• No results found

Bis(12 crown 4)lithium(I) bis­­[(N,N diiso­propyl­amino)borohydride(1–)]lithium(I)

N/A
N/A
Protected

Academic year: 2020

Share "Bis(12 crown 4)lithium(I) bis­­[(N,N diiso­propyl­amino)borohydride(1–)]lithium(I)"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis(12-crown-4)lithium(I) bis[(

N

,

N

-diisopropyl-amino)borohydride(1–)]lithium(I)

Franz Dornhaus and Michael Bolte*

Institut fu¨r Anorganische Chemie, J. W. Goethe-Universita¨t Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T= 173 K

Mean(C–C) = 0.007 A˚ Rfactor = 0.084 wRfactor = 0.176

Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 21 November 2006 Accepted 27 November 2006

The structure of the title compound, [Li(C8H16O4)2

]-[Li(C6H17BN)2], is composed of bis[(N,N

-diisopropyl-amino)borohydride(1 )]lithium(I) anions and Li+ cations which are eight-coordinated by two 12-crown-4 ether mol-ecules.

Comment

The title compound, (I), is a well known hydride transfer reagent with advantageous properties for applications in synthetic organic chemistry (Fisheret al., 1994; Thomaset al., 2001; Pasumansky et al., 2005). In contrast to the often used LiAlH4, which shows comparable hydride transfer activity, it is

not pyrophoric, is thermally stable and does not react violently with protic solvents. Lithium aminoborohydrides are readily available through deprotonation of primary or secondary amine borane adducts withn-butyllithium. The structures of various solvates of lithium (N,N-dimethyl)aminoborohydride, which is the methyl derivative of the title compound, have been published (No¨thet al., 1996). We report here the crystal structure of the 12-crown-4 adduct (I) of LiNiPr2BH3along

with1H and7Li NMR data.

(2)

the crown ether molecules with Li—O distances ranging from 2.317 (6) to 2.475 (7) A˚ .

Experimental

All manipulations were carried out under an atmosphere of dry nitrogen using standard Schlenk techniques. Solvents were freshly distilled under argon from sodium/benzophenone (THF, diethyl ether, C6D6) prior to use. LiN

i

Pr2BH3, was obtained following a

literature procedure (Fisher et al., 1994; Thomas et al., 2001; Pasu-mansky et al., 2005). The 12-crown-4 adduct (I) was obtained by adding an equimolar amount of crown ether to a THF solution of LiNiPrBH at room temperature. X-ray quality crystals were grown

Crystal data

[Li(C8H16O4)2][Li(C6H17BN)2]

Mr= 594.33 Triclinic,P1

a= 10.2918 (12) A˚

b= 14.5424 (14) A˚

c= 14.8057 (13) A˚

= 116.790 (7) = 105.314 (8) = 94.850 (9)

V= 1853.7 (4) A˚3

Z= 2

Dx= 1.065 Mg m 3 MoKradiation

= 0.07 mm 1

T= 173 (2) K Block, colourless 0.240.220.19 mm

Data collection

Stoe IPDS-II two-circle diffractometer

!scans

Absorption correction: none 23964 measured reflections

7468 independent reflections 3312 reflections withI> 2(I)

Rint= 0.096

max= 26.4

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.084

wR(F2) = 0.176

S= 0.95 7468 reflections 382 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0581P)2] whereP= (Fo

2 + 2Fc

2 )/3 (/)max< 0.001

max= 0.49 e A˚ 3 min= 0.32 e A˚ 3

Extinction correction:SHELXL97

Extinction coefficient: 0.0110 (15)

Table 1

Selected geometric parameters (A˚ ,).

Li1—N1 2.049 (8)

Li1—N2 2.053 (8)

Li2—O54 2.317 (6)

Li2—O34 2.338 (6)

Li2—O40 2.360 (6)

Li2—O31 2.374 (6)

Li2—O51 2.383 (7)

Li2—O37 2.417 (7)

Li2—O57 2.433 (6)

Li2—O60 2.475 (7)

N1—Li1—N2 176.4 (4)

H atoms were positioned geometrically (C—H = 0.98–1.00 A˚ , B— H = 0.98 A˚ ) and refined as riding with Uiso(H) = 1.2Ueq(C) or

1.5Ueq(methyl C,B)]. The BH3groups were allowed to rotate but not

to tip.

Data collection:X-AREA(Stoe & Cie, 2001); cell refinement: X-AREA; data reduction:X-AREA; program(s) used to solve structure:

SHELXS97(Sheldrick, 1997); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: XP in

SHELXTL-Plus(Sheldrick, 1991); software used to prepare material for publication:SHELXL97andPLATON(Spek, 2003).

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Fisher, G. B., Fuller, J. C., Harrison, J., Alvarez, S. G., Burkhardt, E. R., Goralski, C. T. & Singaram, B. (1994).J. Org. Chem.59, 6378–85. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997).J. Org. Chem.62, 7512–

7515.

No¨th, H., Thomas, S. & Schmidt, M. (1996).Chem. Ber.129, 451–458. Pasumansky, L., Singaram, B. & Goralski, C. T. (2005).Aldrichim. Acta,38,

61–65.

Sheldrick, G. M. (1991).SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

[image:2.610.46.294.73.248.2]

Stoe & Cie (2001).X-AREA. Stoe & Cie, Darmstadt, Germany. Figure 1

[image:2.610.54.285.294.542.2]

The anion of (I) showing displacement ellipsoids at the 50% probability level; H atoms have been omitted for clarity.

Figure 2

(3)

supporting information

Acta Cryst. (2007). E63, m41–m42 [https://doi.org/10.1107/S1600536806051142]

Bis(12-crown-4)lithium(I) bis[(

N

,

N

-diisopropylamino)borohydride(1

)]lithium(I)

Franz Dornhaus and Michael Bolte

Bis(12-crown-4)lithium(I) bis[(N,N-diisopropylamino)borohydride(1-)]lithium(I)

Crystal data

[Li(C8H16O4)2][Li(C6H17BN)2]

Mr = 594.33

Triclinic, P1 Hall symbol: -P 1

a = 10.2918 (12) Å

b = 14.5424 (14) Å

c = 14.8057 (13) Å

α = 116.790 (7)°

β = 105.314 (8)°

γ = 94.850 (9)°

V = 1853.7 (4) Å3

Z = 2

F(000) = 656

Dx = 1.065 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 9247 reflections

θ = 3.6–26.3°

µ = 0.07 mm−1

T = 173 K Block, colourless 0.24 × 0.22 × 0.19 mm

Data collection

Stoe IPDS-II two-circle diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

23964 measured reflections 7468 independent reflections

3312 reflections with I > 2σ(I)

Rint = 0.096

θmax = 26.4°, θmin = 3.6°

h = −12→12

k = −18→18

l = −18→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.084

wR(F2) = 0.176

S = 0.95 7468 reflections 382 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0581P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.49 e Å−3

Δρmin = −0.32 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Experimental. The NMR spectra were recorded on Bruker AV 300 and AV 400 spectrometers. NMR measurements were performed in undeuterated THF solution. C6D6 (approximately 0.1 ml) was added to the sample to provide a lock signal. 1H NMR shifts are reported relative to tetramethylsilane and were referenced against residual solvent peaks (C

6D5H: δ =

7.16; Gottlieb et al., 1997). The 7Li NMR spectrum was referenced against external LiCl in D

2O (ca 9.7 mol kg-1).

Abbreviations: s = singlet, d = dublet, m = multiplet, n.o. = not observed. 1H NMR (THF, 400.13 MHz): δ n.o. (BH 3),

0.99 (d, 3J

HH = 6.6 Hz, 6 H, CH3), 2.83 (m, 2 H, CH) p.p.m. 7Li{1H} NMR (THF, 116.60 MHz): δ = -0.52 (s) p.p.m.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Li1 0.7647 (8) 0.2792 (6) 0.2620 (5) 0.0380 (17) N1 0.6404 (3) 0.3817 (3) 0.2600 (2) 0.0297 (8) B1 0.7083 (5) 0.3750 (4) 0.1764 (3) 0.0298 (10)

H1A 0.6728 0.3042 0.1129 0.045*

H1B 0.8090 0.3884 0.2080 0.045*

H1C 0.6859 0.4282 0.1553 0.045*

N2 0.8854 (3) 0.1723 (2) 0.2538 (2) 0.0259 (7) B2 0.8339 (7) 0.1848 (6) 0.3478 (4) 0.0568 (17)

H2A 0.8909 0.1563 0.3887 0.085*

H2B 0.7369 0.1458 0.3184 0.085*

H2C 0.8417 0.2600 0.3953 0.085*

C11 0.6959 (7) 0.4881 (4) 0.3601 (3) 0.0610 (16)

H11 0.7967 0.5028 0.3695 0.073*

C12 0.6990 (9) 0.4915 (4) 0.4568 (4) 0.104 (3)

H12A 0.7304 0.4304 0.4588 0.155*

H12B 0.6058 0.4893 0.4618 0.155*

H12C 0.7629 0.5571 0.5176 0.155*

C13 0.6519 (6) 0.5800 (4) 0.3486 (4) 0.0525 (13)

H13A 0.6569 0.5737 0.2809 0.079*

H13B 0.7138 0.6468 0.4091 0.079*

H13C 0.5566 0.5791 0.3485 0.079*

C14 0.4901 (5) 0.3462 (4) 0.2238 (4) 0.0536 (13)

H14 0.4630 0.3903 0.2874 0.064*

C15 0.4501 (6) 0.2356 (4) 0.2010 (6) 0.084 (2)

H15A 0.5062 0.2283 0.2611 0.125*

H15B 0.4659 0.1872 0.1350 0.125*

H15C 0.3518 0.2181 0.1919 0.125*

C16 0.4034 (5) 0.3609 (5) 0.1333 (4) 0.0671 (16)

H16A 0.4302 0.4349 0.1509 0.101*

(5)

H16C 0.4189 0.3144 0.0665 0.101* C21 0.8442 (4) 0.0657 (3) 0.1569 (3) 0.0380 (10)

H21 0.9094 0.0644 0.1170 0.046*

C22 0.8514 (6) −0.0279 (4) 0.1804 (5) 0.0703 (17)

H22A 0.9453 −0.0170 0.2273 0.105*

H22B 0.8286 −0.0944 0.1127 0.105*

H22C 0.7850 −0.0312 0.2163 0.105*

C23 0.6979 (5) 0.0473 (4) 0.0821 (3) 0.0449 (12)

H23A 0.6933 0.1056 0.0661 0.067*

H23B 0.6307 0.0442 0.1174 0.067*

H23C 0.6763 −0.0198 0.0150 0.067*

C24 1.0326 (4) 0.2283 (3) 0.2924 (3) 0.0324 (10)

H24 1.0452 0.2976 0.3576 0.039*

C25 1.1394 (5) 0.1730 (4) 0.3290 (4) 0.0434 (11)

H25A 1.1163 0.1564 0.3809 0.065*

H25B 1.2323 0.2201 0.3628 0.065*

H25C 1.1376 0.1072 0.2665 0.065*

C26 1.0695 (5) 0.2553 (4) 0.2125 (4) 0.0419 (11)

H26A 1.0022 0.2913 0.1900 0.063*

H26B 1.0673 0.1900 0.1494 0.063*

H26C 1.1626 0.3021 0.2467 0.063*

Li2 0.7601 (7) 0.2453 (5) 0.7488 (4) 0.0262 (14) O31 0.6061 (3) 0.26003 (19) 0.60775 (19) 0.0283 (6) C32 0.6668 (4) 0.3320 (3) 0.5803 (3) 0.0279 (9)

H32A 0.5944 0.3592 0.5474 0.033*

H32B 0.7139 0.2957 0.5283 0.033*

C33 0.7695 (4) 0.4215 (3) 0.6828 (3) 0.0301 (9)

