• No results found

2 Amino 3 (4 hy­droxy­benzyl­­idene­amino)butenedi­nitrile monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "2 Amino 3 (4 hy­droxy­benzyl­­idene­amino)butenedi­nitrile monohydrate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o831–o832 doi:10.1107/S1600536806002923 Shiet al. C

11H10N4O2

o831

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-3-(4-hydroxybenzylideneamino)-butenedinitrile monohydrate

Jing-Min Shi,* Xia Zhang, Hai-Yan Xu and Lian-Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People’s Republic of China

Correspondence e-mail: shijingmin@beelink.com

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.050 wRfactor = 0.137

Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 3 January 2006 Accepted 24 January 2006

#2006 International Union of Crystallography

All rights reserved

In the crystal structure of the title compound, C11H8N4OH2O,

the molecules are held together by O—H O, O—H N and N—H N hydrogen bonds. The compound exhibits strong fluorescent emission in the solid state.

Comment

2-Amino-3-(4-hydroxybenzylidene)aminobutenedinitrile, (I), is a useful compound in the dye and medicine synthesis fields (Begland et al., 1974; Begland & Del, 1975), but its crystal structure is unknown to date. The crystal structures of the related compounds 2-amino-3-(2-hydroxybenzylideneamino)-2,3-butenedinitrile and 2-amino-3-[4-(diethylamino)-2-hydroxybenzylideneamino]-2,3-butenedinitrile have been reported by MacLachlanet al.(1996) and Costeset al.(2005), respectively. As part of an investigation of its physical prop-erties, we report the molecular structure of the title compound, (I) (Fig. 1).

The butenedinitrile molecule is approximately planar, with a dihedral angle of 7.73 (3) between the planes of the

hydroxylbenzylidene and diaminomaleonitrile groups. The bond lengths imply that all non-H atoms of the molecule are involved in a conjugated system. Hydrogen bonds (Table 1) connect the water molecule and the hydroxy group, the water molecule and the cyano group, and the amino and cyano groups. The title compound exhibits a strong fluorescence spectrum with a maximum emission peak at 564 nm when the excitation wavelength is selected at 320 nm.

Experimental

(2)

Crystal data

C11H10N4O2

Mr= 230.23

Monoclinic,P21=n

a= 9.848 (2) A˚

b= 7.0388 (15) A˚

c= 16.473 (3) A˚

= 90.604 (3)

V= 1141.9 (4) A˚3

Z= 4

Dx= 1.339 Mg m 3

MoKradiation Cell parameters from 2655

reflections

= 2.4–27.6

= 0.10 mm1

T= 298 (2) K Prism, yellow 0.230.210.19 mm

Data collection

Bruker SMART APEX CCD diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.978,Tmax= 0.982

6301 measured reflections

2358 independent reflections 1943 reflections withI> 2(I)

Rint= 0.039

max= 26.5

h=11!12

k=8!8

l=20!19

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.050

wR(F2) = 0.137

S= 1.03 2358 reflections 156 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0884P)2

+ 0.0552P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.004 max= 0.22 e A˚

3

min=0.30 e A˚

3

Extinction correction:SHELXL97

Extinction coefficient: 0.024 (4)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H4 O2i

0.82 1.87 2.6848 (16) 169 O2—H7 O1ii

0.88 2.04 2.8283 (15) 148 O2—H8 N2iii

0.89 2.26 3.115 (2) 161 N4—H4A N2iii 0.86 2.42 3.1691 (19) 146 N4—H4B N3iv

0.86 2.15 3.0053 (18) 171

Symmetry codes: (i)x1 2;yþ

1 2;z

1 2; (ii)xþ

1 2;y

1 2;zþ

1

2; (iii)x;yþ1;z; (iv)

xþ1 2;yþ

1 2;zþ

3 2.

The H atoms of the water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.88 and 0.89 A˚ and

Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions, with C—H = 0.93 A˚ , O—H = 0.82 A˚ and N—H = 0.93 A˚, and were refined as riding, withUiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction:SAINT; program(s) used to solve

structure: SHELXTL (Bruker, 2001); program(s) used to refine

structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The authors thank the Natural Science Foundation of China (grant No. 20271043).

References

Begland, R. W. & Del, W. (1975). US Patent No. 3 912 724.

Begland, R. W., Hartter, D. R., Jones, F. N., Sam, D. J., Sheppard, W. A., Webste, O. W. & Weigert, F. J. (1974).J. Org. Chem.39, 2341–2350. Bruker (1997).SMART(Version 5.6) andSAINT(Version 5. A06). Bruker

AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Costes, J. P., Lame`re, J. F., Lepetit, C., Lacroix, P. G., Dahan, F & Nakatani, K. (2005).Inorg. Chem.44, 1973–1982.

MacLachlan, M. J., Park, M. K. & Thompson, L. K. (1996).Inorg. Chem.35, 5492–5499.

[image:2.610.312.566.71.202.2]

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o831–o832

supporting information

Acta Cryst. (2006). E62, o831–o832 [https://doi.org/10.1107/S1600536806002923]

2-Amino-3-(4-hydroxybenzylideneamino)butenedinitrile monohydrate

Jing-Min Shi, Xia Zhang, Hai-Yan Xu and Lian-Dong Liu

2-Amino-3-(4-hydroxybenzylideneamino)butenedinitrile monohydrate

Crystal data

C11H10N4O2

Mr = 230.23 Monoclinic, P21/n Hall symbol: -P 2yn a = 9.848 (2) Å b = 7.0388 (15) Å c = 16.473 (3) Å β = 90.604 (3)° V = 1141.9 (4) Å3

Z = 4

F(000) = 480 Dx = 1.339 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2655 reflections θ = 2.4–27.6°

µ = 0.10 mm−1

T = 298 K Prism, yellow

0.23 × 0.21 × 0.19 mm

Data collection

Bruker SMART APEX CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.978, Tmax = 0.982

6301 measured reflections 2358 independent reflections 1943 reflections with I > 2σ(I) Rint = 0.039

θmax = 26.5°, θmin = 2.4°

h = −11→12 k = −8→8 l = −20→19

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.050

wR(F2) = 0.137

S = 1.03 2358 reflections 156 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0884P)2 + 0.0552P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.004 Δρmax = 0.22 e Å−3 Δρmin = −0.30 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.15384 (11) 0.02846 (15) 0.45425 (6) 0.0334 (3)

O1 0.01828 (11) 0.41676 (15) 0.11294 (6) 0.0508 (3)

H4 −0.0076 0.3519 0.0744 0.076*

C8 0.18530 (13) −0.08908 (19) 0.51945 (7) 0.0328 (3)

C7 0.13287 (13) −0.03927 (19) 0.38325 (7) 0.0342 (3)

H6 0.1379 −0.1700 0.3758 0.041*

C5 0.10147 (12) 0.08086 (19) 0.31369 (7) 0.0331 (3)

C4 0.10162 (15) 0.2776 (2) 0.31899 (8) 0.0422 (4)

H5 0.1207 0.3359 0.3685 0.051*

C6 0.07016 (16) −0.0016 (2) 0.23923 (8) 0.0425 (4)

H1 0.0692 −0.1333 0.2347 0.051*

C11 0.24004 (14) −0.1223 (2) 0.66272 (8) 0.0399 (4)

C2 0.04374 (13) 0.3024 (2) 0.17805 (8) 0.0370 (3)

C10 0.20193 (13) −0.00669 (19) 0.59391 (7) 0.0332 (3)

C9 0.20000 (15) −0.2904 (2) 0.51078 (8) 0.0406 (4)

N3 0.27179 (15) −0.2099 (2) 0.71749 (8) 0.0571 (4)

N4 0.18443 (13) 0.17866 (17) 0.60808 (7) 0.0450 (3)

H4A 0.1613 0.2534 0.5690 0.054*

H4B 0.1963 0.2231 0.6563 0.054*

C1 0.04046 (15) 0.1075 (2) 0.17185 (8) 0.0425 (4)

H2 0.0184 0.0499 0.1226 0.051*

C3 0.07373 (16) 0.3871 (2) 0.25154 (8) 0.0466 (4)

H3 0.0751 0.5189 0.2556 0.056*

N2 0.21026 (18) −0.4505 (2) 0.50026 (8) 0.0640 (4)

O2 0.44395 (12) 0.25802 (15) 0.47460 (6) 0.0527 (3)

H8 0.3651 0.3197 0.4772 0.079*

H7 0.4335 0.1756 0.4345 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.0427 (6) 0.0296 (6) 0.0278 (6) 0.0011 (4) −0.0059 (4) 0.0035 (4)

O1 0.0699 (7) 0.0446 (7) 0.0376 (6) −0.0057 (5) −0.0138 (5) 0.0148 (5)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o831–o832

C4 0.0595 (9) 0.0348 (8) 0.0319 (7) −0.0053 (6) −0.0140 (6) −0.0012 (5)

C6 0.0653 (9) 0.0292 (7) 0.0328 (7) 0.0045 (6) −0.0064 (6) −0.0013 (5)

C11 0.0483 (8) 0.0411 (8) 0.0303 (7) −0.0008 (6) −0.0044 (6) 0.0028 (6)

C2 0.0402 (7) 0.0399 (8) 0.0308 (7) −0.0018 (6) −0.0047 (5) 0.0093 (5)

C10 0.0391 (7) 0.0331 (7) 0.0273 (6) −0.0017 (5) −0.0051 (5) 0.0044 (5)

C9 0.0552 (8) 0.0348 (8) 0.0317 (7) 0.0019 (6) −0.0092 (6) 0.0036 (5)

N3 0.0724 (9) 0.0609 (9) 0.0378 (7) 0.0062 (7) −0.0092 (6) 0.0165 (6)

N4 0.0724 (8) 0.0348 (7) 0.0277 (6) 0.0026 (6) −0.0079 (5) −0.0011 (5)

C1 0.0624 (9) 0.0392 (8) 0.0257 (6) 0.0048 (7) −0.0056 (6) −0.0028 (5)

C3 0.0671 (10) 0.0290 (8) 0.0433 (8) −0.0075 (7) −0.0157 (7) 0.0050 (6)

N2 0.1055 (12) 0.0331 (8) 0.0532 (8) 0.0077 (7) −0.0173 (7) 0.0000 (6)

O2 0.0683 (7) 0.0451 (7) 0.0445 (6) 0.0015 (5) −0.0045 (5) −0.0032 (4)

Geometric parameters (Å, º)

N1—C7 1.2778 (16) C6—H1 0.9300

N1—C8 1.3883 (15) C11—N3 1.1341 (18)

O1—C2 1.3623 (15) C11—C10 1.4417 (17)

O1—H4 0.8200 C2—C1 1.376 (2)

C8—C10 1.3651 (17) C2—C3 1.3787 (19)

C8—C9 1.432 (2) C10—N4 1.3368 (18)

C7—C5 1.4548 (17) C9—N2 1.145 (2)

C7—H6 0.9300 N4—H4A 0.8600

C5—C4 1.387 (2) N4—H4B 0.8600

C5—C6 1.3887 (17) C1—H2 0.9300

C4—C3 1.3779 (19) C3—H3 0.9300

C4—H5 0.9300 O2—H8 0.8914

C6—C1 1.3786 (18) O2—H7 0.8848

C7—N1—C8 121.23 (11) O1—C2—C1 121.79 (12)

C2—O1—H4 109.5 O1—C2—C3 118.13 (13)

C10—C8—N1 117.76 (12) C1—C2—C3 120.07 (12)

C10—C8—C9 119.92 (11) N4—C10—C8 123.85 (11)

N1—C8—C9 122.32 (11) N4—C10—C11 116.52 (11)

N1—C7—C5 122.35 (12) C8—C10—C11 119.63 (12)

N1—C7—H6 118.8 N2—C9—C8 176.94 (14)

C5—C7—H6 118.8 C10—N4—H4A 120.0

C4—C5—C6 118.22 (12) C10—N4—H4B 120.0

C4—C5—C7 122.03 (11) H4A—N4—H4B 120.0

C6—C5—C7 119.74 (12) C2—C1—C6 119.40 (12)

C3—C4—C5 120.50 (12) C2—C1—H2 120.3

C3—C4—H5 119.7 C6—C1—H2 120.3

C5—C4—H5 119.7 C4—C3—C2 120.34 (14)

C1—C6—C5 121.44 (13) C4—C3—H3 119.8

C1—C6—H1 119.3 C2—C3—H3 119.8

C5—C6—H1 119.3 H8—O2—H7 105.1

(6)

C7—N1—C8—C10 −177.91 (12) C9—C8—C10—N4 −177.04 (13)

C7—N1—C8—C9 1.88 (19) N1—C8—C10—C11 −177.51 (11)

C8—N1—C7—C5 −179.19 (11) C9—C8—C10—C11 2.69 (19)

N1—C7—C5—C4 4.6 (2) O1—C2—C1—C6 178.49 (13)

N1—C7—C5—C6 −175.42 (13) C3—C2—C1—C6 −1.3 (2)

C6—C5—C4—C3 −1.1 (2) C5—C6—C1—C2 0.9 (2)

C7—C5—C4—C3 178.85 (13) C5—C4—C3—C2 0.8 (2)

C4—C5—C6—C1 0.3 (2) O1—C2—C3—C4 −179.33 (13)

C7—C5—C6—C1 −179.70 (13) C1—C2—C3—C4 0.5 (2)

N1—C8—C10—N4 2.76 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H4···O2i 0.82 1.87 2.6848 (16) 169

O2—H7···O1ii 0.88 2.04 2.8283 (15) 148

O2—H8···N2iii 0.89 2.26 3.115 (2) 161

N4—H4A···N2iii 0.86 2.42 3.1691 (19) 146

N4—H4B···N3iv 0.86 2.15 3.0053 (18) 171

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical