• No results found

1,5 Di­methyl 4 (3 nitro­benzyl­­idene­amino) 2 phenyl­pyrazolidin 3 one

N/A
N/A
Protected

Academic year: 2020

Share "1,5 Di­methyl 4 (3 nitro­benzyl­­idene­amino) 2 phenyl­pyrazolidin 3 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o755–o756 doi:10.1107/S1600536806002352 Zhenget al. C

18H16N4O3

o755

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

1,5-Dimethyl-4-(3-nitrobenzylideneamino)-2-phenylpyrazolidin-3-one

Chun-Sheng Zheng, Mei Li, Nan Yang and Zuo-Liang Jing*

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People’s Republic of China

Correspondence e-mail: jzl74@tust.edu.cn

Key indicators

Single-crystal X-ray study T= 294 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.062 wRfactor = 0.225

Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 10 October 2005 Accepted 19 January 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C18H16N4O3, was prepared by the reaction of 3-nitrobenzaldehyde and 4-amino-1,5-dimethyl-2-phenyl-pyrazol-3-one. The crystal structure displays an intra-molecular C—H O hydrogen bond, which may stabilize the conformation of the molecule, as well as intermolecular C— H O hydrogen bonds.

Comment

The syntheses and structures of Schiff bases have attracted much attention, because their metal complexes have been studied extensively as model compounds of biologically active compounds (Kahwaet al., 1986; Santoset al., 2001). As part of this investigation, we report here the synthesis and crystal structure of the title compound, (I).

A view of the molecular structure of (I) is shown in Fig. 1. The pyrazolidinone group C8–C10/N1–N3/O3 is planar, with an r.m.s. deviation for the fitted atoms of 0.0409 A˚ . This plane makes a dihedral angle of 48.55 (11) with the phenyl ring

(C13–C18) and a dihedral angle of 10.07 (11) with the

nitrobenzene ring (C1–C7/N4).

The intramolecular C—H O hydrogen bond (Table 1), may help to stabilize the observed conformation of the mol-ecule. In the crystal structure, the molecules are associatedvia

weak C—H O intermolecular hydrogen bonds (Table 1) to form a layer structure (Fig. 2).

Experimental

(2)

Crystal data

C18H16N4O3

Mr= 336.35

Monoclinic, P21=c

a= 7.645 (11) A˚

b= 7.839 (11) A˚

c= 28.24 (4) A˚ = 96.349 (19)

V= 1682 (4) A˚3

Z= 4

Dx= 1.328 Mg m 3 MoKradiation Cell parameters from 1975

reflections = 2.7–25.8

= 0.09 mm1

T= 294 (2) K Block, yellow 0.320.220.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.962,Tmax= 0.985 8161 measured reflections

2891 independent reflections 1817 reflections withI> 2(I)

Rint= 0.044

max= 25.0

h=6!9

k=9!9

l=33!33

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.062

wR(F2) = 0.225

S= 1.00 2891 reflections 229 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1519P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.30 e A˚ 3

min=0.27 e A˚ 3

Extinction correction:SHELXL97

(Sheldrick, 1997)

Extinction coefficient: 0.008 (3)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C7—H7 O3 0.93 2.45 3.094 (5) 126

C1—H1 O2i

0.93 2.44 3.125 (6) 131

Symmetry code: (i)x;yþ1;z.

H atoms were included in calculated positions and refined using a riding-model approximation, with C—H = 0.93 A˚ and Uiso(H) = 1.2Ueq(C) for aromatic CH, and C—H = 0.96 A˚ and Uiso(H) = 1.5Ueq(C) for methyl CH3.

Data collection:SMART(Bruker, 1999); cell refinement:SAINT

(Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

References

Bruker (1999).SHELXTL(Version 5.10),SMART(Version 5.0) andSAINT

(Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986).Inorg. Chim. Acta,118, 179–185.

Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001).J. Chem. Soc. Dalton Trans.pp. 838–844.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

[image:2.610.45.295.73.209.2]

Go¨ttingen, Germany.

Figure 1

[image:2.610.47.293.253.460.2]

The structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o755–o756

supporting information

Acta Cryst. (2006). E62, o755–o756 [https://doi.org/10.1107/S1600536806002352]

1,5-Dimethyl-4-(3-nitrobenzylideneamino)-2-phenylpyrazolidin-3-one

Chun-Sheng Zheng, Mei Li, Nan Yang and Zuo-Liang Jing

1,5-Dimethyl-4-(3-nitrobenzylideneamino)-2-phenylpyrazolidin-3-one

Crystal data

C18H16N4O3

Mr = 336.35 Monoclinic, P21/c Hall symbol: -P 2ybc

a = 7.645 (11) Å

b = 7.839 (11) Å

c = 28.24 (4) Å

β = 96.349 (19)°

V = 1682 (4) Å3

Z = 4

F(000) = 704

Dx = 1.328 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1975 reflections

θ = 2.7–25.8°

µ = 0.09 mm−1

T = 294 K Block, yellow

0.32 × 0.22 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.962, Tmax = 0.985

8161 measured reflections 2891 independent reflections 1817 reflections with I > 2σ(I)

Rint = 0.044

θmax = 25.0°, θmin = 2.7°

h = −6→9

k = −9→9

l = −33→33

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.062

wR(F2) = 0.225

S = 1.00 2891 reflections 229 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1519P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.30 e Å−3 Δρmin = −0.27 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 −0.0706 (3) −0.3117 (4) 0.37073 (10) 0.0874 (9)

O2 0.0851 (4) −0.4100 (4) 0.43196 (10) 0.0972 (9)

O3 0.5298 (2) 0.0113 (3) 0.62512 (7) 0.0561 (6)

N1 0.3568 (3) 0.2501 (3) 0.54245 (8) 0.0447 (6)

N2 0.5883 (3) 0.4478 (3) 0.64409 (8) 0.0460 (6)

N3 0.6268 (3) 0.2768 (3) 0.65602 (8) 0.0483 (6)

N4 0.0214 (3) −0.2920 (4) 0.40760 (11) 0.0626 (8)

C1 0.1226 (3) 0.2042 (4) 0.45898 (10) 0.0467 (7)

H1 0.1421 0.3145 0.4705 0.056*

C2 0.0073 (3) 0.1791 (4) 0.41846 (10) 0.0528 (8)

H2 −0.0483 0.2720 0.4028 0.063*

C3 −0.0260 (3) 0.0154 (4) 0.40105 (10) 0.0495 (8)

H3 −0.1044 −0.0039 0.3740 0.059*

C4 0.0608 (3) −0.1174 (4) 0.42522 (10) 0.0437 (7)

C5 0.1783 (3) −0.0957 (4) 0.46550 (9) 0.0433 (7)

H5 0.2347 −0.1893 0.4806 0.052*

C6 0.2113 (3) 0.0686 (3) 0.48331 (9) 0.0393 (7)

C7 0.3291 (3) 0.0975 (4) 0.52683 (9) 0.0423 (7)

H7 0.3841 0.0057 0.5432 0.051*

C8 0.4610 (3) 0.2837 (4) 0.58478 (9) 0.0400 (7)

C9 0.5375 (3) 0.1684 (4) 0.62124 (9) 0.0440 (7)

C10 0.4976 (3) 0.4477 (4) 0.59996 (10) 0.0448 (7)

C11 0.7171 (4) 0.5779 (4) 0.66175 (11) 0.0587 (8)

H11A 0.8292 0.5514 0.6513 0.088*

H11B 0.7278 0.5801 0.6959 0.088*

H11C 0.6785 0.6876 0.6496 0.088*

C12 0.4502 (4) 0.6105 (4) 0.57326 (11) 0.0618 (9)

H12A 0.4287 0.6988 0.5954 0.093*

H12B 0.3462 0.5927 0.5515 0.093*

H12C 0.5455 0.6438 0.5558 0.093*

C13 0.6757 (3) 0.2279 (4) 0.70437 (10) 0.0473 (8)

C14 0.7889 (3) 0.0909 (4) 0.71342 (11) 0.0569 (8)

H14 0.8334 0.0341 0.6884 0.068*

C15 0.8350 (4) 0.0397 (5) 0.75975 (12) 0.0675 (9)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o755–o756

C16 0.7746 (4) 0.1288 (5) 0.79758 (12) 0.0682 (10)

H16 0.8084 0.0954 0.8289 0.082*

C17 0.6643 (4) 0.2667 (4) 0.78813 (11) 0.0611 (9)

H17 0.6246 0.3270 0.8132 0.073*

C18 0.6126 (3) 0.3158 (4) 0.74208 (10) 0.0537 (8)

H18 0.5358 0.4072 0.7360 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0801 (15) 0.086 (2) 0.092 (2) −0.0087 (13) −0.0116 (14) −0.0386 (15)

O2 0.128 (2) 0.0525 (19) 0.105 (2) −0.0018 (15) −0.0151 (18) −0.0050 (16)

O3 0.0726 (13) 0.0446 (15) 0.0494 (14) −0.0037 (10) −0.0013 (10) 0.0039 (10) N1 0.0422 (11) 0.0510 (17) 0.0408 (14) −0.0023 (10) 0.0041 (10) 0.0029 (11) N2 0.0499 (12) 0.0415 (16) 0.0457 (14) −0.0009 (10) 0.0010 (10) 0.0019 (11) N3 0.0543 (13) 0.0482 (17) 0.0403 (14) −0.0002 (10) −0.0033 (10) 0.0020 (11)

N4 0.0575 (14) 0.058 (2) 0.072 (2) −0.0064 (13) 0.0074 (14) −0.0139 (16)

C1 0.0472 (14) 0.0413 (18) 0.0514 (18) −0.0031 (12) 0.0044 (12) 0.0014 (13)

C2 0.0499 (14) 0.055 (2) 0.0524 (19) 0.0023 (13) −0.0016 (13) 0.0100 (15)

C3 0.0417 (13) 0.065 (2) 0.0407 (16) −0.0051 (13) 0.0003 (11) −0.0006 (15)

C4 0.0403 (12) 0.0473 (19) 0.0448 (16) −0.0046 (12) 0.0101 (11) −0.0073 (13)

C5 0.0395 (12) 0.0443 (18) 0.0472 (17) 0.0029 (11) 0.0091 (11) 0.0042 (13)

C6 0.0367 (12) 0.0427 (18) 0.0395 (16) −0.0008 (11) 0.0082 (10) 0.0048 (12)

C7 0.0381 (12) 0.0477 (19) 0.0412 (17) 0.0009 (11) 0.0049 (11) 0.0047 (13)

C8 0.0372 (12) 0.0453 (18) 0.0371 (16) −0.0029 (11) 0.0025 (11) 0.0005 (12)

C9 0.0428 (13) 0.051 (2) 0.0390 (17) −0.0027 (12) 0.0067 (11) 0.0026 (13)

C10 0.0386 (12) 0.053 (2) 0.0433 (17) 0.0010 (11) 0.0061 (11) 0.0026 (13)

C11 0.0564 (16) 0.057 (2) 0.061 (2) −0.0106 (14) −0.0018 (13) −0.0050 (15)

C12 0.0635 (17) 0.057 (2) 0.064 (2) 0.0017 (15) 0.0019 (15) 0.0077 (17)

C13 0.0422 (13) 0.058 (2) 0.0408 (17) −0.0037 (12) −0.0009 (11) 0.0027 (13)

C14 0.0509 (15) 0.066 (2) 0.0515 (19) 0.0041 (14) −0.0022 (13) 0.0000 (16)

C15 0.0633 (18) 0.072 (3) 0.062 (2) 0.0109 (16) −0.0144 (15) 0.0078 (18)

C16 0.075 (2) 0.085 (3) 0.0409 (19) −0.0098 (18) −0.0121 (15) 0.0035 (18)

C17 0.0677 (18) 0.072 (3) 0.044 (2) −0.0018 (16) 0.0036 (14) −0.0064 (16)

C18 0.0537 (15) 0.063 (2) 0.0439 (18) 0.0036 (13) 0.0021 (12) −0.0032 (14)

Geometric parameters (Å, º)

O1—N4 1.200 (4) C7—H7 0.9300

O2—N4 1.221 (4) C8—C10 1.374 (4)

O3—C9 1.239 (4) C8—C9 1.444 (4)

N1—C7 1.285 (4) C10—C12 1.506 (4)

N1—C8 1.386 (4) C11—H11A 0.9600

N2—C10 1.357 (4) C11—H11B 0.9600

N2—N3 1.405 (4) C11—H11C 0.9600

N2—C11 1.466 (4) C12—H12A 0.9600

N3—C9 1.415 (4) C12—H12B 0.9600

(6)

N4—C4 1.476 (4) C13—C14 1.385 (4)

C1—C2 1.379 (4) C13—C18 1.398 (4)

C1—C6 1.399 (4) C14—C15 1.377 (5)

C1—H1 0.9300 C14—H14 0.9300

C2—C3 1.388 (5) C15—C16 1.397 (5)

C2—H2 0.9300 C15—H15 0.9300

C3—C4 1.374 (4) C16—C17 1.378 (5)

C3—H3 0.9300 C16—H16 0.9300

C4—C5 1.380 (4) C17—C18 1.372 (4)

C5—C6 1.396 (4) C17—H17 0.9300

C5—H5 0.9300 C18—H18 0.9300

C6—C7 1.459 (4)

C7—N1—C8 122.0 (2) O3—C9—C8 131.7 (3)

C10—N2—N3 107.0 (2) N3—C9—C8 104.2 (3)

C10—N2—C11 124.6 (2) N2—C10—C8 110.6 (2)

N3—N2—C11 117.9 (2) N2—C10—C12 122.0 (3)

N2—N3—C9 109.5 (2) C8—C10—C12 127.4 (3)

N2—N3—C13 120.7 (2) N2—C11—H11A 109.5

C9—N3—C13 123.9 (3) N2—C11—H11B 109.5

O1—N4—O2 123.4 (3) H11A—C11—H11B 109.5

O1—N4—C4 119.3 (3) N2—C11—H11C 109.5

O2—N4—C4 117.3 (3) H11A—C11—H11C 109.5

C2—C1—C6 122.0 (3) H11B—C11—H11C 109.5

C2—C1—H1 119.0 C10—C12—H12A 109.5

C6—C1—H1 119.0 C10—C12—H12B 109.5

C1—C2—C3 120.1 (3) H12A—C12—H12B 109.5

C1—C2—H2 120.0 C10—C12—H12C 109.5

C3—C2—H2 120.0 H12A—C12—H12C 109.5

C4—C3—C2 117.7 (3) H12B—C12—H12C 109.5

C4—C3—H3 121.2 C14—C13—C18 120.2 (3)

C2—C3—H3 121.2 C14—C13—N3 118.5 (3)

C3—C4—C5 123.4 (3) C18—C13—N3 121.4 (3)

C3—C4—N4 117.7 (3) C15—C14—C13 119.4 (3)

C5—C4—N4 118.8 (3) C15—C14—H14 120.3

C4—C5—C6 119.1 (3) C13—C14—H14 120.3

C4—C5—H5 120.5 C14—C15—C16 120.6 (3)

C6—C5—H5 120.5 C14—C15—H15 119.7

C5—C6—C1 117.8 (3) C16—C15—H15 119.7

C5—C6—C7 121.1 (2) C17—C16—C15 119.4 (3)

C1—C6—C7 121.1 (3) C17—C16—H16 120.3

N1—C7—C6 119.8 (2) C15—C16—H16 120.3

N1—C7—H7 120.1 C18—C17—C16 120.6 (3)

C6—C7—H7 120.1 C18—C17—H17 119.7

C10—C8—N1 121.6 (2) C16—C17—H17 119.7

C10—C8—C9 108.1 (3) C17—C18—C13 119.7 (3)

N1—C8—C9 130.2 (3) C17—C18—H18 120.1

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o755–o756

C10—N2—N3—C9 −8.0 (3) C13—N3—C9—C8 159.9 (2)

C11—N2—N3—C9 −154.4 (2) C10—C8—C9—O3 174.6 (2)

C10—N2—N3—C13 −162.0 (2) N1—C8—C9—O3 −1.1 (4)

C11—N2—N3—C13 51.6 (3) C10—C8—C9—N3 −3.2 (2)

C6—C1—C2—C3 1.0 (4) N1—C8—C9—N3 −179.0 (2)

C1—C2—C3—C4 −0.7 (4) N3—N2—C10—C8 5.9 (3)

C2—C3—C4—C5 −0.1 (4) C11—N2—C10—C8 149.4 (2)

C2—C3—C4—N4 178.2 (2) N3—N2—C10—C12 −173.5 (2)

O1—N4—C4—C3 7.0 (4) C11—N2—C10—C12 −30.0 (4)

O2—N4—C4—C3 −172.7 (3) N1—C8—C10—N2 174.5 (2)

O1—N4—C4—C5 −174.6 (2) C9—C8—C10—N2 −1.6 (3)

O2—N4—C4—C5 5.6 (4) N1—C8—C10—C12 −6.1 (4)

C3—C4—C5—C6 0.5 (4) C9—C8—C10—C12 177.7 (2)

N4—C4—C5—C6 −177.7 (2) N2—N3—C13—C14 −149.3 (2)

C4—C5—C6—C1 −0.1 (3) C9—N3—C13—C14 60.5 (3)

C4—C5—C6—C7 177.6 (2) N2—N3—C13—C18 30.3 (4)

C2—C1—C6—C5 −0.6 (3) C9—N3—C13—C18 −119.9 (3)

C2—C1—C6—C7 −178.3 (2) C18—C13—C14—C15 1.6 (4)

C8—N1—C7—C6 176.90 (19) N3—C13—C14—C15 −178.8 (3)

C5—C6—C7—N1 −179.8 (2) C13—C14—C15—C16 −2.7 (5)

C1—C6—C7—N1 −2.2 (3) C14—C15—C16—C17 1.6 (5)

C7—N1—C8—C10 176.4 (2) C15—C16—C17—C18 0.6 (5)

C7—N1—C8—C9 −8.3 (4) C16—C17—C18—C13 −1.6 (5)

N2—N3—C9—O3 −171.2 (2) C14—C13—C18—C17 0.5 (4)

C13—N3—C9—O3 −18.2 (4) N3—C13—C18—C17 −179.1 (3)

N2—N3—C9—C8 6.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C7—H7···O3 0.93 2.45 3.094 (5) 126

C1—H1···O2i 0.93 2.44 3.125 (6) 131

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical