• No results found

Stochastic Volatility Jump Diffusion Model for Option Pricing

N/A
N/A
Protected

Academic year: 2020

Share "Stochastic Volatility Jump Diffusion Model for Option Pricing"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Stochastic Volatility Jump-Diffusion Model

for Option Pricing

Nonthiya Makate, Pairote Sattayatham

School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima, Thailand E-mail: nonthiyam@hotmail.com, pairote@sut.ac.th

Received July 26, 2011; revised September 2, 2011; accepted September 15, 2011

Abstract

An alternative option pricing model is proposed, in which the asset prices follow the jump-diffusion model with square root stochastic volatility. The stochastic volatility follows the jump-diffusion with square root and mean reverting. We find a formulation for the European-style option in terms of characteristic functions of tail probabilities.

Keywords:Jump-Diffusion Model, Stochastic Volatility, Characteristic Function, Option Pricing

1. Introduction

Let be a probability space with filtration . All processes that we shall consider in this section will be defined in this space. An asset price model with stochastic volatility has been defined by Heston [1] which has the following dynamics:

, , P

 

t 0 t T

 

d t t d td t

S

SStv W

, (1)

,

d d v

t t t

v  v t vdWt

where St is the asset price,  is the rate of return of

the asset, vt is the volatility of asset returns, 0 is

a mean-reverting rate,  is the long term variance,

0

 is the volatility of volatility, and are standard Brownian motions corresponding to the proc- esses t and t, respectively, with constant correlation

S t

W v

t

W

S v

 . In 1996, Bate [2] introduced the jump-diffusion sto- chastic volatility model by adding log normal jump t

to the Heston stochastic volatility model. In the original formulation of Bate, the model has the following form:

Y

d d S d

t t t t t t t

SStv dWS Y N S, (2)

d   d  v

t t t

v v t vdWt ,

where is the Poisson process which corresponds to the underlying asset t, t is the jump size of asset price

return with log normal distribution and t means that there is a jump the value of the process before the jump is used on the left-hand side of the formula. Moreover, in 2003, Eraker Johannes and Polson [3] extended Bate’s

work by incorporating jumps in volatility and their model is given by

S t

N

S Y

S

d d d S

t t t t t t

SStv WS Y N d tS, (3)

d d d v v

t t t t v

v  v t v WZ dNt .

Eraker et al. [3] developed a likelihood-based estima-

tion strategy and provided estimates of parameters, spot volatility, jump times, and jump sizes using S&P 500 and Nasdaq 100 index returns. Moreover, they examined the volatility structure of the S&P and Nasdaq indices and indicated that models with jumps in volatility are pre- ferred over those without jumps in volatility. But they did not provide a closed-form formula for the price of a European call option.

In this paper, we would like to consider the problem of finding a closed-form formula for a European call option where the underlying asset and volatility follow the Model (3). This formula will be useful for option pricing rather than an estimation of it as appeared in Eraker’s work.

The rest of the paper is organized as follows. In Sec- tion 2, we briefly discuss the model descriptions for the option pricing. The relationship between stochastic dif- ferential equations and partial differential equations for the jump-diffusion process with jump stochastic volatil-ity is presented in Section 3. Finally, a closed-form for- mula for a European call option in terms of characteristic functions is presented.

2. Model Descriptions

(2)

exists, the asset price t under this measure follows a jump-

diffusion process, and the volatility t follows a pure mean

reverting and square root diffusion process with jump, i.e.

our models are governed by the following dynamics:

S

v

d S d d S

t t d

S

t t t t

SS r m tvt WS Y N

, (4)

d d d v d v

t t t t t

v  v t vt WZ N ,

where St, vt,  , ,  , and are defined as

in Bate’s model, is the risk-free interest rate, and are independent Poisson processes with constant in- tensities

S t

W Wtv

r S

t

N

v t

N

S

 and v respectively. is the jump size

of the asset price return with density t

Y

Y y

 and

 

t : m and t

E Y    Z is the jump size of the volatility

with density Z . Moreover, we assume that the jump processes and are independent of standard Brownian motions and .

z

t

N

S t

W

X

S t

N v

v t

W

3. Partial Integro-Differential Equations

Consider the process

 1, 2 where

tXt Xt

 

 1

t

X

and  2

t

X are processes in  and satisfy the following

equations:

 

 

   

 

  

1 1 2 1 2

1 1

d t t , t , t , t ,

t t

  

1 d 1

t

1

d t

d

X f t X X t W

X Y

 

X X t

N

  

X X t

g

d g

(5)  2

 1 2

 1  2

 

2 2

2

d , , , ,

d

t t t t t

t t

X f t X X t W

Z N

 

2

d t

where f1,g1, f2 and g2 are all continuously differenti-

able,  1 and are standard Brownian motions

t

W  2

d

t

W

 

with d 1,  2 

 

Corr Wt Wt , Nt 1 and Nt 2 are

independent Poisson processes with constant intensities  1

 and  2 respectively.

