• No results found

Laser spot welding of laser textured steel to aluminium

N/A
N/A
Protected

Academic year: 2021

Share "Laser spot welding of laser textured steel to aluminium"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

Duncan

P.

Hand

,

Krystian

L.

Wlodarczyk

aWeldingEngineeringandLaserProcessingCentre,CranfieldUniversity,Cranfield,Bedfordshire,MK430AL,UnitedKingdom

bInstituteofPhotonicsandQuantumSciences,SchoolofEngineeringandPhysicalSciences,Heriot-WattUniversity,Edinburgh,EH114AS,UnitedKingdom cSPILasersUKLtd,CosfordLane,SwiftValleyIndustrialEstate,Rugby,CV211QN,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9May2016 Receivedinrevisedform 23September2016 Accepted31October2016 Availableonline2November2016 Keywords:

Laserprocessing Lasertexturing Laserspotwelding Surfacemodification Dissimilarmetals

a

b

s

t

r

a

c

t

Laserweldingofdissimilarmetals(steelandaluminium)wasinvestigatedwiththeaimtoincreasethe maximumtensileshearloadoftheFe-Aljoints.Theincreasewasachievedbytexturingthesurfaceof steelpriortothelaserspotweldingprocesswhichwasperformedinalap-jointconfigurationwiththe steelpositionedontopofthealuminiumandwithatexturefaceddowntothealuminiumsurface.This configurationenabledanincreaseofthebondingareaofthejoints,becausethemoltenaluminiumfilled inthegapsofthetexture,withouttheneedofincreasingtheprocessenergywhichtypicallyleadsto thegrowthoftheintermetalliccompounds.Differenttextures(containinghexagonallyarrangedcraters, parallellines,gridandspiralpatterns)weretestedwithdifferentlaserweldingparameters.TheFe-Al jointsobtainedwiththetexturedsteelwerefoundtohaveupto25%highermaximumtensile-shearload thanthejointsobtainedwiththeuntexturedsteel.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Oneofthechallengesintheautomotiveindustryistoreducethe carbonemissionofmanufacturedvehicles(Church,2015;Havrilla, 2014;Lesemannetal.,2008).Thiscanbedonebyincorporating lightweightmetallicalloys,suchasaluminiumalloys,withmore genericautomotivemodulusoftenmadeofuncoatedmildsteelin ordertoreducethetotalmassofavehicle.Unfortunately,joining thesetwodissimilarmetalsisdifficultduetothechemical reac-tionsbetweenaluminiumandsteelthatleadtotheformationof intermetalliccompounds(IMC)atthemetals’interfaceduringthe weldingprocessandthusthemechanicalpropertiesofthewelds aredeteriorated(Martinsenetal.,2015).

Athinsheetofsteel(DC04grade)canbesuccessfullyweldedto analuminiumalloy(6111-T4)usingaconductionmodelaserspot weldingprocess(Pardaletal.,2014).Thisnovelweldingtechnique reliesontheincidenceofadefocusedlaserbeamonthetopsurface ofsteelandthegenerationofheatresultantfromthelaser-material interactionthatisconductedtothealuminiumthroughthesteel. Inthisprocesstheweldingparameters needtobecontrolledin ordertomelt onlythealuminiumat theinterface.Thebacking

∗Correspondingauthor.

E-mailaddress:g.n.rodriguespardal@cranfield.ac.uk(G.Pardal).

barunderneaththeAlalloyisusedtofacilitatetheheat extrac-tionandminimisetheIMCgrowth(Borrisutthekuletal.,2007).This techniquediffersfromregularlaserweldingbecausehereonly alu-miniumismeltedwhilststeelremainsinsolidstate.Althoughthis approachhelpstominimisethemixingofAlwithFe,duetoa max-imumsolubilityof12%AlinFe,athinIMClayerisstillproduced whichleadstoareductioninweldstrength.Asreportedby(Pardal etal.,2014),thethicknessoftheIMClayerdependsonthe temper-atureprofilegeneratedbythelaserspotandtheheatdistribution acrosstheinterface.However,thethermalfieldisalso responsi-bleforgeometryofthefusionzoneofthealuminiumandthusthe dimensionofthebondingarea.Previousresultsreportedby(Meco etal.,2015)suggestthatwhenalargerbondingareaiscreatedthe jointshavehighermaximumshearload.Onewouldexpectalinear evolutionofthetensile-shearloadofdissimilarmetaljointswith thebondingarea.However,thistrendisnotobservedindissimilar metaljoiningbecausetheIMClayerbecomesthicker simultane-ouslywiththegrowthofthebondingarea.

Resistancespotwelding(RSW)canalsobeusedforjoiningthin sheetsofsteeltoanaluminiumalloy,asdemonstratedby(Zhang et al.,2011)and (Qiu et al.,2009a,b).Thefirst ofthese papers reportedweldingofa1mmthickgalvanizedhighstrengthsteelto 1.5mmthick6008aluminiumalloyandobtainedtheFe-Aljoints withthemaximumtensile-shearloadof3.3kN.Bycorrelatingthe mechanicalstrengthofthejointswiththeprocessparameters,it http://dx.doi.org/10.1016/j.jmatprotec.2016.10.025

(2)

Table1

Chemicalcompositioninweight%ofAl5083andCR4steelaccordingtothestandardsBSEN573-3:2009andEN10130-2006,respectively.

Element Al Fe Mn Ti Mg Cu Si Zn Cr C P Other

Al5083 Bal. 0.4max 0.4–1.0 0.05–0.25 4.0–4.9 0.1max 0.0–0.4 0.0–0.1 0.05–0.25 – – 0.0–0.15

CR4 – Bal. 0.6max – – – – – – 0.12max 0.045max

wasfoundthatthetensile-shearloadofthejointsincreasedwith theincreasingweldingcurrentandtime.Detailedexaminationof thejointsprovidedevidencethattheincreaseoftheprocess param-etersleadstotheincreaseoftheweldnuggetdiameteraswellasto thegrowthofIMC.Thesecondofthesepapers(Qiuetal.,2009a,b) describeduseoftheRSWprocesswithacoverplatetojoin1mm thickSPCCsteelto1mmthick5052aluminiumalloy.This weld-ingapproachenabledthegenerationoftheFe-Aljointswiththe maximumtensile-shearloadofapproximately5kN.Althoughthe authorsconfirmedthatthetensile-shearloadincreaseswiththe increasingweldnuggetdiameter,theyalsoprovidedevidencethat thepresenceoftheIMClayerreducesthemaximumloadofthe dissimilarFe-AljointscomparedtotheAl–Aljoints.Undersimilar weldingconditions,themaximumtensile-shearloadoftheAl–Al jointswasabout6kN,andhencea1kNhigherthanthatobtained withtheFe-Aljoints.Theuseofmetallicinsertswasalso investi-gatedinRSWforjoining0.8mmthicklowcarbonsteelto1mm thick5XXXseriesaluminiumalloy(OikawaandSaitoh,1999).The insertmetalsheetswerealuminiumcladsteelsheetsmanufactured byhotrollingwithadirectresistanceheatingprocess.Theseinserts werepositionedbetweenthesteelandthealuminiumsheetswith thesteelsideoftheinsertfacingthesteelandthealuminiumside oftheinsertfacingthealuminiumsheet.Thismetallic combina-tionwasfoundtobestrongerthanthatwithoutthemetallicinsert (3.3kNcomparedto2kN).

Analternativeapproachtojointhinsheetsofgalvanizedsteel to6061aluminiumalloybyspotweldinghasbeeninvestigated usingavariantofarcweldingprocesscalledColdMetalTransfer, alsoknownasCMT(Caoetal.,2014).Inthisstudy,4043aluminium wirewasusedtocreateaspotplugbyfillinginaholepreviously machinedonthemetallicsheetwhichwaspositionedonthetopof thelap-joint.Thematerialstackingconfigurationandwelding vari-ableswereinvestigatedintermsofmicrostructureandmechanical strength.Theauthorsfoundthatwhenthesteelwaspositionedon thetoptherewasnopresenceofIMCsinthemiddleonthe sur-faceofthefracturedjoint.Ontheotherhand,whenaluminium waspositionedonthetop,themoltenaluminiumwasdeposited ontothesteelsurfaceandthereactionbetweenFeandAloccurred, formingFeAl3andFe2Al5atthejointinterface.Thefractureload

ofthejointswiththealuminiumonthetopwasabout5kNwhich washigherthanwhenthesteelwasonthetoporevenwhenthe jointwasproducedbetweenthecouponsofaluminium(3kN).The reasonfortheseresultswasthenuggetdiameterthatinthe steel-aluminiumjointwassmallerthanthatinthealuminium-steeljoint configuration.

Amodifiedfrictionstirspotwelding(FSSW),calledabrasion cir-cleFSSWwasusedby(Chenetal.,2012)tojoin6111-T4aluminium alloytoDC04lowcarbonsteel.TheauthorsshowedthatIMCswere notformedonthejointandthemaximumtensile-shearload regis-teredwasnear4kN.TheabrasioncircleFSSWenabledtheincrease ofthebondingareabytranslatingthetoolthroughanorbitalpath. Inthispaper,analternativespotweldingapproachtoincrease thebondingareabetweensteelandaluminiumalloywithout mod-ifying thelaser-generated temperature profile is proposed and investigated.Ananosecondpulsedlaserisusedfortexturingthe surface of steel prior to laser spot welding in order to locally increasethebondingareabetweenthesetwo dissimilarmetals. Theaimofthisworkistoinvestigatetheimpactofvarious laser-generatedtexturesonthemechanicalproperties(strength)ofthe

Table2

MechanicalstrengthofAl5083andCR4steel. Ultimatetensile

strength,MPa

Yieldstrength,MPa Hardness,HV

Al5083 275–350 125min 87

CR4 270–410 280max 105

Fig1. Schematicofthelasersystemusedfortexturingthesurfaceofsteel.

Fe-Alweldsaswellastounderstandthemechanismoftheir for-mation.

2. Experimentalprocedure

2.1. Material

A 1mm thick 5083 aluminium alloy and 0.85mm thick CR4 grade mild steel were used in theexperiments. The steel and aluminium coupons were 100mm long and 40mm wide. Tables1and2showthechemicalcompositionandthemechanical propertiesofthesetwometals.

2.2. Lasertexturingofsteel

2.2.1. Methodologyandexperimentalsetup

Fig.1showsaschematicofthelasermachiningsystemusedfor texturingthesteelcoupons.ThelasersourcewasapulsedSPI20W fibrelaser(G4EP-S)thatprovided220nslongpulses(fullwidth10% maximum)withapulserepetitionfrequencyof28kHz,wavelength of1064nmandmaximumpulseenergyof0.71mJ.Thelowcost, highflexibilityandacceptableabsorptionofthiswavelengthmake

(3)

Fig.2.Steelcouponswiththelaser-generatedtexturescontaining30␮mdeep par-alleltroughs(left)anda30␮mdeepspiraltrough(right).

thistypeoflaserwellsuitedfortexturingthesurfaceofsteel(Dunn etal.,2015,2014;Vilhenaetal.,2009).Thelaserbeamwasdelivered totheworkpieceviaagalvoscannerequippedwitha160mmfocal lengthF-thetalens.ThegalvoscannerwascontrolledbyaPCusing SCAPSSamlightsoftware.Thenominalspotdiameteronthework piecewas22␮m(1/e2ofitsmaximumintensity,M21.1).

Priortolasertexturing,bothsurfacesofthesteelcouponswere cleanedwithacetonetoremoveoilanddebris.Later,theworkpiece wasplacedinametalvessel(enclosure)containingaglasswindow. Thisvesselallowedthesteelcouponstobemachinedunder low-pressureargongasinordertoavoidoxidationofthesteel,which couldhaveanimpactonthequalityofwelds.

Priorto texturinga largequantityof thesteel coupons,the laser-inducedcraterswerecharacterizedforvariouslaser process-ingsettings,inparticularpulseenergy(EP)andnumberoflaser

pulses(N). Thediameterand depthof thesecraterswere mea-suredusing an opticalmicroscope (Leica DM6000M) and a 3D surfaceprofilometer(InfiniteFocus®Alicona).Followingthe cali-brationprocess,sevendifferenttesttexturesweregeneratedon thesurfaceofthesteelcoupons.Theareaselectedfortexturing waseithera40mmby40mmsquareora40mmdiametercircle, asshowninFig.2,dependingonthetexturepattern.Eachtexture wasproducedonatleast12coupons,providingarelativelylarge numberofsamplesfortestingvarioussettingsforlaserspot weld-ing,inparticularaveragepower(PA)andinteraction(irradiation)

time.

2.2.2. Calibration

IndividualcratersweregeneratedonthesurfaceofCR4mild steelbyvaryingthepulseenergy(EP)between0.04mJand0.71mJ

andvaryingthenumberoflaserpulses(N)perspotbetween1and 10,byrepeatedlypassingthelaserbeamovertheworkpiece.The depthofcratersobtainedforvariousvaluesofEPandNisshownin Fig.3.Theerrorbarsplottedonthesegraphsarethestandard devi-ationsofthreeseparatemeasurementsforthecratersgenerated withtheconstantpulseenergyandnumberoflaserpulses.

Fig.3a)revealsthatthedepthofthecratersincreases signifi-cantlyandalmostlinearlywithincreasingnumberoflaserpulses. Thismeansthat each laser pulse(with energy above the abla-tionthreshold,0.04mJ)removesapproximatelythesamedepthof materialfromthelaser-irradiatedarea.Fig.3b,inturn,showsthat thedepthofthecratersincreasesinsignificantlywithincreasing pulseenergy,inparticularforalownumberoflaserpulses.

Thediameterofthecraterswasalsomeasuredandtheresults arepresentedinFig.4.Theyshowthecraterdiameterisalmost unchangedfortheincreasingnumberoflaserpulses,inparticular

Fig.3.Depthofcratersasafunctionof:a)numberoflaserpulsesfordifferentpulse energies,b)pulseenergyfordifferentnumberoflaserpulses.Solidlinesaretrend lines.

Fig.4.Diameterofcratersasafunctionofnumberoflaserpulsesfordifferentpulse energies.Solidlinesaretrendlines.

(4)

Table3

Listoflaserprocessingparametersusedforthegenerationofvarioustexturesonthesurfaceofthesteelcoupons.

Texture Pattern EP,mJ Numberofpulses v,mm/s Processingrate,s/cm−2 D,␮m ,␮m SD,␮m

A Hexagonal 0.55 10 2240 9.5 30 65 80 B Hexagonal 0.55 10 3500 4.6 30 65 125 C Hexagonal 0.17 12 3500 5.5 30 40 125 D Hexagonal 0.17 12 1400 25.7 30 40 50 E Lines 0.17 5 350 30.6 30 40 50 F Spiral 0.17 5 350 22.2 30 40 50 G Grid 0.17 5 350 61.2 30 40 50

forEP<0.21mJ.Forhigherpulseenergies,itwasobservedthatthe

craterdiameterincreasesatarateof<1.5␮mperpulse.

Ingeneral,theresultspresentedinFigs.3and4seemto fol-lowthesimilartrendsthatwereobservedintheothertypesof steel(100Cr6andgrade304)byDunnetal.(Dunnetal.,2014)and Vilhenaetal.(Vilhenaetal.,2009).

2.2.3. Generationoftesttexturesonsteel

Theresultspresented in theprevioussection(Section2.2.2) showclearlythatitispossibletoalmostindependentlycontrolboth thedepthandthediameterofthelaser-inducedcratersonthe sur-faceofgradeCR4mildsteel.Byusingthecorrectpulseenergyand thenumberoflaserpulses,thedimensionofthecraterscanhence betailoredandthereforevarioustexturescanbegenerated.

Sevendifferenttexturesweregeneratedonthesurfaceofthe steelcoupons.Threedimensionalsurfaceprofilesofthesetextures measuredwiththeAliconainstrumentareshowninFig.5.Four ofthemcomprisedofcratersthatwerearrangedinahexagonal pattern(seeTexturesA–D),eachtexturehavingcraterswitha nom-inaldepth(D)of30␮m(±5␮m),diameter()ofeither40␮mor 65␮m,andseparationdistance(SD)betweenthecratersofeither

50m,80mor125m.Theotherthreetexturescontainedeither paralleltroughs(seeTextureE),aspiraltrough(seeTextureF)or agridoftroughs(seeTextureG).Thetroughsinallthreetextures wereapproximately30␮mdeep,40␮mwideandwereseparated byafixeddistanceof50␮m.

Table3providesalistoflaserprocessingparameters(i.e.pulse energy,numberoflaserpulses,andscanspeed)thatwereusedfor thegenerationofthetexturesshowninFig.5.TexturesA-D (con-tainingcratersarrangedinahexagonalpattern)weregenerated followingthetexturingproceduredescribedin(Dunnetal.,2014). Variousseparationdistancesbetweenthecraterswereobtained bymodifyingthescanspeed(v)andhatchdistance(h).Thehatch distancewascalculatedusingthefollowingformula:

h= √ 3 2 ×

v

PRF (1)

wherePRFisthepulserepetitionfrequency.

ThetexturesE-G(thosecontainingtroughs)weregeneratedby movingthelaserbeamwithaspeedof350mm/s.Sincethepulse overlapatthisspeedwasapproximately57%,whichcorresponds toslightlymorethantwopulsesperlaserspot,itwasnecessaryto apply5laserpassesinordertoobtainapproximately30␮mdeep troughs(basedontheresultsinFig.4).

2.3. Laserweldingoftexturedsteeltoaluminium 2.3.1. Methodologyandexperimentalsetup

Allthesurfacesofthealuminiumandtheuntexturedsurfaceof thesteelcouponswerecleanedbeforeweldingwithanabrasive padandacetonetoremovecontaminants.Thetexturedsurfaceof thesteelwasleftasprocessed.

Amulti-modeIPGCWfibrelaserwithamaximumpowerof 8kW and a wavelength of 1070nm wasused for welding the

Table4

LaserweldingparametersusedforTexturesA-D(preliminarytests).

Dbeam,mm P,kW ti,s PD,MW/m2 Esp,kJ 13.00 2.00 3.0 15.1 6.0 13.00 2.00 4.0 15.1 8.0 13.00 2.00 5.0 15.1 10.0 13.00 2.00 6.0 15.1 12.0 13.00 2.67 3.0 20.1 8.0 13.00 3.67 3.0 27.6 11.0 13.00 4.00 3.0 30.1 12.0

laser-texturedsteeltothealuminium.Thewelding processwas performed using a 13mm diameter laser beam that was defo-cusedontheuntexturedsideofthesteel,asshowninFig.6a.The laser-texturedsurfaceofthesteelwasfaceddown,beinginavery closecontactwiththealuminiumcoupon.Thesteelandaluminium couponswerepositionedontheclampingsysteminalap-joint con-figurationwithanoverlapof35mm(Fig.6b)andclamped(Fig.6c). Theringonthesteelapplieduniformloadonthesubstratearound theweldandithadthreeoutletstoshieldtheweldwithargon.

Thelaser powerandirradiationtime wereusedasvariables for welding the laser-textured steelsamples to thealuminium coupons.Theanalysisoftheweldingresults,however,wasmade usingthefundamentallasermaterialinteractionparameters,i.e. thepower density (PD),interaction time (ti) and specificpoint

energy(Esp),becausetheseparameterscanbeusedtotransferthe

weldingprocessbetweenvariouslasersystems(Assuncaoetal., 2012;WilliamsandSuder,2011).ThePD,tiandEspvalueswere

calculatedbasedonthesystemparameters,usingthefollowing equations:

Powerdensity,MW/m2 PD= Power

Abeam

(2) Interactiontime,s ti=irradiationtime (3) Specialpointenergy, kj Esp=PD×ti×Abeam (4)

Thespecificpointenergycorrespondstotheenergytransferred tothematerialthroughthelaserspotanditiscalculatedbythe productofthepowerdensitybytheinteractiontimeandtheareaof thelaserbeam(Abeam).Theinteractionofthelaserwiththematerial

inducesathermalfieldthatresultsinpartialmeltingofthesteel. Astheheatconductsthroughthesteelandistransferredtothe aluminium,thetemperatureatthejointinterfaceincreasesand meltingofthealuminiumoccurs.Theenergyoftheweldingprocess mustbecontrolledtoavoidthemeltingofthefullthicknessofthe steelsheet.Thisprocessenablesthewettingofthesteelsurfaceby themoltenaluminiumreducingthediffusionofFeinAl.

Thelaserweldingparametersthatwereusedinour prelimi-naryandfinal weldingexperimentsarelistedinTables4and5, respectively.

2.3.2. Tensilesheartest

The mechanical tensile-shear tests were performed using a 100kNINSTRON5500Rtensiletestmachine.Theexperimentswere

(5)

Fig.5.TesttexturesgeneratedonthesurfaceofgradeCR4mildsteel.TexturesA–Dcontaincratersarrangedinahexagonalpattern,textureEcontainsparalleltroughs, textureFcontainsaspiraltrough,andtextureGcontainsagridoftroughs.ThesurfaceprofileswereobtainedwiththeAliconainstrument.

Fig.6.a)Schematicofthelaserspotweldingprocess,b)steelandAlsampledimensionsandexperimentaloverlapandc)photographoftheclampingsystemusedfor weldingsteeltoaluminium.

carriedoutwithconstantcross-headspeedof1mm/minandat roomtemperature.Theloadanddisplacementwereacquiredby

aNationalInstrumentssystemconnectedtoalaserextensometer withagaugelengthof50mm.

(6)

Fig.7.TensileshearloadobtainedwithTexturesA–Dasafunctionof:a)interactiontime(ti),whilePD=15.1MW/m2andb)powerdensity(PD),whileti=3s.

Table5

LaserweldingparametersusedforTexturesD-F(finaltests).

Dbeam,mm P,kW ti,s PD,MW/m2 Esp,kJ 13.00 2.67 3.00 20.1 8.0 13.00 2.67 4.00 20.1 10.7 13.00 2.67 5.00 20.1 13.4 13.00 2.25 3.00 17.0 6.8 13.00 3.00 3.00 22.7 9.0 Table6

RelativecontactareaattheFe-AlinterfaceestimatedforTexturesA-D.

Texture A B C D

Relativecontactarea(S) 42% 73% 90% 44%

3. Resultsanddiscussion

3.1. Preliminarytestsforhexagonalgeometry

Apreliminarystudywascarriedouttodeterminethebest tex-tureforlaserspotweldingintermsofcraterdepth,diameterand spacingfordifferentweldingparameters.Thelaserwelding param-eterslistedinTable4wereusedandtheexperimentalresultsare showninFig.7.Inthisexperimentnocomparisonwasmadewith theuntexturedsamples.

Fig.7a)showsthatTexturesAandDalwaysprovidedhigher tensile-shearloadof the joints (>4kN)than TexturesB and C, independentlyontheinteractiontime(ti).Poorermechanical

per-formanceofthejoints withTexturesBandCmayberelatedto thelargespacingbetweencraters,whichinthesetwotextureswas 125␮mcomparedto80and50␮mforTexturesAandD, respec-tively.Tobetterillustratethis,therelativecontactarea(S)ofeach texturewascalculatedandtheresultsareinTable6.TheSvalues werecalculatedasfollows:

S=ContactAreaTotalArea .100% (5)

whereContactAreaisthewhiteareashowninFig.8(expressed in mm2 units), whereas Total Area is equal to 0.25mm2

(500␮m×500␮m).

Alargespacingbetweencraters(asinTexturesBandC) repre-sentsasmallersurfaceareaavailableonthesteelforthemolten aluminiumtoflowandcreatethebondingbetweenbothmetals. TheresultsinFig.8suggestthattheinteractiontime(between3 and6s)doesnotsignificantlyaffectthemaximumtensileshear loadofthejoints.Therewasonlyonepoint(obtainedwith Tex-tureBandti=6s)whichprovidedatensileshearloadof<3kN.

Ingeneral,theresultsindicatethatatexturewithsmallerspacing

Table7

RelativecontactareaattheFe-AlinterfaceestimatedforTexturesE-G. TextureE(Lines) TextureF(Spiral) TextureG(Grid)

Relativecontactarea(S) 20% 23% 4%

betweencratersandsmallercontactareashouldbeusedtoimprove maximumshearloadofthejoint.

Asimilartrendwasobservedforthejointsproducedwiththe differentpowerdensity(Fig.7b).Foranyvalueofpowerdensity, TexturesBandCseemtohavelowermaximumtensileshearload whencomparedtoTexturesAandD.Thereisalsoadifferencein themechanicalperformanceofthejointsproducedwithTextures AandD.ThejointsproducedwithTextureDweretheonlyonesin whichthetensileshearloaddidnotdeterioratewiththeincreaseof thepowerdensity.Alltheothertextureshadconsiderablyreduced thetensileshearloadofthejointsforpowerdensityvaluesabove 25MW/m2.Thisshowsthatnotonlythespacingbetweencraters

isimportantbutalsothecraterdiameterneedstobecontrolledto obtainthemaximumtensileshearloadforawiderangeoflaser weldingparameters.

3.2. Resultsforseveralgeometricpatterns

Inthepresentsection,thecharacteristicsofTextureDwereused forthegenerationofdifferentpatternsonthesteelsurface,viz.grid, lines,andspiral.Theperformanceofthenewtextureswastested fordifferentlevelsofthespecificpointenergybyvaryingthepower densityandtheinteractiontime.Theaimwastoinvestigatehow thetextureswithdifferentgeometricalpatternsaffectthe mechan-icalstrengthandthewettingareaofthejoints,andcomparethese featuresagainsttheuntexturedsamples.

Thecontactareabetweenthesteelandthealuminiumvaries withthepatternduetotheirdifferentgeometricaldesigns.Fig.9 illustrateshowthelaser-generatedpatternsaffectthecontactarea atthe metalsinterface,whereas Table7 providesthevalues of therelativecontactareathatwereestimatedforthesethree tex-tures.Thetexturewiththesmallestcontactareaisthegridpattern (S=4%).Thelineand spiralpatternswerefoundtohavesimilar contactareas(S=20%).

Thetensileshearloadofthejointsproducedwiththenew geo-metricpatternswasevaluatedagainsttheuntexturedsamples(see Fig.10).Thejointswereproducedwithconstantpowerdensityof 20.1MW/m2andvariableinteractiontime.Fig.10showsthatthe

spiraltexturedidnotgenerategoodjointswhentheinteraction time(ti)was4s.Thejointgeneratedwithti=4shadatensileshear

(7)

Fig.8.SchematicofTexturesfromAtoD.Whitearearepresentsthecontactareabetweenthealuminiumandthesteelsurface,whereasbluecirclesrepresentcraters.(For interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.).

Fig.9.Schematicoflaser-generatedtexturescomprisingparalleltroughs(TextureE),spiralpattern(TextureF)andagridoftroughs(TextureG).Whitearearepresentsthe contactareabetweenthealuminiumandthesteelsurface,whereasbluearearepresentthelaser-texturedarea.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.).

(8)

Fig.10.Tensileshearloadasafunctionoftheinteractiontimefordifferent laser-texturedanduntexturedsamples.TheresultswereobtainedwithPD=20.1MW/m2.

Withintheexperimentalrange,thetensileshearloadofthe jointswasnearlyconstantwithinteractiontime.Thistrendwas observedforallthetestedsamples,withtheexceptionofthespiral. Whencomparingtotheuntexturedjoints,whichhadanaverage tensileshearloadof4kN,thejointsproducedwiththetextures containinglines,gridandhexagonally-arrangedcratersshoweda highertensileshearload,withanaveragevalueoftensile-shear loadof5kN.Thejointwiththehighesttensileshearloadof>5.5kN wasobtainedwiththetextureGcontainingthegridpatternusing PD=21.1MW/m2andt

i=5s.Incontrast,thejointwiththelowest

tensileshearload(<1kN)wasobtainedwiththetexture contain-ingthespiralpatternusingtheinteractiontimeof4s.Thislow tensileshearloadisaconsequenceoftheplugfailure.Sucha fail-ureoccurstypicallyduetothestrongreactionbetweenFeandAl whichleadstothemixingofthesetwometalsintheliquidstate duringtheweldingprocess.Theplugfailureobservedinthis sam-pleischaracteristicofabrittleweldwheretheweldnuggetismade ofbrittleIMCphases.ThehighdiffusionofFeintoAlandvice-versa, whenbothmetalsaremixedinliquidstate,enhancestheformation ofseveralIMCsatthejointinterface,deterioratingthemechanical propertiesofthejoints.

Thenearly constantevolution of thetensileshear loadwith theinteractiontimeforallthetexturedanduntexturedsamples indicatesthattheinteractiontimemaynotbethemostimportant fundamentallasermaterialinteractionparameterindetermining themechanical propertiesofthejoints.Themechanical proper-tiesofthejointsaredependentonthebondingareaandtheIMCs formedduringtheweldingprocess.Thefactthatwithinthe exper-imentalrangetheinteractiontimedoesnotchangethemaximum tensileshearloadofthejointscouldbeeitherduetothe simultane-ousgrowthoftheIMCsandthebondingareawhichinthiscaseare bothinbalance,orbecausetheinteractiontimehasasmalleffect onthegrowthoftheIMCandbondingarea.

Fig. 11 shows the impact of power density on the tensile shearloadofthejointsforconstantinteractiontimeof3s.With 17MW/m2 ofpowerdensity,allsampleswithtexturedsurfaces

haveconsiderablybettermechanicalpropertiesthanthe untex-turedsamples.Onceagaintheresultsshowthatthepatternsarean effectivewayofimprovingthemechanicalpropertiesofthelaser spotweldedjointswithoutincreasingtheprocessenergy.Asthe powerdensityincreasedto20MW/m2,allofthetexturedsamples

stillshowedhighertensileshearloadthantheuntexturedsamples, albeitwitha lowerdifference.Forthemaximumpowerdensity tested,thetrendwasnotverified.Twotextures,thosecontaining thegridandlines,showedlowertensileshearloadwhencompared withtheuntexturedsamples.Thisresultmaybejustifiedbythe poorheatconductionfromFetoAl,inparticularforthegridpattern

Fig.11. Tensileshearloadasafunctionofthepowerdensityfordifferent laser-texturedanduntexturedsamples.Theresultswereobtainedwithti=3s.

wheretherelativecontactareawasverysmall(S=4%).Ingeneral, thepresenceofcraters(airgaps)inducesathermalresistanceatthe interfacebetweenthemetals,causinganincreaseoftemperature andconsequentlymeltingofthesteel.Thereforethetemperatureof thealuminiumisnotsignificantlyincreased,andthewettingarea remainsalmostunchanged.

The joints produced withthe spiral and hexagonal patterns showedhighertensileshearloadathigherpowerdensitiesthanthe otherpatterns.Thisresultmaybeexplainedbythelargercontact areapromotedbythesetwolastpatternswhichallowshigherheat conductionandmoremeltingofAlandthereforebetterwettingof thesteelbymoltenAl.

The textures processed on the steel not only changed the thermal field acrossthesamples,but alsochanged thewetting behaviourandhencethebondingareabetweentheAlandsteel. Intheexperimentthebondingarea,whichisalsoknownasthe areaoftheweldnugget,wasdeterminedbymeasuringthe frac-turesurfacesofthesteelandaluminiumaftertensile-sheartesting. Thefracturesurfacesrevealedtwodistinctregions:adarkcentral regionandabrightperipheralregion.Here,itshouldbenotedthat similarfracturesurfaceswereobservedinresistancespotwelded jointsbetweensteeland5052aluminiumalloybyQiuetal.(Qiu etal.,2009a,b).TheauthorsanalysedtheseregionsbySEMand EDSandtheyfoundthattheperipheralareaofthesteelcontained asignificantamountofAl,whereasthedarkareainthecentrewas identifiedasamixtureofAlandFe.Theresultssuggestedthatthe fracturepropagatedthroughthealuminiumlocatedonthe periph-eralregionandthroughtheIMCslocatedinthecentralareaofthe weld.ThefailurethatoccurredacrosstheIMCsresultedfromthe factthattheIMClayerwasrelativelyuniformandthick,andthus morefragile.Ontheotherhand,theIMCsontheperipheralarea werediscontinuousandthin,andthereforeit wasbelievedthat thefailureoccurredonthealuminium.

Similaranalysisofthefracturesurfaceswasperformedinthe presentedwork.Fig.12showstheopticalmicrographsofselected areasonthesteelsurfaceafterthetensile-sheartest.

The left column of Fig. 12 presentsthe regions outside the weldnuggetswhichwerenotwettedbythemoltenaluminium. Thesemicrographsrevealdifferenttexturesthatweregenerated onthesurfaceofthesteelbeforewelding.Themiddlecolumnof Fig.12presentstheperipheralregionoftheweldnuggets, show-ingtheimpactofthelaser-generatedpatternsontheflowofthe moltenaluminiumduringtheweldingprocess.Thesemicrographs showclearlythatthemoltenaluminiumpenetratesintothe micro-channels, confirming that the laser-generated patterns play an importantroleintheformationofthebondingareabetweenFe

(9)

Fig.12.Micrographsshowingthefracturesurfaceonthesteelsideaftertensile-sheartesting.ThesampleswereproducedusingPD=20.1MW/m2andt i=3s.

andAl.Inthecaseofthetexturescontainingthespiralandparallel lines,thedirectionoftheflowofthemoltenaluminiumis con-strainedbytheorientationofthemicro-channels,whilethegrid andhexagonalpatternspermitthemoltenaluminiumtobespread inmorethanonedirection.Thesteelsurfaceoftheuntextured sam-plewaswettedbythemoltenaluminium,buttheflowdirectiondid notfollowanypreferentialdirection.

Thecrosssectionsoftheweldnuggetsareshown inFig.13. ThesefractographsshowtheIMClayerthatwasformedinthe cen-tralregionoftheweldnugget,whichprovesthatthetextureswere successfullywetbythemoltenaluminium,inparticularthose com-prisingthegrid,spiralandhexagonally-arrangedcraters,andthat

thebondingareawasincreased.Thefractographsalsoindicatethat thegrowthoftheIMClayerwasinfluencedbythetexture geome-try.ThiscanbeclearlyobservedinFig.13c)–e)wheretheIMCwas formedinsidethelaser-generatedmicro-channels.Forthe untex-turedsteel,theIMClayerwasthinbutitwasspreadcontinuously acrossthemetalsurface,ascanbeseeninFig.13a).

Thebondingareaofalljointswasmeasuredtopermita quanti-tativeanalysisoftheeffectofthepatternsandweldingparameters ontheweldnugget.Thebondingareawasmeasuredfrom macro-graphstakenontheFesideatfractrographicplane.Thetotalareaof theweldnuggetsresultantfromtheweldingprocesswithvariable

(10)

Fig.13.Cross-sectionalfractographyofthejointshowingonlythesteelplatefor:a)untexturedandlaser-texturedsteelwithb)parallellines,c)grid,d)hexagonal-arranged cratersande)spiralpatterns.

Fig.14.Totalbondingarea(central+peripheral)fortheweldedsamplesandplottedfortheincreasing:a)interactiontimeandb)powerdensity.

interactiontimeandpowerdensityispresentedinFig.14a)andb), respectively.

Thetexturedjointshadsimilaroreven alargerweld nugget areathantheuntexturedjointsfortheinteractiontimesof3sand 4s.Fortheinteractiontimeof5s,however,thebondingareaof theuntexturedjointswaslargerthanthatofthetexturedjoints.A similartrendwasobservedinFig.14b.Forpowerdensitiesupto 20MW/m2,allthetexturedjointshadweldnuggetswithequalor

evenlargertotalareasincomparisonwiththeuntexturedjoints. Thisshowsthatforidenticalweldingparameterstheintroduction ofa textureonthesteelsurfacecanimprovethewettabilityof themetal,makingtheweldnuggetslarger.Forpowerdensities of22.7MW/m2,however,thesurfacescontainingthelines,grid

andspiralpatternsinducedasmallerbondingareathanthe untex-turedsurface.Thisexplainsthelowtensileshearloadofthejoints producedwiththegridandlinetextures(seeFig.11).

Fig.15showsthecorrelationbetweenthetensileshearstrength (whichwascalculatedforeachsample)and(a)theinteractiontime (ti)and(b)thepowerdensity(PD).

Withtheincreaseinpowerdensity,allofthetexturedsamples havehighermechanicalpropertiesthantheuntexturedsamples.

Theonlyexceptionswerethejointsobtainedwiththespiraland linespatternsatPD=22.7MW/cm2.

The highest tensile shear strength of approximately 60MPa was obtained with the sample containing the grid pattern at PD=22.7MW/cm2.Thissamplehadamaximumshearloadof2kN,

butthewettingareawasverysmall,duetothehighpowerdensity andtheuncontrolledmixingofbothmetalsduringwelding.Even thoughthisresultedinthehigheststrengthobtainedforallofthe testedsamples,thiswasnotthesamplewiththehighestload.This showsonceagainthenon-linearrelationshipbetweenthetensile strengthandthebondingareawhentheintermetalliccompounds arepresent.

Comparingtheresultsobtainedinthisworkwiththeresults availableintheliterature,onecanobserveanimprovementonthe tensileshearloadoftheFe-Aljoints.Forexample,themaximum tensile-shearloadof5kNwasobtainedbyresistancespotwelding (Qiuetal.,2009a,b),whilsttheresultsreportedinthepresentwork hadamaximumtensile-shearloadof5.6kN.

Basedontheresultspresentedinthis section,it canbe con-cluded that thelaser-generatedpatterns changethewetting of thesteelsurfacebythemoltenaluminium,oftenimprovingthe

(11)

mechanicalstrengthofthejoints.Theyalsodeterminethe dimen-sionandqualityofthebondingareabecausethepatternsallow themoltenaluminiumtoflow intomicro-channels onthesteel surface,interlockingthetwometalstogether.Thelaser-generated texturesalsodeterminetheamountofheatthatistransferredto thealuminium.Therefore,theresultsshowthatifonewantsto increasetheultimatetensileshearloadoftheFe-Aljointsanduse awiderrangeofweldingparameterstoproducethejointsthenthe besttexturetochooseisthehexagonalpattern.However,thejoints producedwiththehexagonalpatterndidnothavethemaximum tensile-shearloadnorthelargestbondingareabutthesefeatures wereconstantwithintherangeoftheexperimentalparameters. Ontheotherhand,inordertoproduceFe-Aljointswithatensile shearloadof>5.5kN,thebesttexturestochoosearethegridand spiralpatterns.Theloadof>5.5kNcanbeobtainedwiththegrid patternwhenPD=20.1MW/m2andt

i=5s,whereaswiththespiral

patternwhenPD=22.7MW/m2andt i=3s.

4. Conclusions

The conclusions presented in this paper are based on pre-liminarytestsperformedtoinvestigatetheinfluenceofdifferent texture patterns on the mechanical performance of dissimilar metallaserspotweldedjoints.Varioustexturescontainingcraters arrangedindifferentpatterns:hexagonal,parallellines,gridsand spiralswereinvestigatedinordertodeterminetheimpactofthe textureonthemaximumtensile-shearloadofthejoints.The tex-turesweretestedwithdifferentlaserenergylevels,bychanging eitherthe powerdensity or interaction time, duringlaser spot weldingtounderstandhowthetextureswouldaffectthethermal fieldinthejoinedmetalsaswellasthewettingofthesteelsurface bythemoltenaluminium.

Themainconclusionsofthispreliminarystudyareasfollows:

•DefectfreeFe-Aljointswereproducedbylaserspotweldingusing laser-texturedsteel;

•Comparedtotheuntexturedsamples,thelaser-texturedsurfaces enabledthejointstoincreasethemaximumtensile-shearloadby approximately25%;

•The maximum tensile-shearload obtained in this work was equivalenttothatreportedintheliteratureforjointsbetween Al–Al(Qiuetal.,2009a,b);

•Thejoints welded withthehexagonal texturehad maximum tensile-shearloadwith40␮mdiametercraters,30␮mdeep, sep-aratedbyadistanceof50␮m;

•Texturescomprisinglines,gridandspiralpatternshadasmaller workingenvelopethantheuntexturedsamples;

•Theresultssuggestthatthemaximumtensile-shearloadwas improvednotonlyduetoanincreaseinthebondingarea,but alsoduetothequalityanduniformityoftheweldnuggets.

Acknowledgements

Theresearchcovered inthis paperwasfunded bythe Engi-neeringandPhysicalSciencesResearchCouncil(EPSRC),theCentre forInnovativeManufacturinginLaser-basedProductionProcesses (GrantNo.:EP/K030884/1).Additionalsupportwasprovidedby AliconaandSPILasersUKLtd..Dataunderlyingthisstudycanbe accessedthroughtheCranfieldUniversityrepositoryat:http://dx. doi.org/10.17862/cranfield.rd.4205307.

References

Assuncao,E.,Williams,S.,Yapp,D.,2012.Interactiontimeandbeamdiameter effectsontheconductionmodelimit.Opt.LasersEng.50,823–828,http://dx. doi.org/10.1016/j.optlaseng.2012.02.001.

Borrisutthekul,R.,Yachi,T.,Miyashita,Y.,Mutoh,Y.,2007.Suppressionof intermetallicreactionlayerformationbycontrollingheatflowindissimilar joiningofsteelandaluminumalloy.Mater.Sci.Eng.A467,108–113,http://dx. doi.org/10.1016/j.msea.2007.03.049.

Cao,R.,Huang,Q.,Chen,J.H.,Wang,P.C.,2014.Coldmetaltransferspotplug weldingofAA6061-T6-to-galvanizedsteelforautomotiveapplications.J. AlloysCompd.585,622–632,http://dx.doi.org/10.1016/j.jallcom.2013.09.197. Chen,Y.C.,Gholinia,a.,Prangnell,P.B.,2012.Interfacestructureandbondingin

abrasioncirclefrictionstirspotwelding:anovelapproachforrapidwelding aluminiumalloytosteelautomotivesheet.Mater.Chem.Phys.134,459–463, http://dx.doi.org/10.1016/j.matchemphys.2012.03.017.

Church,G.,2015.LaserSystemsEurope.Keep.CarsLightTheirWheel.Issue28, URL http://www.lasersystemseurope.com/feature/keeping-cars-light-their-wheels(Accessed20January2016).

Dunn,A.,Carstensen,J.V.,Wlodarczyk,K.L.,Hansen,E.B.,Gabzdyl,J.,Harrison,P.M., Shephard,J.D.,Hand,D.P.,2014.Nanosecondlasertexturingforhighfriction applications.Opt.LasersEng.62,9–16,http://dx.doi.org/10.1016/j.optlaseng. 2014.05.003.

Dunn,A.,Wlodarczyk,K.L.,Carstensen,J.V.,Hansen,E.B.,Gabzdyl,J.,Harrison,P.M., Shephard,J.D.,Hand,D.P.,2015.Lasersurfacetexturingforhighfriction contacts.Appl.Surf.Sci.357,2313–2319,http://dx.doi.org/10.1016/j.apsusc. 2015.09.233.

Havrilla,D.,2014.Laserjoiningofaluminumpoisedtogrowascarsloseweight. Ind.laserSolut.Manuf.,URLhttp://www.industrial-lasers.com/articles/print/ volume-29/issue-3/features/laser-joining-of-aluminum-poised-to-grow-as-cars-lose-weight.html(Accessed20March2016).

Lesemann,M.,Sahr,C.,Hart,S.,Taylor,R.,2008.SuperLIGHT-CAR−the

multi-materialcarbody,in:proceedingsofthe7thLS-DYNAanwenderforum. Bamberg,1–10.

Martinsen,K.,Hu,S.J.,Carlson,B.E.,2015.Joiningofdissimilarmaterials.CIRP Ann.—Manuf.Technol.64,679–699,http://dx.doi.org/10.1016/j.cirp.2015.05. 006.

Meco,S.,Pardal,G.,Ganguly,S.,Williams,S.,McPherson,N.,2015.Applicationof laserinseamweldingofdissimilarsteeltoaluminiumjointsforthick structuralcomponents.Opt.LasersEng.67,22–30,http://dx.doi.org/10.1016/j. optlaseng.2014.10.006.

Oikawa,H.,Saitoh,T.,1999.Resistancespotweldingofsteelandaluminiumsheet usinginsertmetal.Weld.Int.13,349–359,http://dx.doi.org/10.1080/ 09507119909446510.

(12)

Pardal,G.,Meco,S.,Ganguly,S.,Williams,S.,Prangnell,P.,2014.Dissimilarmetal laserspotjoiningofsteeltoaluminiuminconductionmode.Int.J.Adv.Manuf. Technol.73,365–373,http://dx.doi.org/10.1007/s00170-014-5802-y. Qiu,R.,Iwamoto,C.,Satonaka,S.,2009a.Interfacialmicrostructureandstrengthof

steel/aluminumalloyjointsweldedbyresistancespotweldingwithcover plate.J.Mater.Process.Technol.209,4186–4193,http://dx.doi.org/10.1016/j. jmatprotec.2008.11.003.

Qiu,R.,Iwamoto,C.,Satonaka,S.,2009b.Theinfluenceofreactionlayeronthe strengthofaluminum/steeljointweldedbyresistancespotwelding.Mater. Charact.60,156–159,http://dx.doi.org/10.1016/j.matchar.2008.07.005. Vilhena,L.M.,Sedlaˇcek,M.,Podgornik,B.,Viˇzintin,J.,Babnik,A.,Moˇzina,J.,2009.

SurfacetexturingbypulsedNd:YAGlaser.Tribol.Int.42,1496–1504,http://dx. doi.org/10.1016/j.triboint.2009.06.003.

Williams,S.,Suder,W.,2011.Useoffundamentallasermaterialinteraction parametersinlaserwelding.In:In:ConferenceonLasersandElectro-Optics (CLEO).IEEE,Baltimore,MD,pp.1–2.

Zhang,W.H.,Qiu,X.M.,Sun,D.Q.,Han,L.J.,2011.Effectsofresistancespotwelding parametersonmicrostructuresandmechanicalpropertiesofdissimilar materialjointsofgalvanisedhighstrengthsteelandaluminiumalloy.Sci. Technol.Weld.Join.16,153–161,http://dx.doi.org/10.1179/1362171810Y. ;1;0000000009.

References

Related documents

Due to the limited measurements of impacts of community-based financial education to change behaviour, educational programmes face the challenge of proving that, without

(“A strategic management framework for the commercialisation of multi-technology renewable energy systems: The case of concentrating solar power technologies in South

In seismic profile, the organic reef in platform margin represents obvious hummocky shape of “ bottom flattened and top convex ” , with reflection features of blank or disorder in

Opticap® XL 2, 4, 5 and 10” disposable capsule ilters with 0.45 μm hydrophilic Durapore® membrane are available in multiple iltration areas, providing an optimal choice for

Männedorf – Surface Water Capacity: 800 m³/h Application: Contractor: Activated Carbon Filter Ozone drinking water WABAG Switzerland Technical Data: Strainer UF 164 dizzer 5000.

FICE CODE: 1085CR COMPLETED BY: Alex Becker INSTITUTION: UAM-Crossett DATE COMPLETED: September 15, 2017 FISCAL YEAR: FY17 TELEPHONE NO..

UTS Rowing Club are proud to support schoolgirls rowing with the donation of this perpetual trophy for the Schoolgirl Year 9 Coxed Quad Scull. UTS Rowing Club was formed in 1992

Experience to select &amp; use the approach &amp; strategy Experience to conduct learning process Experience to assess students’ outcomes Learning event (The lesson from