University of Windsor University of Windsor
Scholarship at UWindsor
Scholarship at UWindsor
Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1979
Seismic and electrical definition of sand-gravel deposits beneath
Seismic and electrical definition of sand-gravel deposits beneath
clay in Essex county, Ontario.
clay in Essex county, Ontario.
Spiros Vergos
University of Windsor
Follow this and additional works at: https://scholar.uwindsor.ca/etd
Recommended Citation Recommended Citation
Vergos, Spiros, "Seismic and electrical definition of sand-gravel deposits beneath clay in Essex county, Ontario." (1979). Electronic Theses and Dissertations. 6731.
https://scholar.uwindsor.ca/etd/6731
This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email
SEISMIC A N D E L E C T R I C A L D E F I N I T I O N OF
S A N D - G R A V E L D E P O S I T S B E N E A T H CLA Y
IN ESSEX COUNTY, ONTARIO
b y
Spiros Ve r g o s
A Thesis
s u b m i t t e d to the F a c u l t y of G r a d u a t e Stud i e s through the D e p a r t m e n t of G e o l o g y in Part i a l F u l f i l m e n t
of the req u i r e m e n t s for the Degree of M a s t e r of Science at the
U n i v e r s i t y o f W i n d s o r
Windsor, Ontario, Ca n a d a
UMI Number: E C 547 22
INFO RM ATION TO USERS
The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.
In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.
UMI Microform E C 5 4 7 2 2 Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
ProQuest LLC
789 East Eisenhower Parkway P.O. Box 1346
© S p i r o s Verg o s , 19 79
/
r\
D E D I C A T I O N
T o m y p a r e n t s
A C K N O W L E D G E M E N T S
I g r a t e f u l l y a c k n o w l e d g e Dr. D.T.A. S y m o n s f o r s u g
g e s t i n g this t o p i c o f r e s e a r c h a n d fo r h i s t i r e l e s s r e a d i n g
o f the t h e s i s in m a n u s c r i p t . H i s i n v a l u a b l e a s s i s t a n c e in
d r a w i n g u p t h e f i n a l d r a f t o f this th e s i s ha s b e e n g r e a t l y
a p p r e c i a t e d . In a d d i t i o n I t h a n k Dr. M. S t u p a v s k y a n d
Dr. M. B a l l a r g e o n fo r t h e i r a s s i s t a n c e w i t h the c o m p u t e r
t r e a t m e n t o f t h e data. I a l s o t h a n k Dr. D. R u s s e l f o r h i s
c o m m e n t s on this study.
F u r t h e r m o r e I e x p r e s s m y s i n c e r e t h a n k s to m y w i f e
G l e n d a w h o ha s b e e n a c o n s t a n t s o u r c e o f e n c o u r a g e m e n t
A B S T R A C T
S a n d a n d g r a v e l e x i s t in E s s e x County, O n t a r i o , as
p a r a - g l a c i a l d e p o s i t s b e n e a t h lak e c l a y o r g l a c i a l till.
The g e o p h y s i c a l e x p l o r a t i o n for these a g g r e g a t e s is b e
c o m i n g a n e c e s s i t y b e c a u s e of the h i g h d e m a n d for t h e m
and o f the n e a r e x h a u s t i o n o f the e x i s t i n g supplies.
S e i s m i c v e l o c i t i e s a n d e l e c t r i c a l r e s i s t i v i t i e s of clay,
s a n d a n d g r a v e l w e r e m e a s u r e d at 50 sites in E s s e x County.
The o b j e c t i v e is to d e f i n e p o s s i b l e r e l a t i o n s h i p s b e t w e e n
t h e s e p a r a m e t e r s .
S e i s m i c v e l o c i t i e s of g r a v e l w e r e n o t f o u n d to b e
s i g n i f i c a n t l y d i f f e r e n t f r o m t h o s e o f clay. Thus, the
s e i s m i c r e f r a c t i o n s u r v e y w i l l n o t b e an e f f e c t i v e g e o
p h y s i c a l m e t h o d in the e x p l o r a t i o n o f g r a v e l d e p o s i t s in
E s s e x County. A l t h o u g h the s e i s m i c v e l o c i t i e s o f s a n d
are s i g n i f i c a n t l y d i f f e r e n t f r o m those of clay, san d also
c a n n o t b e r o u t i n e l y d i f f e r e n t i a t e d e i t h e r b e c a u s e of the
large d i s p e r s i o n in its s e i s m i c v e l o c i t i e s .
Th e t hree s e d i m e n t s h a v e s i g n i f i c a n t l y d i f f e r e n t
e l e c t r i c a l r e s i s t i v i t i e s an d r e l a t i v e l y small d i s p e r s i o n
in the e l e c t r i c a l r e s i s t i v i t i e s . This s u g g e s t s tha t
e l e c t r i c a l r e s i s t i v i t y s u r v e y w o u l d b e a n e f f e c t i v e m e t h o d in
d e t e c t i n g g r a v e l a n d s a n d d e p o s i t s u n d e r the c o n d i t i o n s
e x i s t i n g in E s s e x County.
The c o m b i n e d a n a l y s i s of the two m e t h o d s does n o t
i m p r o v e the results o b t a i n e d b y the e l e c t r i c a l r e s i s t i v i t y
m e tho d a l o n e .
T A B L E O F C O N T E N T S
A C K N O W L E D G E M E N T S .
A B S T R A C T ...
L I S T O F A P P E N D I C E S
L I S T O F T A B L E S . .
L I S T O F F I G U R E S .
C h a p t e r
I. I N T R O D U C T I O N ...
1.1 A-im o f the t h e s i s ...
1.2 D e m a n d f o r s a n d a n d g r a v e l d e p o s i t s
1.3 G e o l o g y ...
1 . 3 . 1 B e d r o c k ... 1.3.11 G l e c i a l g e o l o g y o f s o u t h w e s t e r n
O n t a r i o , E s s e x C o u n t y ...
II. G R A I N S I Z E A N A L Y S I S ...
III. S E I S M I C R E F R A C T I O N M E T H O D ...
3.1 T h e o r y ...
3.2 F i e l d w o r k ...
3 . 2 . i I n s t r u m e n t s ... 3 . 2 . 1 1 F i e l d w o r k ...
3.3 D a t a - S t a t i s t i c s ...
IV. E L E C T R I C A L R E S I S T I V I T Y M E T H O D ...
4.1 I n t r o d u c t i o n ...
4.2 P r e v i o u s w o r k ...
4.3 T h e o r y ...
4 . 3 . 1 R e s i s t i v i t y c o n c e p t ...
4 . 3 . 1 1 C o n c e p t o f a p p a r e n t r e s i s t i v i t y . . .
4.4 F i e l d w o r k ... ..
4 . 4 . 1 E l e c t r o d e c o n f i g u r a t i o n ...
4 . 4 . 1 1 I n s t r u m e n t u s e d ... 4 . 4 . i i i G a l v a n i c v o l t a g e a d j u s t m e n t . . . .
4.5 I n t e r p r e t a t i o n o f the a p p a r e n t
r e s i s t i v i t y r e s u l t s ...
4.6 D a t a - S t a t i s t i c s ...
V. I N T E G R A T E D A N A L Y S I S ...
5.1 I n t r o d u c t i o n ...
5 . 2 . 1 1 D i s c u s s i o n o f the r e s u l t s ... . 3 2
5 . 3 . i R e s i s t i v i t y v s g r a i n size. ... 5 3
5 . 3 . 1 1 D i s c u s s i o n of t h e r e s u l t s ... ^ 7
5.4 R e s i s t i v i t y v s s e i s m i c v e l o c i t y . . . . 6l
VI. C O N C L U S I O N S ...6 5
R E F E R E N C E S ...67
A P P E N D I X I: G r a i n s i z e a n a l y s e s ... 70
A P P E N D I X I I : S e i s m i c v e l o c i t i e s ... 81
A P P E N D I X III: A p p a r e n t r e s i s t i v i t i e s ... 11^+
A P P E N D I X IV: D e r i v a t i o n o f e q u a t i o n (4.3.2) . . . •.•131
A P P E N D I X V: I n t e g r a t e d a n a l y s e s - G r a p h s ... I3J4.
L I S T O F A P P E N D I C E S
A P P E N D I X I: G r a i n siz e a n a l y s e s ... 70
A P P E N D I X II: S e i s m i c v e l o c i t i e s ... 8l
A P P E N D I X III: A p p a r e n t r e s i s t i v i t i e s ... i\L\.
A P P E N D I X IV: D e r i v a t i o n o f e q u a t i o n (4.3.2) . . . . 1 3 1
A P P E N D I X V: I n t e g r a t e d a n a l y s e s - G r a p h s ... 1324.
A P P E N D I X VI: I n s t r u m e n t s u s e d ... 168
L I S T O F T A B L E S
p a g e
T a b l e A. L i s t o f the s y m b o l s u s e d in the t e x t ...
T a b l e 1. T o n n a g e a n d $ v a l u e o f s a n d a n d
g r a v e l p r o d u c e d in O n t a r i o ... 9
T a b l e 2. S u b d i v i s i o n s o f the Q u a t e r n a r y i c e
-age in s o u t h w e s t e r n O n t a r i o ... 2.2
T a b l e 3. G r a i n s i z e a n a l y s e s r e s u l t s ... 2 . 8
T a b l e 4. S e i s m i c v e l o c i t i e s of a l l s i t e s ... ^0
T a b l e 5. M e a n a n d d e v i a t i o n s t a t i s t i c s
f o r the s e i s m i c v e l o c i t i e s ... - . . 3 1
T a b l e 6 . G r o u p c o r r e l a t i o n s t a t i s t i c s
for the s e i s m i c v e l o c i t i e s ... 3 1
T a b l e 7. S u m m a r y o f t h e i n t e r p r e t e d
r e s i s t i v i t y d a t a ...
T a b l e 8 . M e a n a n d d e v i a t i o n s t a t i s t i c s
for e l e c t r i c a l r e s i s t i v i t i e s ... Ij, 6
T a b l e G r o u p c o r r e l a t i o n s t a t i s t i c s
for e l e c t r i c a l r e s i s t i v i t i e s ... j
T a b l e 10. L o g p v a l u e s f o r GRAV E L , S A N D a n d CLAY. . . . 5 0
T a b l e 11. G r a i n s i z e a n a l y s e s f o r G R A V E L ... 7 1
T a b l e 12. G r a i n siz e a n a l y s e s f o r S A N D ... r?2
T a b l e 13. G r a i n size a n a l y s e s f o r C L A Y ... 7 3
T a b l e 14. G r a i n s i z e p l o t s i n c l u d e d in A p p e n d i x I . . .
T a b l e 15. M e a s u r e d t r a v e l - t i m e s a n d c a l c u l a t e d
s e i s m i c v e l o c i t i e s for 26 sites ... 8 2
T a b l e 16. S e i s m i c r e c o r d s i n c l u d e d in A p p e n d i x II . . . g^
T a b l e 17. A p p a r e n t r e s i s t i v i t y r e s u l t s ...2 . 1 5
T a b l e 18. A p p a r e n t r e s i s t i v i t y . P l o t s i n c l u d e d
in A p p e n d i x I I I ...122
T a b l e 19. I n t e g r a t e d a n a l y s e s . P l o t s i n c l u d e d
in A p p e n d i x V ... 13 5
L I S T O F F I G U R E S
p age
F i g u r e 1. E s s e x C o u n t y , r e f e r e n c e m a p ... $
F i g u r e la. S a m p l e s i t e s n e a r W i n d s o r ... 6
F i g u r e lb . S a m p l e s i t e s n e a r L e a m i n g t o n ... 7
F i g u r e 2. M i n e r a l a g g r e g a t e u t i l i z a t i o n p a t t e r n
fo r O n t a r i o ... 9
F i g u r e 3. I c e - f r o n t p o s i t i o n at the t i m e s o f L a k e
W h i t t l e s e y a n d L a k e W a r r e n ... lij.
F i g u r e 4. P a r t i c l e s i z e d i s t r i b u t i o n for
five s a m p l e s ... 1 9
F i g u r e 5. R a y p a t h s o f l e a s t t i m e fo r t w o l a y e r s . . . 21
F i g u r e 6 . T i m e - d i s t a n c e c u r v e f o r two l a y e r s ... 21
F i g u r e 7. T y p i c a l r e c o r d f r o m the F S - 3 ... 2^
F i g u r e 8 . H i s t o g r a m s fo r the s e i s m i c v e l o c i t i e s . . . . 2 7
F i g u r e 9. G e n e r a l i z e d e l e c t r o d e c o n f i g u r a t i o n ... ^
F i g u r e 10. E l e c t r o d e a r r a n g e m e n t f o r the W e n n e r
c o n f i g u r a t i o n ... ^ 5
F i g u r e 11. V a r i o u s m u l t i l a y e r p r o f i l e s f o r p ... 1\.q
U
F i g u r e 12. E x a m p l e o f a p p a r e n t r e s i s t i v i t y
i n t e r p r e t a t i o n ... 14. 0
F i g u r e 13. H i s t o g r a m s f o r th e e l e c t r i c a l
r e s i s t i v i t i e s ... I4.3
F i g u r e 14. % S a n d vs V e l o c i t y p l o t f o r a l l s a m ples. . . Ij. 9
F i g u r e 15. % S a n d v s l o g V p l o t f o r a l l s a m p l e s . . . .
F i g u r e 16. % G r a v e l vs V e l o c i t y p l o t f o r S A N D
an d G R A V E L ... 5 1
F i g u r e 17. % C l a y vs lo g V p l o t f o r the C L A Y group. . .
F i g u r e 18. % G r a v e l v s l o g p p l o t f o r S A N D
a n d G R A V E L ... 5 5
F i g u r e 19. R e g r e s s i o n line, s e c o n d a n d t h i r d -d e g r e e p o l y n o m i a l s f o r % G r a v e l
a n d log p ... 5 6
F i g u r e 20. % S a n d vs l o g p f o r a l l s a m p l e s ...5 8
F i g u r e 21. I n t e r v a l s f o r log p v a l u e s ...
F i g u r e 22. L o g p v s l o g V p l o t f o r al l s a m p l e s . . . . 5 3
F i g u r e 23. B o u n d a r y l i m i t s o f l o g V, lo g p for
G R A V E L , S A N D a n d C L A Y ... 6 3
F i g u r e 24. (24.1-24.6). G r a i n s i z e v s c u m u l a t i v e
pe r c e n t a g e ... 7 5
F i g u r e 25. (25.1-2 5.24). F S - 3 s e i s m i c r e c o r d s . . . . g0
F i g u r e 26. (26.1-26.7). I n t e r p r e t a t i o n o f
a p p a r e n t r e s i s t i v i t y d a t a ... 1 2 3
F i g u r e 27. C u r r e n t l ines f r o m a p o i n t c u r r e n t
s o u r c e ... 1 3 2
F i g u r e 28. (28.1-2 8.32). I n t e g r a t e d a n a l y s i e s . . . . 1 3 6
F i g u r e 29a. F S - 3 s e i s m o g r a p h ... 1 6 9
F i g u r e 29b. R e s i s t i v i t y i n s t r u m e n t ... 1 7 0
TABLE A
L i s t of the symbols u s e d in the text
a e l e c t r o d e s e p a r a t i o n for W e n n e r "spread" in
c c o r r e l a t i o n c o e f f i c i e n t
D .f . d e g r e e s of f r e e d o m
F the F - s t a t i s t i c
F.(r's) Roman's form factor
i angle of inc i d e n c e of a s e i s m i c wav e
i critical angle
I e l e c t r i c a l c u r r e n t in m i l l i a m p e r e s
1 length in m
m meter(s)
tt 3.14
P the t w o -tail s i g n i f i c a n c e level
r e l e c t r o d e sepa r a t i o n in m
r' angle of r e f r a c t i o n
P r e s i s t i v i t y in o h m - m
Pa a p p a r e n t r e s i s t i v i t y in o h m - m
R r e s i s t a n c e in o h m
S c r o s s - s e c t i o n a l area in m
T arri v a l time of a seismic w a v e
i n t e r c e p t time of a seismic w a v e
T the T - s e p a r a t e sta t i s t i c
V v e l o c i t y in m / s e c of a seismic pulse
V v o l t a g e in m i l l i v o l t s
X s h o t - p o i n t - g e o p h o n e d i s tance in m
c r i tical d i s t a n c e in m
Z d epth to an int e r f a c e f r o m surface in m
C H A P T E R I
I N T R O D U C T I O N
S a n d a n d g r a v e l ar e i m p o r t a n t i n d u s t r i a l r e s o u r c e s
p r o d u c e d in O n t a r i o . T h e y ar e u s e d as a g g r e g a t e in v a
r i o u s t y p e s of c o n s t r u c t i o n t o g e t h e r w i t h c r u s h e d stone.
N e w d e p o s i t s are in d e m a n d b e c a u s e l a r g e a m o u n t s o f s a n d
a n d g r a v e l are u s e d e v e r y year, a n d e c o n o m i c a l d e p o s i t s
are b e i n g r a p i d l y d e p l e t e d .
In E s s e x C o u n t y s a n d a n d g r a v e l d e p o s i t s are l o c a t e d
m a i n l y n e a r L e a m i n g t o n . T h e y are a s s o c i a t e d w i t h the
E s s e x m o r a i n e w h i c h w a s d e p o s i t e d d u r i n g the r e t r e a t of
the ic e w h i c h c o v e r e d th e a r e a in the P l e i s t o c e n e Epoch. The
s a n d a n d g r a v e l are d e p o s i t e d on th e s i d e s a n d s h o u l d e r s
o f the m o r a i n e b y the l a k e s w h i c h c o v e r e d E s s e x C o u n t y
a f t e r t h e r e t r e a t o f the ice. T h e s e l a k e s a l s o l e f t s h a l
l o w l a c u s t r i n e c l a y o v e r l y i n g the s a n d a n d g r a v e l d e p o s i t s .
G e n e r a l l y the d i f f e r e n t e l a s t i c a n d e l e c t r i c a l p r o
p e r t i e s o f clays, s a n d s a n d g r a v e l s m a y b e u s e d to d i f f e r
e n t i a t e b e t w e e n t h e s e s e d i m e n t s . The o b j e c t i v e o f this
s t u d y is to look for p o s s i b l e c o n t r a s t s in s e i s m i c v e l o c i
ties an d e l e c t r i c a l r e s i s t i v i t i e s b e t w e e n the clays, s a n d s
and g r a v e l s in E s s e x County. If f a v o u r a b l e c o n t r a s t s do
e x i s t t h e y m i g h t b e u s e d in g e o p h y s i c a l e x p l o r a t i o n f o r
n e w s a n d a n d g r a v e l d e p o s i t s .
S e i s m i c v e l o c i t i e s a n d e l e c t r i c a l r e s i s t i v i t i e s w e r e
m e a s u r e d at 50 s i t e s in E s s e x C o u n t y o v e r a w i d e r a n g e o f
p h y s i c a l c o n d i t i o n s o f the s p e c i f i c sediment. V a r i o u s
s t a t i s t i c a l a n d r e g r e s s i o n c o m p u t e r p r o g r a m s w e r e u s e d
in the s e a r c h o f p o s s i b l e r e l a t i o n s h i p s b e t w e e n the t ype
of sediment' a n d its s e i s m i c v e l o c i t y and e l e c t r i c a l r e
sistivity.
1.1 A i m o f the t h e s i s
It is g e n e r a l l y b e l i e v e d t h a t the s e i s m i c v e l o c i t i e s
of c l a y s are h i g h e r than the s e i s m i c v e l o c i t i e s of sands
and g r a vels. It is als o b e l i e v e d , a n d j u s t i f i e d f r o m
t h e o r y a n d e x p e r i e n c e , tha t the e l e c t r i c a l p r o p e r t i e s o f
the m i n e r a l s f o r m i n g c l a y s ar e s i g n i f i c a n t l y d i f f e r e n t
than t h o s e of the m i n e r a l s f o r m i n g sands a n d gravels.
H o w e v e r u n e x p e c t e d c h a n g e s in c o m p o s i t i o n o r c o m p a c t i o n
m i g h t p r o d u c e u n e x p e c t e d g e o p h y s i c a l p r o p e r t i e s in a p a r
t i c u l a r sediment.
W h e n s a n d g r a v e l d e p o s i t s e x i s t in E s s e x County,
t hey u s u a l l y o c c u r b e n e a t h 1 to 3 m of c l a y a n d o v e r l i e
o l d e r till. The s e i s m i c v e l o c i t i e s a n d the e l e c t r i c a l
r e s i s t i v i t i e s of sands, g r a v e l s a n d c l a y s w e r e m e a s u r e d
in thi s s t u d y to see w h e t h e r o r n o t t hey c a n b e u s e d to
d i f f e r e n t i a t e the a b o v e sedim e n t s .
B e c a u s e the s e i s m i c v e l o c i t i e s o f the o v e r l y i n g
c l a y s a r e u s u a l l y g r e a t e r t h a n t h o s e o f s a n d a n d / o r
gravel, the l a t t e r c o n s t i t u t e s a h i d d e n l a y e r u s i n g the
s e i s m i c r e f r a c t i o n m e t h o d . F o r a g i v e n s e q u e n c e o f
layers, a h i d d e n l a y e r (or l o w - s p e e d l a y e r (Dobrin, 19 76)
o r h i d d e n - z o n e (Telford, 1977)) is d e f i n e d as one t h a t h a s
a l o w e r s e i s m i c v e l o c i t y than the o n e a b o v e it. S u c h a
b e d in t h e s e q u e n c e "will n o t b e d e t e c t a b l e b y r e f r a c t i o n
s h o o t i n g at all" (Dobrin, 19 76). T his is a d i f f e r e n t s i
t u a t i o n f r o m a "blind zone" w h e r e th e s e c o n d l a y e r also
does n o t a p p e a r o n the s e i s m i c record. A b l i n d zone is
a l a y e r w h i c h is v e r y thin and, a l t h o u g h it h a s g r e a t e r
s e i s m i c v e l o c i t y than the on e a b o v e it, i t is n o t d e t e c
table b e c a u s e o t h e r s e i s m i c e v e n t s suc h as r e f r a c t e d w a v e s
f r o m d e e p e r l a y e r i n t e r f a c e s m a s k the r e f r a c t e d w a v e s f r o m
the "b l i n d zone". This d i s t i n c t i o n b e t w e e n a "hidden
layer" a n d a "blind zone" is n e c e s s a r y b e c a u s e some w r i t e r s
(Green, 1962 ; G r i f f i t h s , 1975 ; H a w k i n s , 1960 ; Morgan,
1966 ; Soske, 1959 ) i n t e r c h a n g e t h e i r d e f i n i t i o n .
W h e n t h e s e i s m i c r e f r a c t i o n m e t h o d is used, s a n d o r
g r a v e l h i d d e n la y e r s do n o t a p p e a r on the t i m e - d i s t a n c e
s e i s m i c record. The t h e o r e t i c a l e x p l a n a t i o n w i l l b e g i v e n
in c h a p t e r 3.1.
W h e n the s e i s m i c r e f l e c t i o n m e t h o d is u s e d o n l y the
l o w e r i n t e r f a c e o f s a n d a n d g r a v e l l a y e r m a y g i v e a r e
f l e c t i o n on the s e i s m i c record. W h e n t h e r e is l i t t l e or
ho i m p e d a n c e c o n t r a s t b e t w e e n two layers, the n v e r y l i t t l e
o r n o r e f l e c t e d e n e r g y w i l l r e t u r n f r o m the l o w e r i n t e r
face.
In g e n e r a l s ands a n d g r a v e l s are p o o r e l e c t r i c a l c o n
d u c t o r s b e c a u s e t h e y are u s u a l l y h i g h in q u a r t z c o n t e n t
an d lac k s o l u b l e salts. C l a y s o n th e o t h e r h a n d are m u c h
b e t t e r e l e c t r i c a l c o n d u c t o r s b e c a u s e t h e y u s u a l l y c o n t a i n
a b u n d a n t solu b l e salts. Thus c o n d u c t i v i t y , o r its r e c i p
r o c a l r e s i s t i v i t y , c a n also b e u s e d to d i f f e r e n t i a t e s ands
an d g r a v e l s f r o m clays.
F i f t y s ites w e r e s e l e c t e d (Fig. 1, la, lb) at w h i c h
s e i s m i c v e l o c i t i e s a n d e l e c t r i c a l r e s i s t i v i t i e s w e r e m e a
sured. A r e p r e s e n t a t i v e s a m p l e w a s a l s o t a k e n to b e u s e d
for g r a i n size a n a lysis. The s e l e c t e d s i t e s e x h i b i t e d a
w i d e r a n g e of p h y s i c a l c o n d i t i o n s f r o m "moist" to "dry"
c o n d i t i o n s . S u c h c o n d i t i o n s w e r e c h o s e n to g i v e a c h a r
a c t e r i s t i c r e p r e s e n t a t i o n o f the s e d i m e n t r e s p o n s e to
s e i s m i c v e l o c i t i e s a n d e l e c t r i c a l r e s i s t i v i t i e s as they
m i g h t b e e n c o u n t e r e d in the g e o p h y s i c a l e x p l o r a t i o n for
s a n d an d g r a v e l deposits.
The s e i s m i c v e l o c i t i e s , e l e c t r i c a l r e s i s t i v i t i e s a n d
g r a i n s i z e r e s u l t s w e r e s u b j e c t e d to v a r i o u s s t a t i s t i c a l
t e s t s in an a t t e m p t to d e f i n e an y e x i s t i n g q u a n t i t a t i v e
r e l a t i o n s h i p s .
1.2 D e m a n d for s a n d a n d g r a v e l d e p o s i t s
The c o n s t r u c t i o n an d p a v i n g i n d u s t r i e s are th e p r i n
c i p a l c o n s u m e r s o f s a n d a n d grav e l . T h e y r e q u i r e i n c r e a s
i n g t o n n a g e s o f t h e s e two t y p e s o f m i n e r a l a g g r e g a t e e a c h
y e a r f o r v a r i o u s t y p e s o f c o n s t r u c t i o n in O n t a r i o as s h o w n
in Fig. 2. T y p i c a l use s i n c l u d e p o r t l a n d - c o n c r e t e a g g r e
gate, p a v i n g , h i g h w a y s , dams, a i r p o r t r u n w a y s , piers,
CO
w
CM CM
CM rH
M
•H
■P •H
CO
• tH o
+».
•H CM
CO CO
CO
CO
5
F
i
g
.
1.
E
s
s
e
x
C
o
u
n
t
y
r
e
f
e
r
e
n
c
e
n
a
p
CV
—
cm m
»CJ cr\
o
o
On
NO
CM
CO
O i—I
CO CM On
W •H
P-£
•rt
W cd 'O
£
0) to 03
u
O n 'CJ
£
£
in o -P •H O <u
I—I
£
cl
to
cl
hO •H
Ph
o o O O CO o CM CM +» t}0 CM CM O On
1 CM
M
CO E s s e x R o a d 31
house foundations, buildings and sewers. In the years
1974-1977, for example, sand and gravel rank second after
cement among Ontario industrial mineral products (Table 1).
7 0 . 3 x 1 0 6 tons of sand and gravel were p r o d u c e d in Ontario
with a value of 1 1 2 x 1 06 dollars. Thus they are of great
economic importance. Demand for sand and gravel is e x
pected to increase a n n u a l l y w i t h a 55% increase p r o
jected by the year 2000 (Proctor and Redfern Ltd, 1975).
The production statistics represent an over-all p i c
ture for Ontario. However the distribution of sand and
gravel deposits is n o t uniform. In m o s t counties the su p
ply is less than the demand. Thus sand and gravel is m oved
from one county to another or even imported from the Uni t e d
States of America. In either case their cost to the co n
sumer increases.
For Essex County the total possible reserves for sand
and gravel were estimated at only 2 5 3 . 3 x 1 0 6 tons in 1975
(Proctor and Redfern L t d . , 19 75). M o s t of these reserves
are in ths southeast corner of the county near Leamington.
Hence sand and gravel m u s t be trucked a bout 50km to Windsor
w h i c h is the m o s t significant m a r k e t in the county. A l t e r
natively Windsor consumers use crushed aggregate from
quarries around Amherstburg w h i c h are about 20km away.
Aggregate reserves stood at about 3 , 0 5 8 x 1 0 6 tons in 1975.
Finally sand and gravel or aggregate may be imported into
Windsor from the United States of America. In 1975, for
R . B . = R e s i d e n t i a l Building.
N .R .B .= N o n - r e sidential Building.
R . E . = R o a d Engineering.
K . R . E . = N o n - r o a d Engineering.
Fig. 2. Kineral aggregate utilization pattern for
Ontario’s 1971 total of 77,631,000 tons after
Proctor and Redfern Ltd (1975)*
Y e a r Tons $ Value
1974 79,712,838 85,104,576
1975 69,705,434 95,578,927
1976 68,802,045 1 0 6 ,093,326
1977 • 70,306,817 112,400,000
Table 1. Tonnage and $ Value of sand and gravel
produced in Ontario.
example, about 493,000 tons were imported w i t h a value of
$1.80 to $2.50 per ton. This compares to $0.73 per ton
at the source near Leamington and Amherstburg.
Although the importance of discovering new deposits
in Ontario is not questioned, "no individual deposit is
necessarily m i n e d just because it exists" (Ontario Dept,
of Mines, 1975). Sterilization of large deposits has r e
sulted because of zoning restrictions in urban areas or
of development of the land for other purposes. The e n
vironmental costs mus t be traded off against the cost of
moving sand and gravel especially by trucks. Trucking
costs were at about $0.12/ton mile in Ontario in 1975
(Ontario Dept, of Mines, 1975).
1.3 Geology
1.3.i Bedrock in Essex County
The basement in Essex County is composed of Precambrian
rocks of the Grenville geologic province. Overlying the
b a s ement are four flat lying Paleozoic Devonian formations:
1) the Detroit River formation composed of brown to buff
limestone, dolomite and sandstone; 2) the Columbus forma
tion composed of grey to buff sandy limestone and dolomite;
3) the Delaware formation composed of brown to buff lime
stone with some chert; and 4) the Hamilton formation c o m
posed of grey shale and argillaceous limestone (Geological
Survey of Canada, 1958). These sediments are covered by
about 30m of Quaternary drift except near Amherstburg
where the Devonian sediments come to the surface.
1.3.ii, Glacial Geology of Southwestern Ontario-Essex
County
All of the known sand and gravel deposits in
south-western Ontario are associated w ith the Pleistocene Epoch.
During this epoch large ice-sheets advanced and retreated
over the area several times. The main sources for sand
and gravel deposits are the resulting moraines and eskers
although some spillways and kames have also produced quite
large deposits.
The glacial history and deposits of southwestern
Ontario have been described in detail b y Chapman (1969),
He w i t t (1963) and Taylor (1913). A summary of the events
affecting the formation of these sand and gravel deposits
f o l l o w s .
There were four major cold glacial stages in the
Pleistocene Epoch during which the ice advanced (Hewitt,
19 63). The intervals between the ice advances were c h a r
acterized by interglacial stages that wer e as w a r m or
even w a r m e r than the present climate. These subdivisions
of the Quaternary ice age are shown in Table 2. Economic
pre-VJisconsinan sand and gravel deposits are very rare in
Ontario and "they can be disregarded w h e n describing the
surface features" (Chapman, 1969) .
C 1** dating studies on p lant remains (Goldthwait,
1973) have established that the Wisconsin ice-sheet had
p e r i o d e p o c h GLACIAL STAGES INTERGLACIAL STAGES
HOLO-CENE Recent
VJisconsinan
Sangamonian
I llinoian
Yarmouthian
K a n s a n
A f t onian
N eb r a s k a n
Table 2. Subdivisions of the Q u a t e r n a r y ice age in
southwestern Ontario.
covered all of southern Ontario b y 20,000 years ago. This
area remained under the ice until about 14,000 years ago.
With the subsequent retreat of the ice, large meltwater
streams left sand and gravel in deposits such as the
Waterloo kame accumulation and the Orangeville moraine. The
ice melted progressively to the north.
One of the recessional moraines left during the re
treat was Essex moraine. This moraine was first described
by Taylor (1913) as "extending from Detroit southwestward
through Essex tc the high knoll w e s t of Leamington, and
being a low broad ridge of till, very smooth and with such
gentle slopes as to b e quite inconspicuous to the eye as a
r i d g e ” .
By about 13,000 years ago Lake Whittlesey covered all
of southwestern Ontario (Fig. 3). This lake left a p r o
min e n t shoreline in southwestern Ontario which is preserved
as beach deposits lagging around the Essex moraine. These
deposits have been sources for sand and gravel such as the
Erie San d and Gravel deposit (e.g. sites 1, 11, 12, 13, 14,
16 in Fig. l b ) . Mos t of Essex County was under water during
the life of this lake.
The next prominent lake was Lake Warren which also
covered m o s t of southwestern Ontario (Fig. 4). It also
left sand and gravel beach deposits on the shoulders of
the Essex moraine such as the deposit operated by Kennette
Co. lot 1 concession IV, Mersea township, Essex (e.g.
P ro d u c e d
WHtTTLtStr
Kl
Pig. 3 . Ice-front position at the time of s
A) Lake Whittlesey and B) Lake Warren;
after Hewitt (1963 ) •
Ik
sites 2, 24, 25, 32)<>
L e v e r e t t and Taylor (1915) have recognized one more
successor lake in the County, namely Lake Grassmere, at
about 15m lower altitude. They consider the gravel bar
on the crest of the moraine to be "a Grassmere storm
beach".
A l l of these lakes left b each deposits around the
sides and the shoulders of the Essex moraine. Thus the
moraine is bounded b y sand and gravel except at its h i g h
est p o i n t just north of Ruthven where it is composed e n
tirely of till.
The Essex till plain (Chapman, 1969) was deposited
under the ice. Lake Whitt l e s e y and Lake Warren failed
to leave any deep stratified beds on the till plain
(Chapman, 1969). The plain was smoothed by shallow d e
posits of lacustrine clay from the lakes w h i c h settled
in the depressions while the knolls were being lowered
by wave action.
C HAPTER II
GRAIN SIZE ANALYSIS
At each site a 2 to 3kg sample was taken at a depth
of about 0.4m b elow the surface. A representative sub
sample of 600-700g was then split from it using the q u a r
tering method. This subsample was used for the grain
size analysis. The cumulative percentage of gravel, sand
and clay were then calculated.
The Wentworth classification was use d to define the
Percentage of sand, gravel and clay contained in the s a m
ples because it is "the classification commonly accepted
by geologists" (Bates, 1969). Thus the dividing line b e
tween sand and gravel was set at the 2m m diameter sieve
size and between sand and clay at the 0.074mm diameter
sieve size, i.e. #10 and #200 in the U.S. Sieve series
respectively. It m u s t be n o t e d though that different
limiting diameters are o ften assigned to sand and gravel
by high w a y departments, engineering organizations and v a
rious o ther government agencies.
The first 32 samples of Table 3 contain less than 1%
silt o r clay and so were divi d e d into two groups. The
GRAVEL group includes samples w i t h >50% of the particles
°f £2mm size while the SAND group includes samples w i t h
>50% of the particles between 2m m and 0.074 m m in size.
In Table 3 the numerical values of the "% gravel" and "%
sand" have bee n rounded off to the closest integer
elud i n g the <1 % clay.
Th e r e m aining 18 samples cons i s t of silt and c l a y w i t h
>50% of the p a rticles finer than 0.074mm. These samples
form the C L A Y group. The field term CLAY is u s e d for
the silt and c lay f r a ction t h a t overlies the sand an d
gravel deposits in E s s e x County. The e x a c t p e r c e n t a g e s
of silt (between 0.07 4 m m to 0.005mm) an d clay (less than
0.005 mm) va r i e s f r o m . 60-100% w i t h sand c o n s t i t u t i n g the r e
m a i n i n g 40-0%. The clay fraction of similar d e p o s i t s in
the W i n d s o r are a varies f rom 20-80% w i t h an aver a g e value
of a b o u t 40% (Wilkinson, 1978).
The results of the g rain size analyses are shown in
w e i g h t p e r c e n t a g e s on Table 3. Fig. 4 shows a gra p h i c a l
^ p r e s e n t a t i o n o f p a r t i c l e size p l o t t e d agai n s t c u mulative
P e r c e n t a g e for five typical samples.
g r a v e L S A N D C L A Y
Site erf
7° % Site % % Site
cf 7°
# gravel sand 7
?
sand gravel // clay sand1 52 48 16 99 1 33 85 15
2 62 38 17 78 22 ' 3^ 78 22
3 60 40 18 82 18 35 68 32
4 52 48 19 98 2 36 66 34
5 56 44 20 98 2 37 68 32
6 56 44 21 99 ' 1 38 68 32
7 56 44 22 70 30 39 79 21
8 56 44 23 88 12 40 84 16
9 52 48 24 97 3 4l 62 38
10 50 50
25 84 16 42 61 39
11 52 48 26 68 32 43 66 34
12 66 3^ 27 82 18 44 61 39
13 70 30 28 99 1 45 73 27
14 68 32 29 97 3 46
75 25
15 62 38 30 95 5 47 90 10
31 99 1 48 92 8
•
32 95 5 49 79 21
50 .. 6 2 _______ 37
Table 3. Grain-size analyses for samples from 5° sites in Essex
Re
pr
od
uc
ed
w
ith
pe
rm
is
si
o
n
of
th
e
co
py
ri
gh
t
o
w
ne
r.
Fu
rthe
r
rep
roduction
p
ro
h
ib
it
e
d
wi
th
ou
t
p
e
rm
is
s
io
n
.
i- 1
VO
S ieve S iz e s ( U .S. Standard)
? A " 3/ 8* A #8 #16 #30 #50 #100 #200
_> I______________• ■ * - - ■ - ---- - ■ ‘ 1 * 7100
ASite 3
• Site 13
ASite 17
oSite 18
aSite 3°
10 5
millimeters
C HAP T E R III
SEISMIC REFRACTION METHOD
3.1 Theory
T he seismic refraction m e t h o d of p rospecting g e n e r
ally uses waves generated at surface although subsurface
sources may be used in some oil exploration or submarine
studies. These waves are p r o d u c e d b y various methods
ranging from a simple sledge ha m m e r to powerful explosives.
In this study the energy source was a sledge hammer
striking a m e t allic plate on surface.
F i r s t consider the case where the subsurface c o n
sists of two m e d i a w i t h unif o r m elastic properties and
separated by a horizontal interface at depth Z (Fig. 5).
Let the velocity of the longitudinal seismic w a v e be Vi
in the upper layer and V2 in the lower layer w ith V2>Vi.
Suppose that a seismic wave is g e nerated at p o i n t A on
the surface. This wav e radiates out from point A in all
directions as an expanding hemispherical front in the
homogenous, upper layer. Once the radius of the front
becomes relatively large then the front can be treated
as a plane. Lines p e r p e n d i c u l a r to the w a v e front r e
present the direction of propagation and are called
"paths" or "rays". In Fig. 5 fronts are represented by
these "rays".
W h e n the seismic w ave g e n e r a t e d a t A reaches the
interface at p oint Bi w i t h an incident angle (i), some
Fig. 5 * R a y p a t h s of l e a s t time fo r two layers
sep a r a t e d by a h o r i z o n t a l i n t e r f a c e a t d e p t h Z.
The remaining symbols are given in the text.
1
Ts l o p e = l / v T
1
Xc X
Fig. 6. Time-distance curve for two layers separated
a h o r i z o n t a l i n t e r f a c e a t d e p t h Z . T is the arri v a l
time of the f i r s t e n e r g y p u l s e of a w a v e f r o n t at distance
X f r o m the s o u r c e . Th e r e m a i n i n g s y m b o l s are g i v e n i n the
t e x t .
°f its energy is reflected back to surface. The rest of
its energy refracted into the lower m e d i u m at an angle
(r^) w h i c h satisfies Snell's law:
Sln(1) = (3.1)
sinfr"') V 2
in the special case where r'' = 90° equation (1) gives
ic = sin (Vi/V2) (3.2)
This angle (i ) is called the critical angle. A t i the
c c
incident wave is refracted along the interface and travels
in the lower layer at a velocity V 2 . At any point C the
wave is subjected to Huygen's principle and is refracted
back upwards into the upper layer. According to Huygen's
Principle every point on a wave front is the source of a
new w ave that also travels out from the p o i n t in spherical
shells. Consequently all points on the interface are
sources of new waves, and some of their energy travels t o
wards the surface. The energy leaving C at the angle i
C*
ls then detected first at point D.
At any point on surface between A and D the wave
travelling directly through the first layer w i l l arrive
first at a detector. This happens because the path AD is
sufficiently shorter than A B C D to compensate for the lower
velocity. At p o i n t D the travel times of both direct
wave travelling through the u pper layer and the refracted
wave travelling along the path A BCD are equal. Beyond
point D the refracted w a v e travels faster and arrives
first at the detector. The distance AD is called the
critical distance (X ). c
Pig. 6 is an illustration o f the time-distance curve
for the case of a detector m o v e d out to wel l beyond Point
D. The slopes of the two linear segments are equal to
the inverse of the layer velocities, i.e. 1/Vi and I / V2 .
The intercept time (T^) is w h e r e the 1 / V2 segment projects
to the time axis.
W h e n V i > V 2 , then from equation (3.1) r<i so that it
is impossible to refract a wave along the interface. In
this case all energy is refracted into second layer at a
steeper angle than the i n c i d e n t angle. Thus that i n t e r
face does not show on the time-distance curve. This is
the hi d d e n layer case w h i c h obviously cannot be solved
using the refraction m e t h o d alone.
3.2 F i e l d Work
3.2.i Instruments Use d
Two instruments were used in the course of collecting
the field data. The S o i ltest R-117B Seismic Timer is a
small, portable, self-powered instrument. It records only
the time r e q uired b y the first pulse of ene r g y to travel
from the shot p o i n t to the single geophone. The Huntec
F S-3 Seismograph, (Appendix V I ) , is also a portable and
self-powered instrument. It records automatically on a
special paper (Fig. 7) no t onl y the first arrivals bu t
T
i
m
e
,
.
m
s
e
c
o
o o
o
= L y ,
h:rr-y
V - h : - v •V ^ m = i £'; £ :-Z ^
— -J '..; '■>,.rl'_ /,.■■■ j;- :v.^__ f— • . ■■ X lf -■' ~.T "'•— - '. ".— -■ ; iw -. . ■ 1 ...^
■ ' I ‘ ■ ■■■—■v ■ - .-I. '• .1 i ■■!■■■ i —»■■■■ ■ n ■■■ ... ~ -- ■J
— — -- V S— \ .- . , . Vi. ' •- -- - - — i
-“T1* i IIHZ.'?* i. ■ i_-?— . .-* . \ —>- ' . . >-.r ....
~rr‘- . ' 1 f .—i v ' - — r~.— r r r— -*z--- !-*— rrr*r— - ■■—■■ ■■■ J
■ - v .;.--- . - • •
~ ---7,___ ..., • ... , '______ ______
•’’T *..
.
- v J". =S=±=±=
A
it— ;=y rr.' iz t ~T": ...—:— ~
- ~
-ti—
-_L_
‘.j.’ 1 r
Tf-=-1--- ^---r- r
gg' 'x
-■•■r ya -■ ■ .i;, •, •..,,. —'.2.-.• ,■ :■ £~
^■r . . . ■ > ■ «■' ■ ■'• — ■ ■■!■■•■ ■ . . •‘..1.1: 7 - ■■■ ■ ’ ■ v l r- v..» ; ~'m ■
Zu5ZZ— ZZ
* ■ y >■v?
K 7*.” : . y"' . — ... ", ■ ■' . . . ' 1 . ■ "
■ " " 1 .... , ' ' i ~ i —
3^05 6.1
Distance, m
V 1_ 9.1^
7* Typical seismic record from the F S - 3 seismograph
also any subsequent arrivals that come to its two
geo-phones, thereby yielding more i n f o r m a t i o n about the s u b
surface condition. A special c o rrelator admits to the
recorder only those events which are coincident in b o t h
Seophones to decrease spurious "noise" events.
The source of energy for both instruments is a
sledge hammer striking a m e t a l l i c plate.
3.2.ii F i e l d Work
Sites w e r e selected such that the seismic velocities
could be correlated to specific sediment type and to re
present w ide range of physical conditions (i.e. dry and
Wet s a m p l e s ) . Clay seismic velocities wer e m e a s u r e d nea r
construction sites or ditches. S a n d and/or gravel seismic
Velocities were m e a s u r e d n e a r "faces" of sand-gravel pits.
The gravel sites w ere u s u a l l y above w a t e r level. Some
sand sites were on the beach. Their seismic velocities
refer to w a t e r saturated beach sands (i.e. sites 17, 20,
22, 23).
W h e n the R-117B Timer was used, the geophone wa s
Placed o n the survey line. Whe n the FS-3 Seismograph was
used, the two geophones w ere placed symmetrically about
the survey line. Both instruments are shown in Appendix
VII.
The starting distance X was 0.6m (2 ft.). It was i n
creased b y increments of 0.6m up to 5m. Distances up to
1 0m were occ a s i o n a l l y used.
3.3 D a t a - S t a t i s t i c s
The s e i s m i c v e l o c i t i e s of the three groups (Table 4)
wer e a n a l y z e d s t a t i s t i c a l l y u s i n g the B M D P 3 D c o m p u t e r p r o
gram (Pu and Douglas, 1977). It p r o v i d e s m e a n and d e v i a t i o n
statistics (Table 5) as w e l l as g r o u p c o r r e l a t i o n s t a t i s t i c s
(Table 6 ). The g r o u p c o r r e l a t i o n s are m a d e by u s i n g the
"Student's t-test" w h i c h p r o v i d e s the t-statistic, and the
variance t e s t w h i c h p r o v i d e s the F-statistic. The t s t a
-tistic t ests the n ull h y p o t h e s i s that the m e a n s of two
groups are equal. In c o n t r a s t to c o n v e n t i o n a l t-tests
(Kennedy, 19 64) the a s s u m p t i o n m a d e here is that the
v a riances o f the two g r o u p s are n o t equal. In addition,
the d e g r e e s of f r e e d o m can b e n o n - i n t e g e r numbers
(Armitage, 1971). The F - s t a t i s t i c tests the n u l l h y p o
thesis that the v a r i a n c e s of two g r o u p s are equal. The
h i s t o g r a m s for the seis m i c v e l o c i t i e s of the three g r o u p s
are shown in Fig. 8 . A l t h o u g h the d i s t r i b u t i o n s of the
seismic v e l o c i t i e s d e p a r t fro m a n o r m a l d i s t r i b u t i o n the
t-test can be a p p l i e d for the c o m p a r i s o n of the three
groups b e c a u s e for all b u t small samples "the p - v a l u e s for
the t - t e s t are n o t g r e a t l y a f f e c t e d b y m o d e r a t e d e p a r t u r e s
from n o r m a l i t y " (Armitage, 1971).
Three p o s s i b l e p a i r s w e r e c o m p a r e d in this study,
n a m e l y G R A V E L v e r s u s SAND, G R A V E L ve r s u s CLAY and SAND
versus CLAY. The f o l l o w i n g c o n c l u s i o n s can be drawn
b a s e d on the c o m p u t e d statistics.
R
ep
rod
uc
ed
w
ith
pe
rm
is
s
io
n
of
th
e
co
py
ri
gh
t
o
w
ne
r.
Fu
rthe
r
re
production
p
ro
h
ib
ite
d
w
it
ho
ut
p
e
rm
is
s
io
n
.
CLAY
600 300
SAND
300 600 750 900 ' 1725 2100
0 C cl) ?
01
0)
U A
0 GRAVEL
300 ^ 5 0
Velocity , m/sec
Fig. 8. Frequency distribution of the seismic velocities in the three groups GRAVEL,
1. The SAND g r o u p of samples shows the h i g h e s t m ean
V e l o c i t y b u t it also has the h i g h e s t s t a ndard deviation.
2. There is a v e r y small d i f f e r e n c e b e t w e e n the m e a n
v e locities of the G R A V E L a n d C LAY groups. The i n t e r e s t i n g
Point is that, statistically, the G R A V E L veloc i t i e s are
slightly h i g h e r than the CLAY velocities.
3. The t - s t a t i s t i c for the G R A V E L - S A N D p a i r is -1.9 8.
F°r 16.4 degrees of freedom, the c o r r e s p o n d i n g significance
level is 0.065 o r 6.5%. T h e r e f o r e the h y p o t h e s i s that the
m ean v e l o c i t i e s of the G R A V E L and S A N D groups are equal is
r e j e c t e d at the 9 3.5% c o nfidence level. Thus the seismic
Velocities of the SAND g r o u p are s t a t i s t i c a l l y d i f f e r e n t
from those of the G R A V E L group.
4. The t - s t a t i s t i c for the G R A V E L - C L A Y p air is 0.62.
por 23.8 degrees of f r e e d o m the c o r r e s p o n d i n g s i g n i ficance
level is 0.542 or 54.2%. This m e a n s tha t w e can rej e c t
fhe h y p o t h e s i s that the m e a n v e l o c i t y o f the two groups
a re equal at the 45.8% conf i d e n c e level a n d a c c e p t that
fheir m e a n v e l o c i t i e s are the same a t the 54.2% confidence
level. Th e r e f o r e the seismic v e l o c i t i e s of the GRAVEL
group are n o t s i g n i f i c a n t l y d i f f e r e n t f r o m those of the
CLAY group.
5. The t - s t a t i s t i c for the S A N D - C L A Y p a i r is 2.1.
For 18 degrees of f r e e d o m the c o r r e s p o n d i n g s i g n i ficance
level is 0.051 o r 5.1%. This, again suggests that the
m e a n v e l o c i t i e s of the S A N D and CLAY groups are
cally different at the 9 4.9% confidence level.
6 . The F-statistic gives similar results to those
from the T-test i.e. the CLAY and GRAVEL groups are simi
lar in that they have relatively small standard d e v i a
tions whereas the SAND group differs from them in that it
has a relatively large standard deviation.
In summary the GRAVEL and SAND pair and the SAND and
CLAY pair have seismic velocities significantly different
while the GRAVEL and CLAY pair does not.
The exploration mean i n g of these statistical results
will be discussed in Chapter 5.
29
G R A V E L S A N D C L A Y
Site Velocity Site Velocity Site Velocity
# (m/sec) # (m/sec) # (m/sec)
1 365.8 16 1764.5 33 277.1
2 34-3.2 17 2133.6 34- 641.6
3 312.4 18 391.7 35 234 0 4
4 281.3 19 853.4- 36 268.2
5 4-35.2 20 365.8 37 329.9
6 34-8.1 21 320.6 38 218.8
7 4-57.2 22 14-63.0 39 328.0
8 4-87.7
23 54-8.6 40 228.9
9 4-35-2 24- 381.0 41 391.4
10 4-26.7
25 369.4- 42 304.8
11 335.3 26 270.7 4-3 484.3
12 370.0 27 304.8 44 522.4
13 4-74-.0 28 217.6 45 406.3
14- 4-06.3 29
731.5 46 735.5
15 365.8 30 426.7 4-7 232.2
31 304.8 48 361.8
32 461.8 49 341.4
•
50 290.2
Table 4-. Seismic velocities for GRAVEI1, S A N D and CLAY in
E s s e x C o u n t y .
Velocity in m/sec.
GRAVEL SAND CLAY
•
J'-LAN 389.6
665.3 366.2
STANDARD DEVIATION 61.6 571.2
14-5.4-^t a nDARD e r r o r 16.2
138 ;5 34-.3
fr'-AxiLUK
4-87.2 2133-6 735-5
k'lNlNUjy!
281.3 217.6 218.8
Table 5 . Mean and deviation statistics for velocity for the
GRAVEL, SAND and CLAY groups.
GRAVEL v s SAND GRAVEL vs CLAY SAND vs CLAY
T
-1 • 98 0.62 2.1
P »
O .065 0.54-2 0.051
d .f . 16.A
23.8 18.0
F
85.92 5.57 15*4-2
P
O .000 0.062 0.000
8 .F.
16 , 14.
17 , 14- 16 , 17
kle 6. Group correlation statistics for velocity.! is the
eParate statistic.P is the two-tail significance level.D.F.
the degrees of freedom and F is the F-statistic.
C H A P T E R I V
ELECTRICAL RESISTIVITY METHOD
4•1 Introduction
Electrical prospecting uses measurements of the elec
trical properties of rocks to study the structure and com
position of those layers which are sufficiently shallow to
ke exploited by man. Electrical prospecting was used as
early as 1720 by Gray-Wheeler (Jakosky, 1955). It makes
use of three fundamental properties of rocks: i) the re
sistivity, ii) the electrochemical activity with respect
to electrolytes in the ground, and iii) the dielectric
constant.
Electrical resistivity measurements were used in this
study. The theory and results are presented in this
chapter.
4*2 Previous Work
The electrical resistivity method has been used suc
cessfully in delineating sand and gravel deposits in the
past because they have very different resistivities than
clays, it works because "mostburied gravel and sands are
covered and surrounded by clay, ground moraine and flood
silt" (Kurtenacker, 19 34).
Kurtenacker (1934) has described briefly the use of
the resistivity method for reconnaissance and detailed
quarry surveys. In a more detailed paper, Moore (1944)