Since every compound Poisson process can be repre- sented as an integral form of a Poisson random measure [4] then the last term on the right hand side of (5) can be written as follows:

 1  1  1  1

0 0

d d

t t

s s s n n s Q

 1 1

t

N n

d ,

X Y NX YqJ s q

 

X

 

N n

   

2 2

1

0 0

d t d

t t

s s n R d ,

Z N Z rJ s

 

 

r

where Yn are i.i.d. random variables with density Y

 

y

and J tQ1 is a Poisson random measure of the process

1

t n

n

with intensity measure ,

N

QY   1 Y

 

d dq t Zn are

i.i.d. random variables with density Z

 

z , and JR is a

Poisson random measure of the process with  2

1

t

N t

n

R

Zn

intensity measure  2

 

d d .

Z r t

 

Let U x x

1, 2

be a bounded real-valued function and

twice continuously differentiable with respect to x1 and 2

x and

 1  2

 1  2

1, ,2 T , T t 1, t 2

u x x tE U X X Xx Xx(6)

By the two dimensional Dynkin formula [5], is a solution of the partial integro-differential equation (PIDE)

u

 

 

 

1 2

1 2

(1)

1 2 1 2

(2)

1 2 1 2

, ,

0 , ,

, , , , d

, , , , d

Y

Z

u x x t

u x x t t

u x y x t u x x t y y

u x x z t u x x t z z

 

 

 

 

    

    

subject to the final condition u x x T

1, ,2

U x x

1, 2

.

The notation  is defined by

1 2 1 2

1 2 1 2

1 2

2 2

2 1 2 1 2

1 2 1 2

1 2 1

2 2 1 2

2 2

2

, , , ,

, ,

, , , ,

1 2

, , 1

2

u x x t u x x t

Au x x t f f

x x

u x x t u x x t

g g g

x x x

u x x t g

x

 

 

 

 

  

 

(7)

4. A Closed-Form Formula for the Price of a

European Call Option

Let C denote the price at time t of a European style call

option on the current price of the underlying asset with strike price and expiration time . t

S

K T

The terminal payoff of a European call option on the underlying stock St with strike price K is

max

STK,0

.

This means that the holder will exercise his right only if STK and then his gain is STK. Otherwise, if

T

S K, then the holder will buy the underlying asset

from the market and the value of the option is zero. Assuming the risk-free interest rate is constant over the lifetime of the option, the price of the European call at time t is equal to the discounted conditional

expected payoff

(3)

 

 

 

( )

( )

, , ; ,

max ,0 ,

, d , d

1

, d

e

( , )d

1 ( , )d

[ | , ]

e

t t r T t

T t t

r T t

T T t t T T t t T

K K

t r T t T T t t T

K t r T t

T t t T

K

t T T t t T

T t t K

r T t

C S v t K T

e E S K S v

e S P S S v S K P S S v S

S S P S S v S

S

Ke P S S v S

S S P S S v S

E S S v K

 

 

   

  

 

 

 

 

 

 

 

 

  

 

 

 

( )

1 2

( , )d

( , , ; , ) ( , , ; , )

T t t T

K

r T t

t t t t t

P S S v S

S P S v t K T Ke P S v t K T

 

 

(8) where E is the expectation with respect to the risk- neutral probability measure, P

S S vT t, t

is the cor-

responding conditional density given

S vt, t

and

1 t, , ; ,t T T t, t d T T t, t

K

P S v t K T S P S S v S E S S v

 

 

  

  

Note that 1 is the risk-neutral probability that

(since the integrand is nonnegative and the inte- gral over is one), and finally that

P

 

T

S K

0,

2 , , ; , , d

Pr ob( | , )

t t T t t T

K

T t

P S v t K T P S S v S

S K S v

 

 

t

is the risk-neutral in-the-money probability. Moreover,  

, er T t

T t t t

ES S v S for t0.

Assume that the asset price t and the volatility t

satisfy (4), we would like to compute the price of a European call option with strike price

S v

K and maturity

. To do this, we make a change of variable from t

to , i.e. where satisfies (4) and its inverse

T S

ln 

t

L

t

t

S St

L

t . Denote the logarithm of the strike

price. By the jump-diffusion chain rule, satisfies the SDE

Se klnK

lnSt

ln d d ln 1 d

2

 

    

 

S t S

t t t

v

d S r m t v W Yt NtS(9)

Applying the two-dimensional Dynkin formula [5] for the price dynamics (9) and volatility t in system (4),

we obtain the value of a European-style option, as a

function of the stock log-return denoted by

v

t

L

ln

, ,

, ,

t t

L S t vt

ln

, , ; , ; ,

, , ; , ; , ,

k

t t t

K t

C L v t k T C e v t e T C e v t e T C S t K T

  

i.e.,

, , ; ,

r T t  max eLT ,0

,

t t

C l v t k T e  EK Ll vv

and satisfies the following PIDE:

 

0 , , ;

, , ; , , , ; , d

, , ; , , , ; , d

S

Y

v

Z

C

C l v t k T

t

C l y v t k T v t k T y y

C l v z t k T v t k T z z

 

 

 

  

 

 

 

 

 

 ,

C l

C l

 

 

(10) Here the operator  as in (7) is defined by

2 2

2

2 2 , , ; ,

1 2 1 2

S C C

C l v t k T r m v v

l v

C C

v v

l v l

C v

  

 

 

    

 

 

 

  

 

 

 

2 1 2

C

v r



 

In the current state variable, the last line of (8) becomes

, , ; ,

l 1

, , ; ,

  2

, , ; ,

k rT t

C l v t k T e P l v t k T e   P l v t k T

(11) where

, , ; ,

:

l, , ; ,k

, 1, 2

j j

P l v t k T P e v t e T j .

The following lemma shows the relationship between and in the option value of (11).

1

P

2

P

Lemma 1 The functions and 2 in the option

value of (11) satisfy the following PIDEs

1

PP

 

1 1

1

1

1

1

0 , , ; ,

1 , , : ,

S

S y

Y

P P

P l v t k T v

t l

P

v r m P

v

e P l y v t k T y

 

 

 

   

 

  

 

 

 

dy

and subject to the boundary condition at expiration time

tT;

1 , , ; , 1l k

P l v T k T  (12) moreover, P2 satisfies the equation

2

2 2

0 P P l v t k T, , ; , rP t

 

     

 

(4)

and subject to the boundary condition at expiration time

;

tT

2 , , ; , 1l k

P l v T k T  , (13) The operator is defined by

 

 

2

2

2 2

2 2

, , ; ,

1 1

:

2 2

1 2

, , ; , , , ; , d

, , ; , , , ; , d

S

S

Y v

Z

f l v t k T

f f f

r m v v v

l v l

f f

v v rf

l v v

.

f l y v t k T f l v t k T y y

f l v z t k T f l v T k T z z

  

 

 

 

 

  

 

        

 

 

  

  

    

    

(14)

Note that 1l k 1 if lk and otherwise 1l k 0.

The following lemma shows how to calculate the functions P1 and P2 as they appeared in Lemma 1.

Lemma 2 The functions and can be calculated by the inverse Fourier transforms of the characteristic function, i.e.

1

PP2

0

, , ; , 1 1

, , ; , Re d

2 π 

  

    

 

 

ixk j

j

e f l v t k T

P l v t k T x

ix ,

for with denoting the real component of a complex number. By letting

1, 2

j Re[ ]

T t

  . 1) The characteristic function f1 is given by

 

 

1 , , ; , exp 1 ixl

f l v t x t  g  vh1  

,

where

 

1

1 2 2

1 1 1

1 1 1 1

2

1

e h

e

 

  

 

  

    

 

1

S S

g   r m ix m

 

 

 

 

1

1

1 1

1 1

2

1

1

1 2ln 1

2

1 d

1 d

ix y S

Y

v

Z

zh

e

e y y

ez z

 

  

  

  

 







     

  

  

 

 

 

 

 

,

1 ix 1

   

and  1 122ix ix

1

.

2) The characteristic function f2 is given by

 

 

2 , , ; ,  exp 2   2    

f l v t x t g vh ixl r ,

where

 

2

2 2 2

2 2 2

2

2 2 2 2 1

e h

e

 

  

  

     ,

 

2 ix

S

g   r mr

 

 

 

2

2 2 2

2 2 2

2 1 2ln 1

2

1 d 1

S ixy v

Y Z

zh

e

e y y ez

 



dz

  

     

 



     

   

  

 

 

 

2 i x

   

and  2222ix ix

1

.

In summary, we have just proved the following main theorem.

Theorem 3 The value of a European call option of (4) is

, , ; ,

1

, , ; ,

  2

, , ; ,

l k rT t

C l v t k T e P l v t k T e   P l v t k T 

where P1 and P2 are given in Lemma 2.

5. Conclusions

This paper has proposed asset price dynamics to accom- modate both jump-diffusion and jump stochastic vola- tility. Under this proposed model, an analytical solution is derived for a European call option via the characteris- tic function.

6. Acknowledgements

This research is (partially) supported by The Centre of Excellence in Mathematics, the Commission on Higher Education (CHE).

Address: 272 Rama VI Road, Ratchathewi District, Bangkok, Thailand.

7. References

[1] S. L. Heston, “A Close Form Solution for Options with Stochastic Volatility with Applications to Bond and Cur-rency Options,” The Review of Financial Studies, Vol. 6, No. 2, 1993, pp. 327-343. doi:10.1093/rfs/6.2.327 [2] D. Bates, “Jump and Stochastic Volatility: Exchange Rate

Processes Implicit in Deutsche Mark in Options,” Review of Financial Studies, Vol. 9, No. 1, 1996, pp. 69-107.

(5)

[3] B. Eraker, M. Johannes and N. Polson, “The Impact of Jumps in Volatility and Returns,” The Journal of Finance,

Vol. 58, No. 3, 2003, pp. 1269-1300. doi:10.1111/1540-6261.00566

[4] R. Cont and P. Tankov, “Financial Modeling with Jump

Processes,” CRC Press, Boca Raton, 2004.

(6)

Appendix

Proof of Lemma 1. We plan to substitute (11) into (10).

Firstly, we compute

    1 2 2                 

k r T t k r T t

l P P

C

e e re

t t t P

1   2

1              

k r T t

l P l P

C

e e P e

l l l

 1   2

  

 

k r T t

l P P

C

e e

v v v

 

2 2

2

1 1

1

2 2 2

            

k r T t

l P l P l

C

e e e P e

l l l 2 2  P l   2 2 2

1 1  

                

k r T t

l P l P

C

e e e

l v l v v l v

2  P   2 2 2 1 2 2 2             

k r T t

l P P

C

e e

v v v2

 

,

 

 

1 1 , , ; , , , ; , , , ; , , , ; , l y

k r T t

C l y v t k T C l v t k T

e P l y v t k T

e P l y v t k T

                 

 

 

1 2 1 1 1 1 1 1 1 1 , , ; , , , ; , , , ; , , , ; , , , ; , , , ; , , , ; , , , ; ,

1 , , ; ,

, , ; ,                                         

k r T t l

l y

l l

k r T t

l y

l

e P l v t k T e P l v t k T

e e P l y v t k T P l y v t k T

e P l y v t k T e P l v t k T

e P l y v t k T P l v t k T

e e P l y v t k T

e P

l y v t k T

 

1

2 1

, , ; ,

k r T t    , , ; ,   , , ; ,

P l v t k T

e P l y v t k T P l v t k T

and

 

 

 

1 2 1 2 1 1 2 2 , , ; , , , ; , , , ; , , , ; , , , ; , , , ; , , , ; , , , ; , , , ; , , , ; ,        

                            

k r T t l

k r T t l

l k r T t

C l v z t k T C l v t k T

e P l v z t k T e P l v z t k T

e P l v t k T e P l v t k T

e P l v z t k T P l v t k T

e P l v z t k T P l v t k T

We substitute all terms above into (10) and separate it by assumed independent terms of and . This gives two PIDEs for the risk-neutralized probability for

: (Equation (15))

1

P P2

( , , ; , ), 1, 2

j

P l v t k T j

 

 

2

1 1 1 1 1

1 2 1

2 2

2

1 1 1

1 1 1 1

2

1

1 1

0 ( ) 2

2 2

1 1 , , ; , , , ; , ( , , ; , ) d

2 , S S y Y v

P P P P P

r m v P v v P

t l v l l

P P P

v v rP e P l y v t k T P l y v t k T P l v t k T

l v v v

P l v

                                                  

              

 

  

1

, ; , , , ; , Z d

z t k T P l v t k Tz z

  

 

y y (15)

subject to the boundary condition at the expiration time according to (12).

t T

By using the notation in (14), PIDE (15) becomes

 

1 1 1 1 1 1 1 1

0 , , ; ,

1 , , ; ,

: , , ; ,

S

S y

Y

P P

P l v t k T v

t l

P

v r m P

v

e P l y v t k T y P

P l v t k T t                                

           dy  

For P l v t k T2

, , ; ,

:

2 2 2 1 0 2 S P P

rP r m v v

tl  

                

 

 

2 2 2

2

2 2 2

2 2 2 2 2 2 2 1 1 2 2

, , ; , , , ; , d

, , ; , , , ; , d

S

Y

v

Z

P P P

v v v rP

l v

l v

P l y v t k T P l v t k T y y

P l v z t k T P l v t k T z z

                            

       

(16) subject to the boundary condition at the expiration time

t T according to (13). Again, by using the notation in

(14), PIDE (16) becomes

2

2 2

0  [ ]( , , ; , ) 

 

P

P l v t k T rP t  2 P v    2 2 2 :  [ ]( , , ;    P

P l v t k T

(7)

The proof of Lemma 1 is now completed. For j1, 2 the characteristic functions for

, , ; ,

j

P l v t k T ,

with respect to the variable k are defined by

, , ; ,

: ixkd

, , ; ,

j j

f l v t x T e P l v t k T

 

 

,

with a minus sign to account for the negativity of the measure dPj.

Note that fj also satisfies similar PIDEs

, , ; ,

0

j

j j

f

f l v t x T t

 

 

  , (17)

with the respective boundary conditions

, , ; , d , , ; ,

d

ixk

j j

ixk ixl

f l v t x T e P l v t k T

e k l

e

   

 

   

k

since dP l v T k Tj

, , ; ,

d1l k dH l

k

 

kl

dk.

Proof of Lemma 2

1) To solve for the characteristic function explicitly, letting  T t be the time-to-go, we conjecture that

the function f1 is given by

 

 

1 , , ; ,  exp 1   1  

f l v t x t g vh ixl (18)

and the boundary condition

 

 

1 0 0 1 0

g  h .

This conjecture exploits the linearity of the coefficient in PIDE (17).

Note that the characteristic function f1 always exists.

In order to substitute (18) into (17), firstly we com- pute

 

 

1

1 1 1

f

g vh f

t  

  

 1 1

  

f ixf l

 

1 1

f h

v

f1 2

2 1

1 2

f

x f l

 

 

2 1

1 f

ixh f

l v  1

 

 

2 2 1

1 1 2

f

h f

v

1

1

1 , , ; , , , ; ,

1 , , ; ,

ixy

f l y v t x t f l v t x t e f l v t x t

 

  

  

 

1

1 1

1

, , ; , , , ; ,

1 , , ; ,

zh

f l v z t x t f l v t x t

ef l v t x t

 

   

  

and

     

1 1

1

1

1 , , ; , 1

1 , , ; ,

y y

y ixy

g vh ixl y

e f l y v t x t e e

e e f l v t x t

 

  

    

  

Substituting all the above terms into (17) and after canceling the common factor of f1, we get a simplified

form as follows:

 

 

 

 

 

 

 

 

1

 

1 1

2 1

2 2

1 1

1

1 0

2 1 2 1

2

1 d

1 d .

S

S S

Y v

Z

y

zh ix

g vh r m v ix

v v h vx

vixh vh m

e y y

ez z

  

   

    

 

 

 

 

 

     

 

   

  

 

 

By separating the order and ordering the remaining terms, we can reduce it to two ordinary differential equa-tion (ODEs),

v

 

2 2

 

 

2

1 1 1

1 1

1

2 2

h    h    ix  h   ix1

2x (19)

and

 

 

 

 

 

1

 

1 1

1

1 d

1 d .

S S

S

Y v

Z

y

zh ix

g h r m ix

e y

ez

    

 

 

   

    

 

 

m y

z

(20)

Let 1

ix 1

 and substitute it into (19). We get

 

2 2 1

1 1 2 1 2

2 2 1 1

1 2

2 2 1 1

1 2

2 1 1 1 1

1 2 1 2

2

1 1 1

2

2 4 4 1

1 2

2 2

2 4 4 1

2 1

2

h h h ix ix

ix ix h

ix ix h

h h

  

     

   

 

 

 

    

 

 

 

 

 

 

 

 

 

   

  



  

where 2 2

1 1  ix ix 1

    .

By the method of variable separation, we have

2 1

1 1 1 1

1 2 1 2

2d  d

 

 

      

  

  

h

h h

(8)

Using partial fractions, we get

1

1 1 1 1

1

1 2 1 2

1 1 1

d d

 

 

 

 

 

   

  

 

h

h h

 .

0

, , ; , 1 1

, , ; , Re d

2 π

j j

ixk

e f l v t k T

P l v t k T x

ix



   

 

 

(21)

for j1, 2.

To verify (21), firstly we note that

 

   

ln ln ln ,

, d ,

d , , ; , d

, , ; , .

t

t t t

t t j

j

j

ix St K

ix ix L k

ixk ixl ixk ixk

ixk

l k

E e S L v v

E e L l v v e P l v t k T

e e P l v t k T e e l k k

e f l v t k T

 

 

 

 

 

 

 

  

Integrating both sides, we obtain

1 1 1 2

1 1 1 1 2 ln

h

C h

 

 

 

  

 

  

 

. , ; ,

Using boundary conditionh1(0) 0 , we get 1 1

1 1 ln

C

   

   

 .

Then Solving for h1, we obtain

 



1

1 2 2

1 1

1 2

1 1 1 1

1

e h

e

 

 

  

   

     .

In order to solve g1

 

 explicitly, we substitute h1

 

into (20) and integrate with respect to  on both sides. Then we get

 

 

 

 

 

1

1 1

1 1

1 1

2

1

1

1 2 ln 1

2

1 d

1 d

S S

S

Y

v

Z

y

zh ix

g r m ix m

e

e y y

ez z

   

  

  

  

 





  

      

   

    

 

 

 

 

Proof of 2). The details of the proof are similar to case 1). Hence, we have

 

 

0

0

0

0

ln ln

, , ; ,

1 1 Re d

2 π

ln ,

1 1 Re d

2 π

1 1 Re d ,

2 π

sin

1 1 d ,

2 π

1 sgn 1

2 π

j

t t t

t t

t t

ixk

ix St K

ixl k

e f l v t k T

x ix

E e S L v v

x ix

e

E x L l v

ix

x l k

E x L l v

x

E l k









 

  

 

 

 

 

2 , , ; , exp 2 2

f l v t x t  g  vh  ixlr

v

v

  

 

 

 

 

 

   

 

     

 

 

  

     

 

 

  

0

sin d ,

1 1sgn ,

2 2

1 ,

t t

t t

l k t t

x

x L l v v

x

E l k L l v v

E L l v v



 

 

 

 

 

 

   

 

 

 

2

where g2

   

 ,h2  , and 2 are as given in the Lemma.

We can thus evaluate the characteristic functions in explicit form. However, we are interested in the risk-neu- tral probabilities . These can be inverted from the characteristic functions by performing the following integration

, 1, 2

j

P j 

where we have used the Dirichlet formula

0

sinxd 1

x x  

and the function is defined as if , 0 if

sgn 0

 

sgn x 1 x0

References

Related documents

The paper also finds that, worryingly, elderly home owners with characteristics associated with slower house price appreciation rates are over-represented among reverse

In terms of layout I have chosen my own format, with five sections: Part 1 starts with the general principles of creating and writing contracts and Part 2 picks up a series of

Combustible/ flammable materials properly stored / used -good housekeeping-fire extinguishers made available & Fire hydrant Network with reserve Fire water (As per NFPA Code)

You could find the link that our company offer in website to download For Those I Loved By Martin Gray By buying the inexpensive price and obtain finished downloading and install,

Such Undoped YVO 4 and Nd doped YVO 4 single crystals behaviour of additional absorption of YVO :Nd single 4 obtained in our laboratory exhibit good optical quality and crystal

This third adjustment has been accomplished because the method of using transects has approved to be more practicable and more precise (Voß and Jödicke, 2006). Thereby each

In the experiments that test our implementation of case- based adaptive game AI, we observed that the game AI was well able to achieve a victory when pitted against the original