• No results found

{6,6′ Di­meth­oxy 2,2′ [ethane 1,2 diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II) chloro­form solvate

N/A
N/A
Protected

Academic year: 2020

Share "{6,6′ Di­meth­oxy 2,2′ [ethane 1,2 diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II) chloro­form solvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m948

Yu-Ye Yu [Ni(C

18H18N2O4)]CHCl3 doi:10.1107/S160053680601049X Acta Cryst.(2006). E62, m948–m949 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

{6,6

000

-Dimethoxy-2,2

000

-[ethane-1,2-diylbis(nitrilo-methylidyne)]diphenolato}nickel(II) chloroform

solvate

Yu-Ye Yu

Normal College, Jinhua University, Jinhua, Zhejiang 321017, People’s Republic of China.

Correspondence e-mail: jhyuyy@126.com

Key indicators

Single-crystal X-ray study

T= 296 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.041

wRfactor = 0.116

Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 8 February 2006 Accepted 22 March 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, [Ni(C18H18N2O4)]CHCl3, has been

synthesized by the solid-state reaction of Ni(OAc)24H2O

and the Schiff base ligand N,N0 -ethylene-bis(3-methoxy-salicylaldehyde) [abbreviated as H2(3-MeO-salen)]. The Ni

atom adopts a slightly deformed square-planar coordination geometry in which the 3-MeO-salen ligand acts as acis-N2O2

donor.

Comment

Over the past decades, much attention has been focused on the chemistry of multidentate Schiff base ligands and their complexes, not only because of their ability to coordinate metal ions, but also due to their widespread use in the fields of conducting and magnetic materials, dyes, non-linear optics, catalysis, analytical chemistry, biochemical research and agri-culture (Fujitaet al., 1994; Choudharyet al., 1999; Santoset al., 2000; Feng 2003). A considerable number of complexes with multidentate Schiff bases containing O,N donor atoms have been studied (Clarkeet al., 1998; Marchettiet al., 1999). In this paper, we describe the structure of the title compound, (I), which was prepared by a solid-state reaction at room temperature.

X-ray diffraction analysis shows that complex (I) consists of a neutral unit, [Ni(3-MeO-salen)], and a chloroform molecule. As shown in Fig. 1, the coordination geometry around the Ni atom is roughly square planar, with two N and two O atoms in a cis-configuration. The N1/N2/O1/O3 atoms are slightly distorted in a tetrahedral fashion, with a maximum deviation of 0.03 A˚ from the mean plane of the four atoms. The coordination of (I) is more nearly planar than those of compounds with substituents in the imine bridge (Santoset al., 2000; Azevedoet al., 1999).

It is worth noting that a similar compound, [Ni(3-MeO-salen)]H2O, (II), has been synthesized in a reaction in

(2)

effective synthetic method for Schiff base complexes and affords us a new strategy to obtain coordination compounds.

Experimental

The Schiff base ligand H2(3-MeO-salen) was prepared according to a

literature method (Na et al., 1988) and was recrystallized from absolute ethanol. Ni(OAc)24H2O (0.2488 g, 1 mmol) and H2

(3-MeO-salen) (0.3283 g, 1 mmol) were weighed accurately and mixed carefully in an agate mortar. The mixture was ground for 20 min and placed in air at room temperature for 24 h to ensure completeness of the reaction. After further grinding at room temperature, the mixture was washed with alcohol (95%) and air-dried (yield 90%). Anal. Calcd.(%) for C18H20N2NiO5: C, 53.64; H, 5.00; N, 6.95; Ni, 14.56.

Found (%): C, 53.28; H, 4.93; N, 6.77; Ni, 14.31. The product (0.2015 g, 0.5 mmol) was dissolved in chloroform (20 ml) and brown single crystals of the title complex suitable for X-ray diffraction were obtained by slow evaporation of the solvent after 5 d (yield 70%; m.p. 436–437 K). Analysis calculated for C19H19Cl3N2NiO4: C 45.24, H

3.80, N 5.56, Ni 11.64%; found: C 45.35, H 3.76, N 5.42, Ni 11.89%.

Crystal data

[Ni(C18H18N2O4)]CHCl3

Mr= 504.42

Monoclinic,P21=c a= 11.381 (2) A˚

b= 13.842 (3) A˚

c= 13.268 (3) A˚

= 91.43 (3)

V= 2089.5 (8) A˚3

Z= 4

Dx= 1.603 Mg m 3 MoKradiation

Cell parameters from 16249 reflections

= 3.1–27.5 = 1.34 mm1

T= 296 (2) K Prism, brown 0.310.210.19 mm

Data collection

Rigaku RAXIS-RAPID diffractometer

!scans

Absorption correction: multi-scan

SADABS(Sheldrick, 1996)

Tmin= 0.509,Tmax= 0.775 19480 measured reflections

4767 independent reflections 3682 reflections withI> 2(I)

Rint= 0.031

max= 27.5

h=14!14

k=17!17

l=17!17

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.041

wR(F2) = 0.116

S= 1.10 4767 reflections 265 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0642P)2 + 0.4559P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.93 e A˚ 3

min=0.71 e A˚ 3

Extinction correction:SHELXL97

[image:2.610.317.560.70.247.2]

Extinction coefficient: 0.0030 (5)

Table 1

Selected geometric parameters (A˚ ,).

Ni1—O1 1.8392 (17) Ni1—N2 1.843 (2)

Ni1—N1 1.846 (2) Ni1—O3 1.8458 (17)

O1—Ni1—N2 178.65 (8) O1—Ni1—N1 94.75 (8) N2—Ni1—N1 86.60 (9)

O1—Ni1—O3 84.18 (7) N2—Ni1—O3 94.48 (9) N1—Ni1—O3 178.85 (9)

H atoms were positioned geometrically and refined as riding, with C—H = 0.96 (methyl), 0.97 (other aliphatic) and 0.93 A˚ (aromatic), and withUiso(H) set at 1.2 (1.5 for methyl) timesUeq(C). The methyl

groups were allowed to rotate to fit the electron density.

Data collection:RAPID-AUTO (Rigaku, 1998); cell refinement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:SHELXTL(Bruker, 2002); software used to prepare material for publication:SHELXTL.

References

Azevedo, F., De, M. A. A. F., Carrondo, C. T., Castro, B., Convery, M., Domingues, D., Freire, C., Duarte, M. T., Nielsen, K. & Santos, I. C. (1999).

Inorg. Chim. Acta,219, 43–54.

Bruker (2002).SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Choudhary, N. F., Hitchcock, P. B., Leigh, G. J. & Ng, S. W. (1999).Inorg. Chim.

Acta,293, 147–154.

Clarke, B., Clarke, N., Cunningham, D., Higgins, T., McArdle, P., Cholchuin, M. N. & O’Gara, M. (1998).J. Organomet. Chem.559, 55–64.

Feng, Y. L. (2003).Chin. J. Struct. Chem.22, 544–546.

Fujita, E., Brunschwig, B. S., Ogata, T. & Yanagida, S. (1994).Coord. Chem. Rev.132, 195–200.

Liu, D. X., Li, S. L., Cui, X. G. & Li, X. Y. (1993).Chem. J. Chin. Univ.14, 897– 901.

Marchetti, F., Pettinari, C., Pettinari, R., Cingolani, A. & Leonesi, D. (1999).

Polyhedron,18, 3041–3050.

Na, C. W., Zhao, G. L., Liu, G. F. & Li, B. (1988).Acta Sci. Nat. Univ. Jilinensis,

2, 103–107. (In Chinese.)

Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002).CrystalStructure. Rigaku/MSC, 9009 New Trails Drive,

The Woodlands, TX 77381-5209, USA.

Santos, I. C., Vilas-Boas, M., Piedade, M. F. M., Freire, C., Duarte, M. T. & Castro, B. (2000).Polyhedron,19, 655–664.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany. Figure 1

[image:2.610.45.297.622.682.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, m948–m949

supporting information

Acta Cryst. (2006). E62, m948–m949 [https://doi.org/10.1107/S160053680601049X]

{6,6

-Dimethoxy-2,2

-[ethane-1,2-diylbis(nitrilomethyl-idyne)]diphenolato}nickel(II) chloroform solvate

Yu-Ye Yu

[N,N′-Bis(3-methoxysalicylidene)-1,2-ethanediyldiamino]nickel(II) chloroform solvate

Crystal data

[Ni(C18H18N2O4)]·CHCl3 Mr = 504.42

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 11.381 (2) Å

b = 13.842 (3) Å

c = 13.268 (3) Å

β = 91.43 (3)°

V = 2089.5 (8) Å3 Z = 4

F(000) = 1032

Dx = 1.603 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 16249 reflections

θ = 3.1–27.5°

µ = 1.34 mm−1 T = 296 K Prism, brown

0.31 × 0.21 × 0.19 mm

Data collection

Rigaku RAXIS-RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan SADABS (Sheldrick, 1996)

Tmin = 0.509, Tmax = 0.775

19480 measured reflections 4767 independent reflections 3682 reflections with I > 2σ(I)

Rint = 0.031

θmax = 27.5°, θmin = 3.1° h = −14→14

k = −17→17

l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.041 wR(F2) = 0.116 S = 1.10 4767 reflections 265 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0642P)2 + 0.4559P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.93 e Å−3

Δρmin = −0.71 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.04386 (2) 0.52021 (2) 0.37836 (2) 0.03693 (12) Cl1 0.36147 (11) 0.46165 (8) 0.17518 (11) 0.1037 (4) Cl2 0.28247 (11) 0.65875 (9) 0.16338 (9) 0.1054 (4) Cl3 0.48918 (9) 0.61001 (9) 0.27803 (10) 0.1005 (4) N1 −0.04144 (17) 0.40681 (15) 0.37763 (16) 0.0410 (5) N2 −0.09779 (17) 0.58275 (16) 0.35819 (16) 0.0428 (5) O1 0.18695 (14) 0.46057 (11) 0.39843 (14) 0.0439 (4) O2 0.40558 (16) 0.41030 (13) 0.42879 (18) 0.0585 (5) O3 0.13161 (15) 0.63236 (12) 0.38046 (14) 0.0459 (4) O4 0.28959 (18) 0.76867 (15) 0.40517 (18) 0.0639 (6) C1 0.2079 (2) 0.36731 (17) 0.39990 (18) 0.0393 (5) C2 0.3269 (2) 0.33675 (18) 0.4152 (2) 0.0445 (6) C3 0.3557 (3) 0.2400 (2) 0.4158 (2) 0.0545 (7)

H3A 0.4337 0.2212 0.4249 0.065*

C4 0.2682 (3) 0.1701 (2) 0.4027 (2) 0.0601 (8)

H4A 0.2884 0.1050 0.4029 0.072*

C5 0.1548 (3) 0.1961 (2) 0.3897 (2) 0.0522 (7)

H5A 0.0973 0.1488 0.3818 0.063*

C6 0.1220 (2) 0.29591 (17) 0.38812 (18) 0.0413 (5) C7 0.5272 (2) 0.3866 (2) 0.4334 (3) 0.0679 (9)

H7A 0.5727 0.4446 0.4423 0.102*

H7B 0.5486 0.3555 0.3718 0.102*

H7C 0.5426 0.3438 0.4891 0.102*

C8 0.0000 (2) 0.32016 (19) 0.37902 (19) 0.0442 (6)

H8A −0.0535 0.2695 0.3737 0.053*

C9 −0.1706 (2) 0.4205 (2) 0.3787 (2) 0.0514 (7)

H9A −0.1981 0.4162 0.4472 0.062*

H9B −0.2096 0.3708 0.3386 0.062*

C10 −0.1976 (2) 0.5187 (2) 0.3355 (3) 0.0570 (7)

H10A −0.2106 0.5140 0.2631 0.068*

H10B −0.2683 0.5444 0.3648 0.068*

C11 −0.1155 (2) 0.6745 (2) 0.3580 (2) 0.0474 (6)

H11A −0.1925 0.6956 0.3478 0.057*

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, m948–m949

H13A −0.1404 0.8605 0.3665 0.070*

C14 0.0179 (3) 0.9152 (2) 0.3903 (3) 0.0675 (9)

H14A −0.0064 0.9793 0.3930 0.081*

C15 0.1372 (3) 0.8923 (2) 0.4022 (2) 0.0615 (8)

H15A 0.1918 0.9412 0.4142 0.074*

C16 0.1745 (3) 0.7974 (2) 0.3963 (2) 0.0501 (6) C17 0.0925 (2) 0.72121 (17) 0.38227 (18) 0.0416 (5) C18 0.3770 (3) 0.8404 (2) 0.3949 (3) 0.0756 (10)

H18A 0.4527 0.8102 0.3913 0.113*

H18B 0.3762 0.8829 0.4521 0.113*

H18C 0.3615 0.8768 0.3345 0.113*

C19 0.3486 (2) 0.5712 (2) 0.2404 (2) 0.0596 (7)

H19A 0.3010 0.5613 0.3000 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

Geometric parameters (Å, º)

Ni1—O1 1.8392 (17) C6—C8 1.430 (4)

Ni1—N2 1.843 (2) C7—H7A 0.9600

Ni1—N1 1.846 (2) C7—H7B 0.9600

Ni1—O3 1.8458 (17) C7—H7C 0.9600

Cl1—C19 1.754 (4) C8—H8A 0.9300

Cl2—C19 1.744 (3) C9—C10 1.505 (4)

Cl3—C19 1.749 (3) C9—H9A 0.9700

N1—C8 1.289 (3) C9—H9B 0.9700

N1—C9 1.482 (3) C10—H10A 0.9700

N2—C11 1.286 (3) C10—H10B 0.9700

N2—C10 1.466 (3) C11—C12 1.430 (4)

O1—C1 1.313 (3) C11—H11A 0.9300

O2—C2 1.365 (3) C12—C17 1.406 (4)

O2—C7 1.423 (3) C12—C13 1.413 (4)

O3—C17 1.308 (3) C13—C14 1.341 (5)

O4—C16 1.371 (4) C13—H13A 0.9300

O4—C18 1.415 (3) C14—C15 1.400 (5)

C1—C6 1.396 (3) C14—H14A 0.9300

C1—C2 1.429 (3) C15—C16 1.383 (4)

C2—C3 1.379 (4) C15—H15A 0.9300

C3—C4 1.396 (4) C16—C17 1.417 (4)

C3—H3A 0.9300 C18—H18A 0.9600

C4—C5 1.347 (4) C18—H18B 0.9600

C4—H4A 0.9300 C18—H18C 0.9600

C5—C6 1.431 (4) C19—H19A 0.9800

C5—H5A 0.9300

O1—Ni1—N2 178.65 (8) N1—C9—H9A 110.2

O1—Ni1—N1 94.75 (8) C10—C9—H9A 110.2

N2—Ni1—N1 86.60 (9) N1—C9—H9B 110.2

O1—Ni1—O3 84.18 (7) C10—C9—H9B 110.2

N2—Ni1—O3 94.48 (9) H9A—C9—H9B 108.5

N1—Ni1—O3 178.85 (9) N2—C10—C9 108.6 (2)

C8—N1—C9 118.8 (2) N2—C10—H10A 110.0

C8—N1—Ni1 126.80 (18) C9—C10—H10A 110.0

C9—N1—Ni1 114.40 (17) N2—C10—H10B 110.0

C11—N2—C10 118.4 (2) C9—C10—H10B 110.0

C11—N2—Ni1 126.92 (18) H10A—C10—H10B 108.4 C10—N2—Ni1 114.58 (17) N2—C11—C12 125.4 (2)

C1—O1—Ni1 127.09 (15) N2—C11—H11A 117.3

C2—O2—C7 117.9 (2) C12—C11—H11A 117.3

C17—O3—Ni1 127.37 (17) C17—C12—C13 120.5 (3) C16—O4—C18 117.4 (2) C17—C12—C11 121.0 (2)

O1—C1—C6 124.6 (2) C13—C12—C11 118.6 (3)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, m948–m949

O2—C2—C3 124.7 (2) C12—C13—H13A 119.5

O2—C2—C1 114.5 (2) C13—C14—C15 119.9 (3)

C3—C2—C1 120.8 (2) C13—C14—H14A 120.0

C2—C3—C4 120.2 (3) C15—C14—H14A 120.0

C2—C3—H3A 119.9 C16—C15—C14 120.5 (3)

C4—C3—H3A 119.9 C16—C15—H15A 119.8

C5—C4—C3 120.6 (3) C14—C15—H15A 119.8

C5—C4—H4A 119.7 O4—C16—C15 124.4 (3)

C3—C4—H4A 119.7 O4—C16—C17 114.8 (2)

C4—C5—C6 120.5 (3) C15—C16—C17 120.8 (3)

C4—C5—H5A 119.7 O3—C17—C12 124.2 (2)

C6—C5—H5A 119.7 O3—C17—C16 118.6 (2)

C1—C6—C8 121.2 (2) C12—C17—C16 117.2 (2)

C1—C6—C5 120.0 (2) O4—C18—H18A 109.5

C8—C6—C5 118.7 (2) O4—C18—H18B 109.5

O2—C7—H7A 109.5 H18A—C18—H18B 109.5

O2—C7—H7B 109.5 O4—C18—H18C 109.5

H7A—C7—H7B 109.5 H18A—C18—H18C 109.5

O2—C7—H7C 109.5 H18B—C18—H18C 109.5

H7A—C7—H7C 109.5 Cl2—C19—Cl3 109.41 (18)

H7B—C7—H7C 109.5 Cl2—C19—Cl1 110.63 (19)

N1—C8—C6 125.0 (2) Cl3—C19—Cl1 108.63 (16)

N1—C8—H8A 117.5 Cl2—C19—H19A 109.4

C6—C8—H8A 117.5 Cl3—C19—H19A 109.4

N1—C9—C10 107.7 (2) Cl1—C19—H19A 109.4

(8)

Figure

Figure 1

References

Related documents

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

(Bruker, 1998); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: