• No results found

(3S,4S) 4 Amino 5 phenyl­pentane 1,3 diol

N/A
N/A
Protected

Academic year: 2020

Share "(3S,4S) 4 Amino 5 phenyl­pentane 1,3 diol"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o4382

Tanet al. C

11H17NO2 doi:10.1107/S1600536805036421 Acta Cryst.(2005). E61, o4382–o4383

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3

S

,4

S

)-4-Amino-5-phenylpentane-1,3-diol

Bin Tan,aHua Fang,aRong-Bin Huang,bZan-Bin Weiband Li-Ren Jina*

aThe Key Laboratory for Chemical Biology of

Fujian Province, Department of Chemistry, Xiamen University, Xiamen 361005, People’s Republic of China, andbState Key Laboratory for

Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, People’s Republic of China

Correspondence e-mail: lrjin@xmu.edu.cn

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.034

wRfactor = 0.100 Data-to-parameter ratio = 7.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C11H17NO2, was obtained by

hydrogeno-lysis of (3S,4S)-4-(dibenzylamino)-5-phenylpentane-1,3-diol. In the crystal structure, intermolecular O—H O, O—H N and N—H O hydrogen bonds link the molecules into a sheet parallel to theabplane.

Comment

The title compound, (I), is a key intermediate used to synthesize recycling chiral ligands for asymmetric catalysts such as pyridinyloxazolines. X-ray analysis of (I) reveals that the amino group is in a pyramidal configuration with the sum of the bond angles around N1 being 324. Symmetry-related

molecules are linked via O—H O, O—H N and N— H O intermolecular hydrogen bonds into a sheet parallel to theabplane.

Experimental

To a solution of (3S,4S)-4-(dibenzylamino)-5-phenylpentane-1,3-diol (1125 mg, 3 mmol) in methanol (20 ml), ammonium formate (1134 mg, 18 mmol) and palladium on carbon (10% Pd) (253 mg) were added and the mixture heated to 353 K. It was stirred for 3 h at 353 K (Stuk et al., 1994). After completion of the reaction, the catalyst was filtered off, the filtrate was concentrated under reduced pressure to give the crude product. It was purified by column chro-matography over silica gel (ethyl acetate–methanol, 20:1v/v) to yield compound (I) (527 mg). Single crystals were obtained by recrys-tallization from a mixture of ethyl acetate and hexane.

Crystal data

C11H17NO2

Mr= 195.26

Monoclinic,P21 a= 7.960 (3) A˚ b= 5.4531 (17) A˚ c= 12.142 (4) A˚ = 95.379 (6) V= 524.7 (3) A˚3 Z= 2

Dx= 1.236 Mg m

3

MoKradiation Cell parameters from 2218

reflections = 2.6–28.5 = 0.09 mm1 T= 273 (2) K Block, colourless 0.560.280.18 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2001) Tmin= 0.959,Tmax= 0.987

2647 measured reflections

1019 independent reflections 1006 reflections withI> 2(I) Rint= 0.021

max= 25.0

h=9!8 k=6!6 l=14!13

(2)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.034

wR(F2) = 0.100 S= 0.98 1019 reflections 137 parameters

All H-atom parameters refined

w= 1/[2

(Fo2) + (0.0762P)2

+ 0.0605P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.11 e A˚

3

min=0.15 e A˚

[image:2.610.317.562.69.301.2]

3

Table 1

Selected geometric parameters (A˚ ,).

N1—C4 1.465 (3) O1—C1 1.406 (3) O2—C3 1.416 (3) C1—C2 1.496 (3) C2—C3 1.508 (3) C3—C4 1.523 (3) C4—C5 1.523 (3)

C5—C6 1.500 (3) C6—C7 1.370 (3) C6—C11 1.375 (3) C7—C8 1.374 (4) C8—C9 1.369 (4) C9—C10 1.361 (4) C10—C11 1.372 (3)

O1—C1—C2 109.73 (17) C1—C2—C3 112.16 (19) O2—C3—C2 111.51 (18) O2—C3—C4 111.82 (18) C2—C3—C4 112.62 (19) N1—C4—C3 113.26 (16) N1—C4—C5 108.44 (16) C3—C4—C5 111.89 (19) C6—C5—C4 114.26 (17)

C7—C6—C11 118.5 (2) C7—C6—C5 121.6 (2) C11—C6—C5 119.9 (2) C6—C7—C8 120.8 (2) C9—C8—C7 119.9 (2) C10—C9—C8 119.9 (2) C9—C10—C11 120.0 (2) C10—C11—C6 120.8 (2)

C1—C2—C3—C4 164.94 (18) C2—C3—C4—N1 59.3 (3) O2—C3—C4—C5 55.7 (2) N1—C4—C5—C6 171.8 (2)

[image:2.610.43.297.166.387.2]

C3—C4—C5—C6 62.5 (3) C4—C5—C6—C7 90.5 (3) C4—C5—C6—C11 89.1 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 N1i

0.82 1.96 2.763 (2) 167 O2—H2 O1ii

0.82 1.99 2.805 (2) 172 N1—H1N O1ii 0.87 (1) 2.43 (1) 3.288 (3) 168 (3) N1—H2N O1iii

0.87 (1) 2.60 (1) 3.456 (3) 167 (3)

Symmetry codes: (i)xþ1;y;z; (ii)xþ2;y1

2;z; (iii)xþ2;yþ 1 2;z.

Amino H atoms were located in a difference map and were refined with an N—H distance restraint of 0.87 (1) A˚ . All other H atoms were positioned geometrically (C—H = 0.93, 0.97 or 0.98 A˚ for phenyl, methylene or tertiary H atoms, respectively, and O—H = 0.82 A˚ ) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier atom). In the absence of significant

anomalous scattering effects, Friedel pairs were merged; the absolute configuration was assumed from the synthesis.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT (Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII(Farrugia, 1997); software used to prepare material for publication:SHELXL97.

The authors thank the Fujian Science Foundation and Xiamen Science Foundation for financial support. They also thank the Key Laboratory for Physical Chemistry of the Solid Surface for providing the X-ray diffraction facilities.

References

Bruker (2001).SMART(Version 5.625),SAINT(Version 6.22) andSADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Stuk, T. L., Haight, A. R., Scarpetti, D., Allen, M. S., Menzia, J. A., Robbins, T. A., Parekh, S. I., Langridge, D. C., Tien, J.-H. J., Pariza, R. J. & Kerdesky, F. A. J. (1994).J. Org. Chem.59, 4040–4041.

Figure 1

[image:2.610.45.296.440.495.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o4382–o4383

supporting information

Acta Cryst. (2005). E61, o4382–o4383 [https://doi.org/10.1107/S1600536805036421]

(3

S

,4

S

)-4-Amino-5-phenylpentane-1,3-diol

Bin Tan, Hua Fang, Rong-Bin Huang, Zan-Bin Wei and Li-Ren Jin

(3S,4S)-4-Amino-5-phenylpentane-1,3-diol

Crystal data

C11H17NO2

Mr = 195.26

Monoclinic, P21 Hall symbol: P 2yb

a = 7.960 (3) Å

b = 5.4531 (17) Å

c = 12.142 (4) Å

β = 95.379 (6)°

V = 524.7 (3) Å3

Z = 2

F(000) = 212

Dx = 1.236 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2218 reflections

θ = 2.6–28.5°

µ = 0.09 mm−1

T = 273 K Block, colourless 0.56 × 0.28 × 0.18 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan SADABS (Bruker, 2001)

Tmin = 0.959, Tmax = 0.987

2647 measured reflections 1019 independent reflections 1006 reflections with I > 2σ(I)

Rint = 0.021

θmax = 25.0°, θmin = 2.6°

h = −9→8

k = −6→6

l = −14→13

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.034

wR(F2) = 0.100

S = 0.98 1019 reflections 137 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0762P)2 + 0.0605P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.11 e Å−3 Δρmin = −0.15 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.6183 (2) 0.3623 (5) 0.08653 (15) 0.0414 (5) O1 1.27047 (17) 0.3814 (5) 0.05291 (13) 0.0560 (6) H1 1.3715 0.3730 0.0731 0.084* O2 0.8704 (2) −0.0277 (3) 0.16370 (12) 0.0402 (4) H2 0.8340 −0.0422 0.0986 0.060* C1 1.1776 (2) 0.2766 (5) 0.13395 (16) 0.0387 (6) H1A 1.2247 0.3282 0.2069 0.046* H1B 1.1844 0.0993 0.1303 0.046* C2 0.9971 (2) 0.3558 (5) 0.11535 (16) 0.0321 (5) H2A 0.9556 0.3238 0.0390 0.039* H2B 0.9902 0.5310 0.1278 0.039* C3 0.8867 (2) 0.2244 (4) 0.19073 (15) 0.0294 (5) H3 0.9444 0.2336 0.2656 0.035* C4 0.7157 (2) 0.3473 (5) 0.19484 (15) 0.0321 (5) H4 0.7358 0.5151 0.2218 0.039* C5 0.6085 (2) 0.2179 (5) 0.27469 (16) 0.0403 (6) H5A 0.4984 0.2954 0.2703 0.048* H5B 0.5923 0.0489 0.2512 0.048* C6 0.6826 (2) 0.2207 (5) 0.39287 (16) 0.0334 (5) C7 0.7870 (3) 0.0374 (5) 0.43539 (19) 0.0405 (6) H7 0.8105 −0.0947 0.3909 0.049* C8 0.8575 (3) 0.0465 (5) 0.5431 (2) 0.0499 (7) H8 0.9299 −0.0775 0.5706 0.060* C9 0.8211 (3) 0.2381 (6) 0.60966 (18) 0.0519 (7) H9 0.8682 0.2441 0.6826 0.062* C10 0.7156 (3) 0.4197 (6) 0.5689 (2) 0.0518 (7) H10 0.6901 0.5495 0.6142 0.062* C11 0.6469 (3) 0.4115 (5) 0.46099 (19) 0.0420 (6) H11 0.5753 0.5365 0.4336 0.050* H1N 0.632 (4) 0.229 (4) 0.050 (2) 0.061 (10)* H2N 0.661 (4) 0.479 (4) 0.049 (2) 0.058 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o4382–o4383

C3 0.0237 (9) 0.0387 (12) 0.0253 (8) 0.0028 (9) −0.0005 (7) −0.0011 (9) C4 0.0240 (9) 0.0425 (12) 0.0298 (9) 0.0019 (9) 0.0025 (7) 0.0009 (9) C5 0.0234 (9) 0.0617 (16) 0.0358 (10) −0.0051 (11) 0.0036 (7) 0.0045 (12) C6 0.0254 (9) 0.0443 (13) 0.0317 (10) −0.0039 (9) 0.0091 (7) 0.0036 (10) C7 0.0418 (12) 0.0394 (14) 0.0412 (11) 0.0020 (10) 0.0074 (9) 0.0004 (10) C8 0.0491 (14) 0.0546 (17) 0.0452 (12) 0.0058 (13) 0.0006 (11) 0.0152 (12) C9 0.0511 (13) 0.0719 (19) 0.0321 (10) −0.0091 (15) 0.0016 (9) 0.0032 (13) C10 0.0547 (14) 0.0588 (19) 0.0437 (12) −0.0046 (13) 0.0144 (11) −0.0133 (12) C11 0.0343 (11) 0.0468 (15) 0.0460 (12) 0.0060 (11) 0.0085 (9) 0.0029 (11)

Geometric parameters (Å, º)

N1—C4 1.465 (3) C4—H4 0.98 N1—H1N 0.868 (10) C5—C6 1.500 (3) N1—H2N 0.871 (10) C5—H5A 0.97 O1—C1 1.406 (3) C5—H5B 0.97 O1—H1 0.82 C6—C7 1.370 (3) O2—C3 1.416 (3) C6—C11 1.375 (3) O2—H2 0.82 C7—C8 1.374 (4) C1—C2 1.496 (3) C7—H7 0.93 C1—H1A 0.97 C8—C9 1.369 (4) C1—H1B 0.97 C8—H8 0.93 C2—C3 1.508 (3) C9—C10 1.361 (4) C2—H2A 0.97 C9—H9 0.93 C2—H2B 0.97 C10—C11 1.372 (3) C3—C4 1.523 (3) C10—H10 0.93 C3—H3 0.98 C11—H11 0.93 C4—C5 1.523 (3)

(6)

C2—C3—C4 112.62 (19) C8—C9—H9 120.1 O2—C3—H3 106.8 C9—C10—C11 120.0 (2) C2—C3—H3 106.8 C9—C10—H10 120.0 C4—C3—H3 106.8 C11—C10—H10 120.0 N1—C4—C3 113.26 (16) C10—C11—C6 120.8 (2) N1—C4—C5 108.44 (16) C10—C11—H11 119.6 C3—C4—C5 111.89 (19) C6—C11—H11 119.6 N1—C4—H4 107.7

O1—C1—C2—C3 172.8 (2) C4—C5—C6—C11 89.1 (2) C1—C2—C3—O2 −68.4 (2) C11—C6—C7—C8 −1.4 (3) C1—C2—C3—C4 164.94 (18) C5—C6—C7—C8 178.2 (2) O2—C3—C4—N1 −67.2 (2) C6—C7—C8—C9 1.2 (4) C2—C3—C4—N1 59.3 (3) C7—C8—C9—C10 −0.3 (4) O2—C3—C4—C5 55.7 (2) C8—C9—C10—C11 −0.4 (4) C2—C3—C4—C5 −177.81 (18) C9—C10—C11—C6 0.2 (4) N1—C4—C5—C6 −171.8 (2) C7—C6—C11—C10 0.7 (3) C3—C4—C5—C6 62.5 (3) C5—C6—C11—C10 −178.9 (2) C4—C5—C6—C7 −90.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···N1i 0.82 1.96 2.763 (2) 167 O2—H2···O1ii 0.82 1.99 2.805 (2) 172 N1—H1N···O1ii 0.87 (1) 2.43 (1) 3.288 (3) 168 (3) N1—H2N···O1iii 0.87 (1) 2.60 (1) 3.456 (3) 167 (3)

Figure

Figure 1

References

Related documents

The features to our machine learning models con- sists of character, lexical and word level features such as char N-Grams of size 2 and 3 in order to capture the information

The app also logs rich process data which allow reconstructing the time- line of a user’s interaction with the app, such as timestamps for the beginning and end of each user

Figure 4: Percent of non-covered types (y) in Wiki cor- pus, with dict_uk (‘wiki’ line), with only proposed al- gorithm and paradigms generated from News corpus (‘Par(w)’ line),

For both translation directions, we trained super- vised neural MT (NMT) and statistical MT (SMT) systems, and combined them through n -best list reranking using different

Indeed, by treat- ing the seed words of each category as a query, the zero-shot document filtering is equivalent to ranking documents based on their relevance to the query..

3 Annotation Projection Approach The existing annotation projection approaches re- quire parallel corpora or translations between a source language and a target language with

When sadaqat results in flows of benefits that are expected to be stable and permanent (such as through endowment of a physical property), it is called

shock for output, consumption, investment, labor, Tobin’s q, real wages, nominal interest rate and inflation. We plot the effects of such a shock in