H33A 0.8167 0.4715 0.6666 0.036*

H33B 0.7200 0.4605 0.7317 0.036*

O34 0.8714 (3) 0.3832 (2) 0.73530 (19) 0.0286 (6) C35 0.9808 (4) 0.3613 (3) 0.6909 (3) 0.0307 (10)

H35A 1.0424 0.4282 0.7103 0.037*

H35B 0.9419 0.3180 0.6116 0.037*

C36 1.0603 (4) 0.3016 (3) 0.7378 (3) 0.0324 (10)

H36A 1.1355 0.2832 0.7076 0.039*

H36B 1.1033 0.3475 0.8167 0.039*

O37 0.9715 (3) 0.2064 (2) 0.71465 (18) 0.0304 (7) C38 0.9517 (4) 0.1182 (3) 0.6117 (3) 0.0301 (9)

H38A 1.0332 0.0866 0.6141 0.036*

H38B 0.9388 0.1409 0.5569 0.036*

C39 0.8233 (4) 0.0384 (3) 0.5847 (3) 0.0293 (9)

H39A 0.8036 −0.0228 0.5122 0.035*

H39B 0.8410 0.0121 0.6369 0.035*

O40 0.7050 (3) 0.0833 (2) 0.58723 (18) 0.0266 (6) C41 0.6396 (4) 0.0903 (3) 0.4923 (3) 0.0263 (9)

H41A 0.5914 0.0189 0.4304 0.032*

H41B 0.7096 0.1231 0.4740 0.032*

(6)

H42A 0.4906 0.1641 0.4544 0.035*

H42B 0.4675 0.1224 0.5337 0.035*

O51 0.6631 (3) 0.3805 (2) 0.85411 (18) 0.0281 (6) C52 0.7740 (4) 0.4584 (3) 0.9503 (3) 0.0282 (9)

H52A 0.7345 0.5071 1.0022 0.034*

H52B 0.8320 0.5008 0.9321 0.034*

C53 0.8625 (4) 0.4053 (3) 1.0009 (3) 0.0300 (9)

H53A 0.9387 0.4590 1.0666 0.036*

H53B 0.8060 0.3640 1.0210 0.036*

O54 0.9179 (3) 0.33607 (19) 0.92266 (17) 0.0257 (6) C55 0.9812 (4) 0.2650 (3) 0.9516 (3) 0.0246 (9)

H55A 1.0380 0.3039 1.0290 0.030*

H55B 1.0437 0.2377 0.9101 0.030*

C56 0.8742 (4) 0.1727 (3) 0.9299 (3) 0.0298 (9)

H56A 0.9202 0.1220 0.9458 0.036*

H56B 0.8159 0.1982 0.9755 0.036*

O57 0.7906 (3) 0.1224 (2) 0.81807 (18) 0.0315 (7) C58 0.6627 (4) 0.0541 (3) 0.7907 (3) 0.0318 (10)

H58A 0.6766 0.0167 0.8330 0.038*

H58B 0.6316 0.0001 0.7136 0.038*

C59 0.5526 (4) 0.1135 (3) 0.8121 (3) 0.0301 (10)

H59A 0.4640 0.0640 0.7907 0.036*

H59B 0.5801 0.1658 0.8896 0.036*

O60 0.5373 (3) 0.1667 (2) 0.74892 (19) 0.0312 (7) C61 0.4586 (4) 0.2457 (3) 0.7762 (3) 0.0311 (9)

H61A 0.3775 0.2193 0.7893 0.037*

H61B 0.4238 0.2587 0.7150 0.037*

C62 0.5440 (4) 0.3481 (3) 0.8747 (3) 0.0306 (9)

H62A 0.4895 0.4029 0.8891 0.037*

H62B 0.5727 0.3378 0.9381 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

C24 0.030 (2) 0.040 (3) 0.032 (2) 0.010 (2) 0.0098 (18) 0.021 (2) C25 0.034 (3) 0.048 (3) 0.051 (3) 0.014 (2) 0.004 (2) 0.032 (2) C26 0.034 (3) 0.053 (3) 0.056 (3) 0.013 (2) 0.018 (2) 0.039 (2) Li2 0.031 (4) 0.024 (3) 0.018 (3) 0.002 (3) 0.007 (3) 0.007 (3) O31 0.0329 (16) 0.0251 (15) 0.0275 (13) 0.0028 (12) 0.0120 (12) 0.0133 (12) C32 0.037 (2) 0.027 (2) 0.028 (2) 0.0117 (19) 0.0131 (18) 0.0184 (18) C33 0.042 (3) 0.024 (2) 0.031 (2) 0.0092 (19) 0.0173 (19) 0.0154 (18) O34 0.0296 (16) 0.0341 (16) 0.0273 (13) 0.0067 (13) 0.0135 (12) 0.0173 (13) C35 0.028 (2) 0.035 (2) 0.030 (2) −0.0021 (19) 0.0133 (18) 0.0155 (19) C36 0.023 (2) 0.038 (2) 0.029 (2) −0.0003 (19) 0.0078 (17) 0.0118 (19) O37 0.0368 (17) 0.0313 (16) 0.0184 (12) 0.0021 (13) 0.0102 (12) 0.0090 (12) C38 0.034 (2) 0.034 (2) 0.0241 (19) 0.0140 (19) 0.0152 (18) 0.0117 (18) C39 0.042 (3) 0.020 (2) 0.0241 (19) 0.0119 (19) 0.0115 (18) 0.0088 (17) O40 0.0289 (16) 0.0333 (15) 0.0224 (12) 0.0073 (12) 0.0104 (11) 0.0166 (12) C41 0.033 (2) 0.023 (2) 0.0164 (17) −0.0011 (18) 0.0040 (16) 0.0089 (17) C42 0.032 (2) 0.023 (2) 0.0198 (18) −0.0025 (18) −0.0038 (17) 0.0079 (17) O51 0.0225 (15) 0.0326 (16) 0.0234 (13) −0.0015 (12) 0.0087 (11) 0.0101 (12) C52 0.025 (2) 0.023 (2) 0.0246 (19) 0.0018 (17) 0.0105 (17) 0.0017 (17) C53 0.031 (2) 0.032 (2) 0.0185 (18) 0.0021 (19) 0.0089 (17) 0.0059 (18) O54 0.0303 (16) 0.0315 (15) 0.0189 (12) 0.0100 (12) 0.0132 (11) 0.0123 (12) C55 0.022 (2) 0.035 (2) 0.0202 (17) 0.0070 (18) 0.0064 (16) 0.0157 (17) C56 0.030 (2) 0.037 (2) 0.0213 (18) 0.0049 (19) 0.0028 (17) 0.0168 (18) O57 0.0260 (16) 0.0411 (17) 0.0194 (12) −0.0010 (13) 0.0019 (11) 0.0132 (12) C58 0.038 (3) 0.027 (2) 0.0230 (19) 0.0002 (19) 0.0028 (18) 0.0118 (18) C59 0.030 (2) 0.032 (2) 0.032 (2) 0.0006 (19) 0.0102 (18) 0.0214 (19) O60 0.0371 (17) 0.0292 (16) 0.0243 (13) 0.0043 (13) 0.0086 (12) 0.0124 (12) C61 0.021 (2) 0.039 (3) 0.033 (2) 0.0075 (19) 0.0095 (18) 0.017 (2) C62 0.032 (2) 0.035 (2) 0.030 (2) 0.0112 (19) 0.0191 (19) 0.0155 (19)

Geometric parameters (Å, º)

Li1—N1 2.049 (8) Li2—O60 2.475 (7)

Li1—N2 2.053 (8) O31—C42 1.426 (4)

N1—C14 1.457 (5) O31—C32 1.436 (4)

N1—C11 1.501 (6) C32—C33 1.501 (5)

N1—B1 1.545 (5) C32—H32A 0.9900

B1—H1A 0.9800 C32—H32B 0.9900

B1—H1B 0.9800 C33—O34 1.440 (4)

B1—H1C 0.9800 C33—H33A 0.9900

N2—C24 1.484 (5) C33—H33B 0.9900

N2—C21 1.485 (5) O34—C35 1.437 (5)

N2—B2 1.557 (6) C35—C36 1.506 (6)

B2—H2A 0.9800 C35—H35A 0.9900

B2—H2B 0.9800 C35—H35B 0.9900

B2—H2C 0.9800 C36—O37 1.436 (4)

C11—C12 1.403 (7) C36—H36A 0.9900

C11—C13 1.512 (6) C36—H36B 0.9900

(8)

C12—H12A 0.9800 C38—C39 1.514 (6)

C12—H12B 0.9800 C38—H38A 0.9900

C12—H12C 0.9800 C38—H38B 0.9900

C13—H13A 0.9800 C39—O40 1.432 (5)

C13—H13B 0.9800 C39—H39A 0.9900

C13—H13C 0.9800 C39—H39B 0.9900

C14—C15 1.482 (7) O40—C41 1.442 (4)

C14—C16 1.516 (6) C41—C42 1.491 (6)

C14—H14 1.0000 C41—H41A 0.9900

C15—H15A 0.9800 C41—H41B 0.9900

C15—H15B 0.9800 C42—H42A 0.9900

C15—H15C 0.9800 C42—H42B 0.9900

C16—H16A 0.9800 O51—C62 1.430 (4)

C16—H16B 0.9800 O51—C52 1.443 (4)

C16—H16C 0.9800 C52—C53 1.506 (5)

C21—C23 1.532 (6) C52—H52A 0.9900

C21—C22 1.552 (6) C52—H52B 0.9900

C21—H21 1.0000 C53—O54 1.441 (4)

C22—H22A 0.9800 C53—H53A 0.9900

C22—H22B 0.9800 C53—H53B 0.9900

C22—H22C 0.9800 O54—C55 1.429 (4)

C23—H23A 0.9800 C55—C56 1.514 (5)

C23—H23B 0.9800 C55—H55A 0.9900

C23—H23C 0.9800 C55—H55B 0.9900

C24—C26 1.527 (5) C56—O57 1.437 (4)

C24—C25 1.541 (5) C56—H56A 0.9900

C24—H24 1.0000 C56—H56B 0.9900

C25—H25A 0.9800 O57—C58 1.421 (5)

C25—H25B 0.9800 C58—C59 1.496 (6)

C25—H25C 0.9800 C58—H58A 0.9900

C26—H26A 0.9800 C58—H58B 0.9900

C26—H26B 0.9800 C59—O60 1.447 (4)

C26—H26C 0.9800 C59—H59A 0.9900

Li2—O54 2.317 (6) C59—H59B 0.9900

Li2—O34 2.338 (6) O60—C61 1.432 (5)

Li2—O40 2.360 (6) C61—C62 1.503 (5)

Li2—O31 2.374 (6) C61—H61A 0.9900

Li2—O51 2.383 (7) C61—H61B 0.9900

Li2—O37 2.417 (7) C62—H62A 0.9900

Li2—O57 2.433 (6) C62—H62B 0.9900

N1—Li1—N2 176.4 (4) O37—Li2—O60 143.5 (3)

C14—N1—C11 112.7 (4) O57—Li2—O60 69.00 (18)

C14—N1—B1 118.3 (3) C42—O31—C32 113.5 (3)

C11—N1—B1 111.0 (3) C42—O31—Li2 110.1 (2)

C14—N1—Li1 120.7 (3) C32—O31—Li2 114.5 (3) C11—N1—Li1 112.1 (3) O31—C32—C33 107.0 (3)

(9)

N1—B1—H1A 109.5 C33—C32—H32A 110.3

N1—B1—H1B 109.5 O31—C32—H32B 110.3

H1A—B1—H1B 109.5 C33—C32—H32B 110.3

N1—B1—H1C 109.5 H32A—C32—H32B 108.6

H1A—B1—H1C 109.5 O34—C33—C32 111.3 (3)

H1B—B1—H1C 109.5 O34—C33—H33A 109.4

C24—N2—C21 115.0 (3) C32—C33—H33A 109.4

C24—N2—B2 112.4 (3) O34—C33—H33B 109.4

C21—N2—B2 117.6 (4) C32—C33—H33B 109.4

C24—N2—Li1 108.5 (3) H33A—C33—H33B 108.0

C21—N2—Li1 120.2 (3) C35—O34—C33 113.5 (3)

B2—N2—Li1 77.6 (3) C35—O34—Li2 115.5 (3)

N2—B2—H2A 109.5 C33—O34—Li2 109.6 (3)

N2—B2—H2B 109.5 O34—C35—C36 106.8 (3)

H2A—B2—H2B 109.5 O34—C35—H35A 110.4

N2—B2—H2C 109.5 C36—C35—H35A 110.4

H2A—B2—H2C 109.5 O34—C35—H35B 110.4

H2B—B2—H2C 109.5 C36—C35—H35B 110.4

C12—C11—N1 116.9 (4) H35A—C35—H35B 108.6

C12—C11—C13 114.5 (4) O37—C36—C35 111.3 (3)

N1—C11—C13 115.6 (4) O37—C36—H36A 109.4

C12—C11—H11 102.2 C35—C36—H36A 109.4

N1—C11—H11 102.2 O37—C36—H36B 109.4

C13—C11—H11 102.2 C35—C36—H36B 109.4

C11—C12—H12A 109.5 H36A—C36—H36B 108.0

C11—C12—H12B 109.5 C38—O37—C36 113.8 (3)

H12A—C12—H12B 109.5 C38—O37—Li2 114.8 (3)

C11—C12—H12C 109.5 C36—O37—Li2 109.3 (3)

H12A—C12—H12C 109.5 O37—C38—C39 106.8 (3)

H12B—C12—H12C 109.5 O37—C38—H38A 110.4

C11—C13—H13A 109.5 C39—C38—H38A 110.4

C11—C13—H13B 109.5 O37—C38—H38B 110.4

H13A—C13—H13B 109.5 C39—C38—H38B 110.4

C11—C13—H13C 109.5 H38A—C38—H38B 108.6

H13A—C13—H13C 109.5 O40—C39—C38 112.0 (3)

H13B—C13—H13C 109.5 O40—C39—H39A 109.2

N1—C14—C15 110.5 (4) C38—C39—H39A 109.2

N1—C14—C16 118.1 (4) O40—C39—H39B 109.2

C15—C14—C16 111.0 (5) C38—C39—H39B 109.2

N1—C14—H14 105.4 H39A—C39—H39B 107.9

C15—C14—H14 105.4 C39—O40—C41 114.3 (3)

C16—C14—H14 105.4 C39—O40—Li2 110.2 (3)

C14—C15—H15A 109.5 C41—O40—Li2 113.5 (2)

C14—C15—H15B 109.5 O40—C41—C42 106.6 (3)

H15A—C15—H15B 109.5 O40—C41—H41A 110.4

C14—C15—H15C 109.5 C42—C41—H41A 110.4

H15A—C15—H15C 109.5 O40—C41—H41B 110.4

(10)

C14—C16—H16A 109.5 H41A—C41—H41B 108.6

C14—C16—H16B 109.5 O31—C42—C41 111.1 (3)

H16A—C16—H16B 109.5 O31—C42—H42A 109.4

C14—C16—H16C 109.5 C41—C42—H42A 109.4

H16A—C16—H16C 109.5 O31—C42—H42B 109.4

H16B—C16—H16C 109.5 C41—C42—H42B 109.4

N2—C21—C23 110.4 (3) H42A—C42—H42B 108.0

N2—C21—C22 114.9 (4) C62—O51—C52 113.4 (3) C23—C21—C22 109.2 (4) C62—O51—Li2 117.7 (3)

N2—C21—H21 107.4 C52—O51—Li2 108.0 (3)

C23—C21—H21 107.4 O51—C52—C53 110.5 (3)

C22—C21—H21 107.4 O51—C52—H52A 109.5

C21—C22—H22A 109.5 C53—C52—H52A 109.5

C21—C22—H22B 109.5 O51—C52—H52B 109.5

H22A—C22—H22B 109.5 C53—C52—H52B 109.5

C21—C22—H22C 109.5 H52A—C52—H52B 108.1

H22A—C22—H22C 109.5 O54—C53—C52 107.3 (3)

H22B—C22—H22C 109.5 O54—C53—H53A 110.3

C21—C23—H23A 109.5 C52—C53—H53A 110.3

C21—C23—H23B 109.5 O54—C53—H53B 110.3

H23A—C23—H23B 109.5 C52—C53—H53B 110.3

C21—C23—H23C 109.5 H53A—C53—H53B 108.5

H23A—C23—H23C 109.5 C55—O54—C53 113.2 (3)

H23B—C23—H23C 109.5 C55—O54—Li2 110.9 (3)

N2—C24—C26 113.2 (3) C53—O54—Li2 113.7 (3) N2—C24—C25 115.2 (3) O54—C55—C56 111.6 (3)

C26—C24—C25 109.5 (4) O54—C55—H55A 109.3

N2—C24—H24 106.1 C56—C55—H55A 109.3

C26—C24—H24 106.1 O54—C55—H55B 109.3

C25—C24—H24 106.1 C56—C55—H55B 109.3

C24—C25—H25A 109.5 H55A—C55—H55B 108.0

C24—C25—H25B 109.5 O57—C56—C55 106.9 (3)

H25A—C25—H25B 109.5 O57—C56—H56A 110.3

C24—C25—H25C 109.5 C55—C56—H56A 110.3

H25A—C25—H25C 109.5 O57—C56—H56B 110.3

H25B—C25—H25C 109.5 C55—C56—H56B 110.3

C24—C26—H26A 109.5 H56A—C56—H56B 108.6

C24—C26—H26B 109.5 C58—O57—C56 114.1 (3)

H26A—C26—H26B 109.5 C58—O57—Li2 112.0 (3)

C24—C26—H26C 109.5 C56—O57—Li2 113.5 (3)

H26A—C26—H26C 109.5 O57—C58—C59 112.0 (3)

H26B—C26—H26C 109.5 O57—C58—H58A 109.2

O54—Li2—O34 82.7 (2) C59—C58—H58A 109.2

O54—Li2—O40 140.7 (3) O57—C58—H58B 109.2

O34—Li2—O40 110.4 (2) C59—C58—H58B 109.2

(11)

O54—Li2—O51 72.85 (19) C58—C59—H59A 110.4

O34—Li2—O51 82.7 (2) O60—C59—H59B 110.4

O40—Li2—O51 143.4 (3) C58—C59—H59B 110.4

O31—Li2—O51 81.6 (2) H59A—C59—H59B 108.6

O54—Li2—O37 79.6 (2) C61—O60—C59 114.7 (3) O34—Li2—O37 71.2 (2) C61—O60—Li2 108.8 (3) O40—Li2—O37 70.9 (2) C59—O60—Li2 113.7 (3) O31—Li2—O37 111.7 (2) O60—C61—C62 111.7 (3)

O51—Li2—O37 144.1 (3) O60—C61—H61A 109.3

O54—Li2—O57 71.28 (18) C62—C61—H61A 109.3

O34—Li2—O57 145.6 (3) O60—C61—H61B 109.3

O40—Li2—O57 79.3 (2) C62—C61—H61B 109.3

O31—Li2—O57 140.3 (3) H61A—C61—H61B 107.9 O51—Li2—O57 109.6 (2) O51—C62—C61 107.3 (3)

O37—Li2—O57 81.9 (2) O51—C62—H62A 110.3

O54—Li2—O60 109.7 (2) C61—C62—H62A 110.3

O34—Li2—O60 143.4 (3) O51—C62—H62B 110.3

O40—Li2—O60 82.1 (2) C61—C62—H62B 110.3

O31—Li2—O60 80.8 (2) H62A—C62—H62B 108.5

O51—Li2—O60 69.4 (2)

(12)
(13)

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical