• No results found

μ Oxo κ2O:O bis­­[bis­­(1,10 phenanthroline κ2N,N′)(sulfato κO)iron(III)] octa­hydrate

N/A
N/A
Protected

Academic year: 2020

Share "μ Oxo κ2O:O bis­­[bis­­(1,10 phenanthroline κ2N,N′)(sulfato κO)iron(III)] octa­hydrate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m587–m589 doi:10.1107/S1600536805005660 Odoko and Okabe [Fe

2O(SO4)2(C12H8N2)4]8H2O

m587

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

l

-Oxo-

j

2

O

:

O

-bis[bis(1,10-phenanthroline-

j

2

N

,

N

000

)-(sulfato-

j

O

)iron(III)] octahydrate

Mamiko Odoko* and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: odoko@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T= 296 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.037 wRfactor = 0.116

Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the crystal structure of the title binuclear iron(III) complex, [FeIII

2 O(SO4)2(C12H8N2)4]8H2O, the Fe atoms are connected

by an O atom, which lies on a twofold axis. Each Fe atom is also coordinated by four N atoms of two 1,10-phenanthroline ligands and one O atom of a sulfate ion, resulting in a distorted octahedral geometry. The Fe Fe separation is 3.5552 (21) A˚ and the Fe—O—Fe bridge angle is 172.81 (12). The crystal packing is stabilized by a network of O—H O hydrogen bonds.

Comment

1,10-Phenanthroline (phen) can intercalate between nucleo-bases, and thus its derivatives and metal complexes have been studied as possible anticancer agents. Fe–phen complexes have been studied for their abilities to interact with DNA (Furtado et al., 1997; Li et al., 2002; Mudasiret al., 2003). In order to clarify the coordination mode of Fe and phen, we have prepared and characterized [FeIII(C12H8N2)3](NO3)3

-H2O (Odoko et al., 2004). In the present study, we have

synthesized another FeIIIcomplex, [FeIII2 (OSO3)2(C12H8N2)4

-(-O)]8H2O, (I), and determined its crystal structure.

In the crystal structure of (I) (Fig. 1), the two Fe atoms are bridged by an O atom, which lies on a twofold axis. Two phen molecules (phenA and phenB) coordinate to the Fe atom as bidentate ligands, and one O atom of a sulfate ion binds at the position cis to the oxo bridge, resulting in a distorted octa-hedral environment for Fe. The sulfate ions are orientated on opposite sides of the complete molecule (Fig. 1), presumably for steric reasons. Intramolecular – stacking interactions

(2)

exist between the two phenB molecules which face each other, with C C contact distances ranging from 3.5212 (53) [C19 C19i; symmetry code (i): 1 x, y, 1

2 z] to

3.5629 (38) A˚ (C15 C23i).

Overall, this complex is similar to [FeIII

2 (HL)4(OSO3)2(

-O)] [HL= 3-(2-pyridyl)pyrazole; Joneset al., 1997], except for the orientations of the sulfate ligands. The Fe—N bond lengths in (I) range from 2.1320 (18) to 2.240 (2) A˚ , and the N—Fe— N bite angles are 75.64 (8) and 75.52 (9) (Table 1). These values are comparable to those of other Fe–phen complexes, such as [FeIII

2 (C12H8N2)4X2(-O)], in which X = H2O

(Plowman et al., 1984) or Cl (Healy et al., 1983). However, these values are significantly different from those found in our recent study of [FeIII(C12H8N2)3](NO3)3H2O (Odoko et al.,

2004), in which the Fe—N bond lengths range from 1.968 (2) to 1.988 (1) A˚ , and the N—Fe—N bite angles are 82.43 (6) and 83.30 (7). The Fe—O—Feiangle in (I) [172.81 (12)] is larger

than those of the H2O complex [155.1 (4)] and Cl complex

[161 (1)], and the Fe Fe separation in (I) [3.5552 (21) A˚ ] is

longer than that of the Cl complex (3.46 A˚ ). These differences could be due to steric hindrance by the bulky sulfate ions attached to the Fe atoms.

The crystal structure of (I) is stabilized by O—H O hydrogen bonds between cocrystallized water molecules and sulfate ions, and between water molecules (Table 2 and Fig. 2). In addition, intermolecular – stacking interactions exist between phenA molecules, with contact distances ranging from 3.350 (3) [C1 C6vii; symmetry code (vii): 1x,y,z] to 3.578 (3) A˚ (C4 C4vii), and between phenB molecules,

metal-organic papers

m588

Odoko and Okabe [Fe

[image:2.610.152.441.73.272.2]

2O(SO4)2(C12H8N2)4]8H2O Acta Cryst.(2005). E61, m587–m589 Figure 1

A view of the complex in (I). Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary radii.Unlabelled atoms are related to labelled atoms by the symmetry operator 1x,y,1

[image:2.610.44.294.306.507.2]

2z.

Figure 2

A view of the crystal packing of (I), showing hydrogen bonds (blue dashed lines) between cocrystallized water molecules and sulfate ions, and between water molecules. [Symmetry codes: (i) 1x,y,1

2z; (ii)

1x, 1y,z; (iii)x, 1 +y,z; (iv)1 2x,y

1 2,

1 2z; (v)

1 2+x,

1 2y,z

1 2;

(vi)1 2+x,

1 2+y,z.]

Figure 3

[image:2.610.318.557.315.517.2]
(3)

ranging from 3.474 (3) [C21 C23ii; symmetry code (ii): 1x, 1 y, z] to 3.570 (3) A˚ (C22 C24ii) (Fig. 3), helping to stabilize the crystal packing

Experimental

Red platelet crystals of (I) were obtained at room temperature by the slow evaporation of a mixture of a 50%(v/v) MeOH/water solution of 1,10-phenanthroline, iron(III) sulfate n-hydrate and succinic acid (molar ratio 1:1:1).

Crystal data

[Fe2O(SO4)2(C12H8N2)4]8H2O

Mr= 1184.78 Monoclinic,C2=c a= 21.645 (8) A˚

b= 14.15 (1) A˚

c= 16.48 (1) A˚

= 97.51 (3)

V= 5004 (5) A˚3

Z= 4

Dx= 1.573 Mg m 3

MoKradiation

Cell parameters from 19250 reflections

= 3.1–27.5

= 0.75 mm1

T= 296.0 K Platelet, red

0.300.300.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.610,Tmax= 0.928

24 059 measured reflections

5762 independent reflections 4674 reflections withF2> 2(F2)

Rint= 0.028

max= 27.5

h=28!27

k=16!18

l=21!21

Refinement

Refinement onF R[F2> 2(F2)] = 0.037

wR(F2) = 0.116

S= 1.12 5762 reflections 348 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0707P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.72 e A˚

3

min=0.32 e A˚

3

Extinction correction: none

Table 1

Selected geometric parameters (A˚ ,).

Fe1—O1 1.7811 (11)

Fe1—O2 1.9393 (19)

Fe1—N1 2.1320 (18)

Fe1—N3 2.152 (2)

Fe1—N2 2.237 (2)

Fe1—N4 2.240 (2)

O1—Fe1—O2 97.77 (8)

O1—Fe1—N1 94.68 (7)

O2—Fe1—N1 97.83 (9)

O1—Fe1—N3 98.55 (7)

O2—Fe1—N3 96.11 (9)

N1—Fe1—N3 159.28 (7)

O1—Fe1—N2 168.97 (5)

O2—Fe1—N2 88.90 (7)

N1—Fe1—N2 75.64 (8)

N3—Fe1—N2 89.41 (7)

O1—Fe1—N4 91.27 (7)

O2—Fe1—N4 168.56 (6)

N1—Fe1—N4 88.36 (8)

N3—Fe1—N4 75.52 (9)

N2—Fe1—N4 83.30 (7)

Fe1—O1—Fe1i

172.81 (12)

[image:3.610.314.564.95.184.2]

Symmetry code: (i)xþ1;y;zþ1 2.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O6—H6A O9 0.96 1.99 2.925 (4) 164

O6—H6B O8i

0.98 1.88 2.812 (3) 158

O7—H7A O6ii

0.94 2.02 2.823 (4) 142

O7—H7B O5iii

0.93 1.79 2.696 (4) 164

O8—H8A O7iv 0.94 1.93 2.786 (3) 151

O8—H8B O4 0.94 1.83 2.747 (3) 165

O9—H9A O8v

0.87 2.08 2.950 (4) 179

O9—H9B O3vi

0.98 1.91 2.847 (3) 158

Symmetry codes: (i)xþ1;y;zþ1

2; (ii)xþ1;yþ1;z; (iii)x;yþ1;z; (iv) xþ1

2;y12;zþ12; (v)xþ12;yþ12;z12; (vi)xþ12;yþ12;z.

H atoms, except those of water molecules, were placed in calcu-lated positions, with C—H = 0.93 A˚ , and treated as riding, with Uiso(H) = 1.2Ueq(C). Those of water molecules were located in

difference Fourier maps. Their positions were not refined and the constraintUiso(H) = 1.5Ueq(O) was applied.

Data collection:PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement:PROCESS-AUTO; data reduction:CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97andCrystalStructure.

References

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Furtado, F. A. C., Asad, N. R., Leitao, A. C. (1997).Mut. Res.385, 251– 258.

Healy, P. C., Skelton, B. W. & White, A. H. (1983).Aust. J. Chem.36, 2057– 2064.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Jones, P. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (1997).Polyhedron, 16, 1567–1571.

Li, L., Song, G., Fang, G., Liu, L. & Cai, Z. (2002).Hubei Daxue Xuebao,Ziran Kexueban,24, 332–334.

Mudasir, Wijaya, K., Yoshioka, N. & Inoue, H. (2003).J. Inorg. Biochem.94, 263–271.

Rigaku Corporation (1998).PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.

Rigaku/MSC (2004).CrystalStructure.Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Odoko, M. & Okabe, N. (2004).Acta Cryst.E60, m1822–m1824.

Plowman, J. E., Loehr, T. M., Schauer, C. K. & Anderson, O. P. (1984).Inorg. Chem.23, 3553–3559.

Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

Acta Cryst.(2005). E61, m587–m589 Odoko and Okabe [Fe

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m587–m589

supporting information

Acta Cryst. (2005). E61, m587–m589 [https://doi.org/10.1107/S1600536805005660]

µ

-Oxo-

κ

2

O

:

O

-bis[bis(1,10-phenanthroline-

κ

2

N

,

N

)(sulfato-

κ

O

)iron(III)]

octahydrate

Mamiko Odoko and Nobuo Okabe

µ-Oxo-κ2O:O-bis[bis(1,10-phenanthroline-κ2N,N)(sulfato-κO)iron(III)] octahydrate

Crystal data

[Fe2O(SO4)2(C12H8N2)4]·8H2O

Mr = 1184.78

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 21.645 (8) Å

b = 14.15 (1) Å

c = 16.48 (1) Å

β = 97.51 (3)°

V = 5004 (5) Å3

Z = 4

F(000) = 2448

Dx = 1.573 Mg m−3

Mo radiation, λ = 0.7107 Å

Cell parameters from 19250 reflections

θ = 3.1–27.5°

µ = 0.75 mm−1

T = 296 K

Platelet, red

0.30 × 0.30 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.610, Tmax = 0.928

24059 measured reflections

5762 independent reflections 4674 reflections with F2 > 2σ(F2)

Rint = 0.028

θmax = 27.5°

h = −28→27

k = −16→18

l = −21→21

Refinement

Refinement on F

R[F2 > 2σ(F2)] = 0.037

wR(F2) = 0.116

S = 1.12

5746 reflections 348 parameters

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0707P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.72 e Å−3

Δρmin = −0.32 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement using reflections with F2 > 3.0 σ(F2). The weighted R-factor(wR), goodness of fit (S) and R

-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m587–m589

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Fe1 0.448197 (11) 0.235241 (19) 0.156925 (16) 0.02674 (10)

S1 0.33439 (2) 0.07580 (4) 0.16860 (3) 0.03617 (14)

N1 0.50709 (7) 0.15796 (11) 0.08668 (10) 0.0316 (4)

N2 0.39983 (8) 0.24332 (12) 0.02855 (11) 0.0361 (4)

N3 0.38934 (7) 0.34715 (12) 0.19106 (11) 0.0349 (4)

N4 0.49446 (7) 0.36811 (12) 0.12191 (10) 0.0330 (4)

C1 0.55980 (9) 0.11569 (15) 0.11758 (13) 0.0379 (5)

H1 0.5724 0.1188 0.1737 0.045*

C2 0.59674 (10) 0.06677 (16) 0.06834 (16) 0.0467 (6)

H2 0.6334 0.0378 0.0918 0.056*

C3 0.57940 (10) 0.06134 (16) −0.01335 (16) 0.0483 (6)

H3 0.6041 0.0290 −0.0463 0.058*

C4 0.52396 (10) 0.10473 (16) −0.04812 (13) 0.0414 (5)

C5 0.48887 (9) 0.15285 (14) 0.00502 (12) 0.0335 (4)

C6 0.50031 (13) 0.10071 (19) −0.13326 (15) 0.0555 (6)

H6 0.5234 0.0704 −0.1693 0.067*

C7 0.44525 (13) 0.1399 (2) −0.16210 (14) 0.0569 (7)

H7 0.4307 0.1351 −0.2176 0.068*

C8 0.43076 (9) 0.19677 (15) −0.02613 (12) 0.0361 (4)

C9 0.40845 (11) 0.18881 (17) −0.10965 (13) 0.0468 (5)

C10 0.35023 (12) 0.2316 (2) −0.13589 (16) 0.0586 (7)

H10 0.3332 0.2282 −0.1906 0.070*

C11 0.31907 (12) 0.2776 (2) −0.08130 (18) 0.0627 (8)

H11 0.2806 0.3053 −0.0983 0.075*

C12 0.34557 (10) 0.28289 (19) 0.00071 (16) 0.0503 (6)

H12 0.3242 0.3156 0.0373 0.060*

C13 0.33782 (9) 0.33558 (17) 0.22652 (16) 0.0476 (6)

H13 0.3239 0.2746 0.2349 0.057*

C14 0.30446 (10) 0.4118 (2) 0.25121 (18) 0.0592 (7)

H14 0.2686 0.4013 0.2753 0.071*

C15 0.32394 (10) 0.50133 (19) 0.24034 (16) 0.0558 (7)

H15 0.3018 0.5523 0.2574 0.067*

C16 0.37786 (10) 0.51648 (16) 0.20316 (14) 0.0440 (5)

C17 0.40940 (9) 0.43640 (14) 0.17970 (12) 0.0345 (4)

C18 0.40167 (12) 0.60826 (17) 0.18858 (17) 0.0570 (7)

H18 0.3807 0.6616 0.2035 0.068*

C19 0.45428 (12) 0.61850 (17) 0.15343 (16) 0.0566 (7)

H19 0.4686 0.6790 0.1440 0.068*

C20 0.46562 (9) 0.44764 (14) 0.14281 (12) 0.0328 (4)

C21 0.48838 (10) 0.53868 (16) 0.13038 (14) 0.0429 (5)

C22 0.54391 (11) 0.54478 (17) 0.09527 (15) 0.0506 (6)

H22 0.5607 0.6037 0.0858 0.061*

C23 0.57324 (11) 0.46508 (18) 0.07511 (15) 0.0498 (6)

H23 0.6103 0.4688 0.0524 0.060*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m587–m589

H24 0.5670 0.3228 0.0747 0.048*

O1 0.5000 0.22734 (14) 0.2500 0.0327 (4)

O2 0.39301 (6) 0.13249 (12) 0.17751 (10) 0.0480 (4)

O3 0.30950 (9) 0.07463 (16) 0.08207 (12) 0.0716 (6)

O4 0.29129 (8) 0.12199 (14) 0.21557 (12) 0.0662 (5)

O5 0.35047 (10) −0.01839 (14) 0.19729 (14) 0.0755 (6)

O6 0.65923 (10) 0.27704 (16) 0.01107 (14) 0.0785 (6)

H6A 0.6823 0.3352 0.0144 0.118*

H6B 0.6817 0.2517 0.0621 0.118*

O7 0.33012 (10) 0.80290 (14) 0.14348 (13) 0.0800 (6)

H7A 0.3356 0.8059 0.0878 0.120*

H7B 0.3302 0.8670 0.1569 0.120*

O8 0.26628 (9) 0.17109 (16) 0.36922 (12) 0.0776 (6)

H8A 0.2407 0.2220 0.3499 0.116*

H8B 0.2818 0.1517 0.3214 0.116*

O9 0.71972 (11) 0.45814 (19) −0.01203 (15) 0.0986 (8)

H9A 0.7332 0.4198 −0.0469 0.148*

H9B 0.7507 0.4852 0.0306 0.148*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Fe1 0.02583 (15) 0.02842 (17) 0.02706 (16) 0.00099 (10) 0.00752 (11) −0.00065 (10)

S1 0.0329 (2) 0.0355 (3) 0.0412 (3) −0.00635 (19) 0.0092 (2) −0.0055 (2)

N1 0.0323 (8) 0.0320 (9) 0.0318 (8) 0.0010 (6) 0.0089 (6) −0.0042 (7)

N2 0.0327 (8) 0.0392 (10) 0.0360 (9) 0.0005 (7) 0.0036 (7) 0.0019 (7)

N3 0.0314 (8) 0.0341 (9) 0.0411 (9) 0.0030 (7) 0.0112 (7) −0.0027 (7)

N4 0.0342 (8) 0.0319 (9) 0.0341 (9) −0.0002 (6) 0.0086 (7) 0.0027 (7)

C1 0.0341 (10) 0.0379 (12) 0.0419 (11) 0.0039 (8) 0.0059 (8) −0.0031 (9)

C2 0.0359 (10) 0.0409 (13) 0.0655 (16) 0.0046 (9) 0.0148 (10) −0.0056 (11)

C3 0.0517 (12) 0.0399 (13) 0.0593 (15) −0.0017 (10) 0.0302 (11) −0.0097 (11)

C4 0.0523 (12) 0.0355 (12) 0.0405 (12) −0.0083 (9) 0.0215 (10) −0.0070 (9)

C5 0.0391 (10) 0.0305 (10) 0.0326 (10) −0.0070 (8) 0.0113 (8) −0.0013 (8)

C6 0.0783 (17) 0.0548 (15) 0.0377 (12) −0.0127 (13) 0.0243 (12) −0.0094 (11)

C7 0.0822 (18) 0.0607 (17) 0.0292 (11) −0.0199 (14) 0.0122 (11) −0.0073 (11)

C8 0.0410 (10) 0.0350 (11) 0.0330 (10) −0.0079 (8) 0.0069 (8) 0.0012 (9)

C9 0.0581 (13) 0.0462 (14) 0.0350 (11) −0.0157 (11) 0.0014 (10) 0.0039 (10)

C10 0.0607 (16) 0.0711 (18) 0.0401 (13) −0.0165 (13) −0.0085 (12) 0.0099 (12)

C11 0.0408 (13) 0.080 (2) 0.0618 (17) −0.0010 (12) −0.0122 (12) 0.0198 (15)

C12 0.0366 (11) 0.0614 (16) 0.0525 (14) 0.0024 (10) 0.0039 (10) 0.0064 (12)

C13 0.0385 (11) 0.0454 (13) 0.0630 (15) −0.0012 (9) 0.0216 (10) −0.0086 (11)

C14 0.0372 (11) 0.0631 (18) 0.082 (2) 0.0068 (11) 0.0257 (12) −0.0130 (15)

C15 0.0450 (12) 0.0544 (16) 0.0687 (17) 0.0204 (11) 0.0101 (11) −0.0133 (13)

C16 0.0452 (11) 0.0373 (12) 0.0487 (13) 0.0125 (9) 0.0036 (10) −0.0044 (10)

C17 0.0357 (9) 0.0328 (11) 0.0341 (10) 0.0063 (8) 0.0013 (8) −0.0012 (8)

C18 0.0664 (15) 0.0302 (12) 0.0734 (17) 0.0130 (11) 0.0051 (13) −0.0060 (12)

C19 0.0765 (17) 0.0261 (12) 0.0656 (17) 0.0011 (11) 0.0035 (14) 0.0031 (11)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m587–m589

C21 0.0515 (12) 0.0344 (11) 0.0412 (12) −0.0040 (9) −0.0003 (10) 0.0047 (9)

C22 0.0590 (14) 0.0398 (13) 0.0522 (14) −0.0160 (11) 0.0041 (11) 0.0087 (11)

C23 0.0454 (12) 0.0561 (15) 0.0496 (14) −0.0136 (11) 0.0124 (10) 0.0065 (11)

C24 0.0364 (10) 0.0419 (12) 0.0447 (12) −0.0034 (9) 0.0124 (9) 0.0029 (10)

O1 0.0343 (10) 0.0362 (11) 0.0278 (10) 0.000 0.0051 (8) 0.000

O2 0.0380 (8) 0.0503 (10) 0.0575 (10) −0.0141 (7) 0.0128 (7) 0.0011 (8)

O3 0.0689 (12) 0.0874 (16) 0.0540 (11) −0.0039 (10) −0.0088 (9) −0.0179 (10)

O4 0.0576 (10) 0.0730 (14) 0.0757 (13) −0.0106 (9) 0.0379 (9) −0.0194 (10)

O5 0.0836 (13) 0.0445 (11) 0.0975 (16) −0.0049 (9) 0.0084 (11) 0.0160 (10)

O6 0.0705 (13) 0.0822 (16) 0.0861 (16) 0.0051 (11) 0.0228 (11) 0.0063 (12)

O7 0.1130 (17) 0.0476 (12) 0.0805 (14) −0.0060 (11) 0.0166 (12) 0.0011 (11)

O8 0.0810 (13) 0.0933 (17) 0.0595 (12) 0.0179 (12) 0.0134 (10) −0.0048 (11)

O9 0.0826 (15) 0.117 (2) 0.0934 (18) −0.0277 (14) 0.0011 (13) −0.0303 (15)

Geometric parameters (Å, º)

Fe1—O1 1.7811 (11) C10—H10 0.9300

Fe1—O2 1.9393 (19) C11—C12 1.399 (4)

Fe1—N1 2.1320 (18) C11—H11 0.9300

Fe1—N3 2.152 (2) C12—H12 0.9300

Fe1—N2 2.237 (2) C13—C14 1.388 (3)

Fe1—N4 2.240 (2) C13—H13 0.9300

S1—O5 1.441 (2) C14—C15 1.354 (4)

S1—O4 1.4438 (18) C14—H14 0.9300

S1—O3 1.457 (2) C15—C16 1.404 (3)

S1—O2 1.4920 (16) C15—H15 0.9300

N1—C1 1.329 (3) C16—C17 1.403 (3)

N1—C5 1.354 (3) C16—C18 1.429 (4)

N2—C12 1.328 (3) C17—C20 1.438 (3)

N2—C8 1.361 (3) C18—C19 1.351 (4)

N3—C13 1.335 (3) C18—H18 0.9300

N3—C17 1.356 (3) C19—C21 1.427 (4)

N4—C24 1.325 (3) C19—H19 0.9300

N4—C20 1.353 (3) C20—C21 1.404 (3)

C1—C2 1.395 (3) C21—C22 1.403 (3)

C1—H1 0.9300 C22—C23 1.356 (4)

C2—C3 1.352 (4) C22—H22 0.9300

C2—H2 0.9300 C23—C24 1.399 (3)

C3—C4 1.402 (3) C23—H23 0.9300

C3—H3 0.9300 C24—H24 0.9300

C4—C5 1.408 (3) O1—Fe1i 1.7811 (11)

C4—C6 1.430 (3) O6—H6A 0.961

C5—C8 1.436 (3) O6—H6B 0.982

C6—C7 1.344 (4) O7—H7A 0.941

C6—H6 0.9300 O7—H7B 0.934

C7—C9 1.428 (4) O8—H8A 0.938

C7—H7 0.9300 O8—H8B 0.937

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m587–m589

C9—C10 1.413 (4) O9—H9B 0.983

C10—C11 1.359 (4)

O1—Fe1—O2 97.77 (8) C9—C8—C5 119.3 (2)

O1—Fe1—N1 94.68 (7) C8—C9—C10 116.4 (2)

O2—Fe1—N1 97.83 (9) C8—C9—C7 119.0 (2)

O1—Fe1—N3 98.55 (7) C10—C9—C7 124.6 (2)

O2—Fe1—N3 96.11 (9) C11—C10—C9 120.2 (2)

N1—Fe1—N3 159.28 (7) C11—C10—H10 119.9

O1—Fe1—N2 168.97 (5) C9—C10—H10 119.9

O2—Fe1—N2 88.90 (7) C10—C11—C12 119.2 (2)

N1—Fe1—N2 75.64 (8) C10—C11—H11 120.4

N3—Fe1—N2 89.41 (7) C12—C11—H11 120.4

O1—Fe1—N4 91.27 (7) N2—C12—C11 122.9 (2)

O2—Fe1—N4 168.56 (6) N2—C12—H12 118.5

N1—Fe1—N4 88.36 (8) C11—C12—H12 118.5

N3—Fe1—N4 75.52 (9) N3—C13—C14 122.0 (2)

N2—Fe1—N4 83.30 (7) N3—C13—H13 119.0

O5—S1—O4 112.82 (14) C14—C13—H13 119.0

O5—S1—O3 110.67 (13) C15—C14—C13 120.3 (2)

O4—S1—O3 110.34 (13) C15—C14—H14 119.8

O5—S1—O2 107.39 (12) C13—C14—H14 119.8

O4—S1—O2 107.74 (11) C14—C15—C16 119.4 (2)

O3—S1—O2 107.66 (12) C14—C15—H15 120.3

C1—N1—C5 118.73 (17) C16—C15—H15 120.3

C1—N1—Fe1 124.54 (14) C17—C16—C15 117.3 (2)

C5—N1—Fe1 116.73 (13) C17—C16—C18 119.2 (2)

C12—N2—C8 117.7 (2) C15—C16—C18 123.4 (2)

C12—N2—Fe1 129.18 (17) N3—C17—C16 122.5 (2)

C8—N2—Fe1 113.05 (13) N3—C17—C20 117.72 (17)

C13—N3—C17 118.39 (18) C16—C17—C20 119.8 (2)

C13—N3—Fe1 125.52 (15) C19—C18—C16 120.8 (2)

C17—N3—Fe1 115.95 (14) C19—C18—H18 119.6

C24—N4—C20 118.10 (18) C16—C18—H18 119.6

C24—N4—Fe1 128.45 (15) C18—C19—C21 121.5 (2)

C20—N4—Fe1 113.30 (14) C18—C19—H19 119.2

N1—C1—C2 121.9 (2) C21—C19—H19 119.2

N1—C1—H1 119.0 N4—C20—C21 122.9 (2)

C2—C1—H1 119.0 N4—C20—C17 117.36 (17)

C3—C2—C1 120.1 (2) C21—C20—C17 119.71 (19)

C3—C2—H2 119.9 C22—C21—C20 116.9 (2)

C1—C2—H2 119.9 C22—C21—C19 124.2 (2)

C2—C3—C4 119.6 (2) C20—C21—C19 118.9 (2)

C2—C3—H3 120.2 C23—C22—C21 120.2 (2)

C4—C3—H3 120.2 C23—C22—H22 119.9

C3—C4—C5 117.4 (2) C21—C22—H22 119.9

C3—C4—C6 124.1 (2) C22—C23—C24 119.0 (2)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m587–m589

N1—C5—C4 122.23 (19) C24—C23—H23 120.5

N1—C5—C8 117.39 (18) N4—C24—C23 122.9 (2)

C4—C5—C8 120.36 (19) N4—C24—H24 118.6

C7—C6—C4 121.2 (2) C23—C24—H24 118.6

C7—C6—H6 119.4 Fe1—O1—Fe1i 172.81 (12)

C4—C6—H6 119.4 S1—O2—Fe1 157.08 (11)

C6—C7—C9 121.7 (2) H6A—O6—H6B 93.92

C6—C7—H7 119.2 H7A—O7—H7B 100.92

C9—C7—H7 119.2 H8A—O8—H8B 101.50

N2—C8—C9 123.6 (2) H9A—O9—H9B 117.35

N2—C8—C5 117.15 (18)

O1—Fe1—N1—C1 5.99 (17) N1—C5—C8—N2 2.6 (3)

O2—Fe1—N1—C1 −92.53 (17) C4—C5—C8—N2 −178.99 (18)

N3—Fe1—N1—C1 135.61 (19) N1—C5—C8—C9 −176.57 (18)

N2—Fe1—N1—C1 −179.37 (17) C4—C5—C8—C9 1.9 (3)

N4—Fe1—N1—C1 97.13 (17) N2—C8—C9—C10 −0.7 (3)

O1—Fe1—N1—C5 −173.65 (14) C5—C8—C9—C10 178.4 (2)

O2—Fe1—N1—C5 87.83 (14) N2—C8—C9—C7 178.8 (2)

N3—Fe1—N1—C5 −44.0 (2) C5—C8—C9—C7 −2.2 (3)

N2—Fe1—N1—C5 0.99 (13) C6—C7—C9—C8 0.6 (4)

N4—Fe1—N1—C5 −82.51 (14) C6—C7—C9—C10 −180.0 (2)

O1—Fe1—N2—C12 −153.6 (4) C8—C9—C10—C11 0.2 (4)

O2—Fe1—N2—C12 78.9 (2) C7—C9—C10—C11 −179.2 (3)

N1—Fe1—N2—C12 177.3 (2) C9—C10—C11—C12 0.6 (4)

N3—Fe1—N2—C12 −17.2 (2) C8—N2—C12—C11 0.8 (3)

N4—Fe1—N2—C12 −92.7 (2) Fe1—N2—C12—C11 −176.04 (19)

O1—Fe1—N2—C8 29.5 (5) C10—C11—C12—N2 −1.2 (4)

O2—Fe1—N2—C8 −98.01 (16) C17—N3—C13—C14 0.5 (3)

N1—Fe1—N2—C8 0.36 (13) Fe1—N3—C13—C14 175.98 (18)

N3—Fe1—N2—C8 165.87 (14) N3—C13—C14—C15 −0.5 (4)

N4—Fe1—N2—C8 90.38 (15) C13—C14—C15—C16 0.6 (4)

O1—Fe1—N3—C13 −89.78 (19) C14—C15—C16—C17 −0.6 (4)

O2—Fe1—N3—C13 9.05 (19) C14—C15—C16—C18 179.5 (2)

N1—Fe1—N3—C13 141.15 (19) C13—N3—C17—C16 −0.5 (3)

N2—Fe1—N3—C13 97.89 (19) Fe1—N3—C17—C16 −176.45 (15)

N4—Fe1—N3—C13 −178.9 (2) C13—N3—C17—C20 178.86 (19)

O1—Fe1—N3—C17 85.83 (15) Fe1—N3—C17—C20 2.9 (2)

O2—Fe1—N3—C17 −175.34 (14) C15—C16—C17—N3 0.6 (3)

N1—Fe1—N3—C17 −43.2 (2) C18—C16—C17—N3 −179.5 (2)

N2—Fe1—N3—C17 −86.50 (15) C15—C16—C17—C20 −178.8 (2)

N4—Fe1—N3—C17 −3.27 (13) C18—C16—C17—C20 1.1 (3)

O1—Fe1—N4—C24 80.27 (18) C17—C16—C18—C19 −0.7 (4)

O2—Fe1—N4—C24 −137.4 (3) C15—C16—C18—C19 179.2 (2)

N1—Fe1—N4—C24 −14.37 (17) C16—C18—C19—C21 −0.7 (4)

N3—Fe1—N4—C24 178.77 (18) C24—N4—C20—C21 0.7 (3)

N2—Fe1—N4—C24 −90.10 (18) Fe1—N4—C20—C21 176.75 (15)

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m587–m589

O2—Fe1—N4—C20 47.1 (4) Fe1—N4—C20—C17 −2.9 (2)

N1—Fe1—N4—C20 170.13 (13) N3—C17—C20—N4 0.1 (3)

N3—Fe1—N4—C20 3.27 (12) C16—C17—C20—N4 179.51 (18)

N2—Fe1—N4—C20 94.40 (14) N3—C17—C20—C21 −179.56 (18)

C5—N1—C1—C2 0.2 (3) C16—C17—C20—C21 −0.2 (3)

Fe1—N1—C1—C2 −179.40 (16) N4—C20—C21—C22 −0.6 (3)

N1—C1—C2—C3 0.1 (3) C17—C20—C21—C22 179.07 (19)

C1—C2—C3—C4 −0.3 (3) N4—C20—C21—C19 179.17 (19)

C2—C3—C4—C5 0.3 (3) C17—C20—C21—C19 −1.2 (3)

C2—C3—C4—C6 −177.9 (2) C18—C19—C21—C22 −178.6 (2)

C1—N1—C5—C4 −0.3 (3) C18—C19—C21—C20 1.6 (3)

Fe1—N1—C5—C4 179.38 (15) C20—C21—C22—C23 −0.2 (3)

C1—N1—C5—C8 178.14 (18) C19—C21—C22—C23 −179.9 (2)

Fe1—N1—C5—C8 −2.2 (2) C21—C22—C23—C24 0.7 (4)

C3—C4—C5—N1 0.0 (3) C20—N4—C24—C23 −0.2 (3)

C6—C4—C5—N1 178.29 (19) Fe1—N4—C24—C23 −175.48 (15)

C3—C4—C5—C8 −178.34 (18) C22—C23—C24—N4 −0.5 (3)

C6—C4—C5—C8 −0.1 (3) O5—S1—O2—Fe1 159.1 (3)

C3—C4—C6—C7 176.7 (2) O4—S1—O2—Fe1 −79.1 (3)

C5—C4—C6—C7 −1.5 (3) O3—S1—O2—Fe1 39.9 (3)

C4—C6—C7—C9 1.2 (4) O1—Fe1—O2—S1 158.1 (3)

C12—N2—C8—C9 0.2 (3) N1—Fe1—O2—S1 −106.0 (3)

Fe1—N2—C8—C9 177.48 (16) N3—Fe1—O2—S1 58.6 (3)

C12—N2—C8—C5 −178.93 (19) N2—Fe1—O2—S1 −30.7 (3)

Fe1—N2—C8—C5 −1.6 (2) N4—Fe1—O2—S1 16.2 (6)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O6—H6A···O9 0.96 1.99 2.925 (4) 164

O6—H6B···O8i 0.98 1.88 2.812 (3) 158

O7—H7A···O6ii 0.94 2.02 2.823 (4) 142

O7—H7B···O5iii 0.93 1.79 2.696 (4) 164

O8—H8A···O7iv 0.94 1.93 2.786 (3) 151

O8—H8B···O4 0.94 1.83 2.747 (3) 165

O9—H9A···O8v 0.87 2.08 2.950 (4) 179

O9—H9B···O3vi 0.98 1.91 2.847 (3) 158

Figure

Figure 3
Table 2Hydrogen-bond geometry (A˚ , �).

References

Related documents

This paper analyses the signaling effect of the European Central Bank’s (ECB) statements related to its asset purchase programme (APP) on market expectations for the future path

The key differences between this work and the proposed architecture are: (i) we de- sign a fine-tunable hierarchical attention structure to extract word-level features for

Chorion group (Group B) showed statistically highly significant mean gain in the relative clinical attachment level (p-value=0.001*) and significant mean reduction in

This table presents the correlation between the daily intensity of idiosyncratic jumps and the optimal proportion of foreign assets. (the sum of optimal weights of EFA and

In a recent study, Olivero, Li and Jeon (2011) investigates the effects of bank consolidation on the bank lending channel using bank-specific panel data from Asian and Latin

It is straightforward to answer sequential questions using our framework: we allow the model to take the previous question and its answers as input, with a slightly modified

answers, in order to better distinguish the correct answers from other candidates? We propose three independent models in two directions. First, we develop two hybrid models

Despite of the overall presence of dialogues with such mixed motives in everyday life, little at- tention has been given to this topic in text planning in contrast to