110.7 109.5 52.0 60.0 139.6 109.5 138.5 109.5 102.9 82.3 32.9 109.5 109.5. sup-7.

(11) supporting information O12—C11—C12—N11 O11—C11—C12—N11 O12—C11—C12—C13 O11—C11—C12—C13 N11—C12—C13—C14 C11—C12—C13—C14 C12—C13—C14—S11 C13—C14—S11—C15 O22—C21—C22—N21 O21—C21—C22—N21 O22—C21—C22—C23 O21—C21—C22—C23. 30.7 (6) −148.4 (5) 154.8 (5) −24.3 (6) −154.7 (5) 84.5 (6) 63.1 (7) 70.8 (7) −11.1 (7) 166.7 (4) 109.5 (6) −72.6 (6). N21—C22—C23—C24′ C21—C22—C23—C24′ N21—C22—C23—C24 C21—C22—C23—C24 C24′—C23—C24—S21 C22—C23—C24—S21 C22—C23—C24′—S21′ C24—C23—C24′—S21′ C23—C24—S21—C25 C23—C24′—S21′—C25 C24—S21—C25—S21′ C24′—S21′—C25—S21. 173.9 (10) 53.6 (12) −159.6 (9) 80.1 (10) −60 (2) 161.4 (10) 74.6 (17) 21.0 (12) −82.4 (15) 70.0 (15) −37.2 (7) 47.2 (8). Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) −x+y+1, −x+2, z; (iv) −y+2, x−y+1, z; (v) −y+1, x−y, z; (vi) −x+y+1, −x+1, z.. Hydrogen-bond geometry (Å, º) D—H···A iv. O11—H11···O2 N11—H11A···O3vii N11—H11B···O2vii N11—H11B···O12viii N11—H11C···O6 N11—H11C···O6v O21—H21···O4ix N21—H21A···O4x N21—H21B···O1xi N21—H21B···O22xii N21—H21C···O6xiii. D—H. H···A. D···A. D—H···A. 0.82 0.89 0.89 0.89 0.89 0.89 0.82 0.89 0.89 0.89 0.89. 1.79 2.36 2.16 2.33 2.17 2.49 1.76 2.11 2.22 2.65 1.96. 2.569 (6) 3.233 (7) 2.964 (6) 2.816 (6) 2.989 (8) 3.209 (8) 2.576 (5) 2.956 (6) 3.079 (6) 3.083 (7) 2.839 (7). 159 169 151 115 153 138 171 159 162 111 168. Symmetry codes: (iv) −y+2, x−y+1, z; (v) −y+1, x−y, z; (vii) x, y−1, z; (viii) −y+1, x−y−1, z; (ix) −x+y+1, −x+1, z−1; (x) −y+1, x−y, z−1; (xi) x, y−1, z−1; (xii) −y, x−y−1, z; (xiii) x, y, z−1.. Acta Cryst. (2001). E57, o746–o748. sup-8.

(12)

New documents

Table 9: Condition 3: Micro average F1 score results obtained on three sets of test data while trained using a combination of FB-4 and LU-4 training data... able to generalize better

The scalar influence of an embedding predicate P extends beyond the predications it embeds to another predication in its scope Pre , if one of the following constraints is met: • P is

In this paper, we take a similar stand and present a study that investigates the use of filled pauses in informal spoken German youth language and in written, but conceptually oral text

The present paper focuses on the first one; we show that tailoring to a semantic task, string-based error categories standardly used to evaluate the quality of the machine translation

Appendix C: Orbital mixing of aromatic-acetylene cyanine dyes using Hartree-Fock C.1: Introduction As discussed in Chapter 1, while TDDFT is a valuable resource to study the excited

The key components of our system are the Discourse Attributes Analysis Program DAAP; the empirically derived Weighted Referential Activity Dictionary WRAD Bucci and Maskit, 2006, which

Results and Discussion: An in-depth analysis of the framework is presented, and then results from two measures based on LSA semantic similarity illustrate how these automated techniques

Quininib is well tolerated in mice when administered at 50 mg/kg intraperitoneally every 3 days and significantly reduced tumour growth of HT-29-luc2 CRC tumour xenografts compared to

The weighted Jaccard similarity coefficient Jac Jaccard, 1912 is a word overlap measure between a pair of turns I and J defined as the sum of the minimum term frequency of each

We describe a system that performs automated morphological analysis needed to calculate statistics such as the mean length of utterance in morphemes MLUM, so that these statistics can