• No results found

(+) (3S,4R) Norcisapride hydrogen (2R,3R) tartrate monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "(+) (3S,4R) Norcisapride hydrogen (2R,3R) tartrate monohydrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1169±o1171 DOI: 10.1107/S1600536802017683 Peeters and Blaton C14H21ClN3O3+C4H5O6ÿH2O

o1169

organic papers

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(+)-(3

S

,4

R

)-Norcisapride hydrogen

(2

R

,3

R

)-tartrate monohydrate

Oswald M. Peeters* and Norbert M. Blaton

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

Correspondence e-mail:

oswald.peeters@pharm.kuleuven.ac.be

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.037

wRfactor = 0.107 Data-to-parameter ratio = 8.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, (+)-(3S,4R)-cis

-4-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-1-ium-4-yl)benzamide

hydrogen (2R,3R)-dihydroxybutanedioate monohydrate,

C14H21ClN3O3+C4H5O6ÿH2O, is the (+)-tartrate salt of

(+)-norcisapride. It has been found that (+)-norcisapride has both 5-HT3 antagonistic and 5-HT4 agonistic properties and is further substantially devoid of central nervous system

effects. An intramolecular NÐH O hydrogen bond forces

the amido group to be roughly coplanar with the substituted benzene ring. A three-dimensional network of hydrogen bonds is formed in the crystal. The absolute con®guration of (+)-norcisapride is 3S,4R.

Comment

The title compound, (I), is the (+)-tartrate salt of the (+)-enantiomer of norcisapride.

Racemic norcisapride is the principal metabolite of racemic

cisapride, a widely used gastrokinetic drug (Meuldermanset

al., 1988). The metabolization occurs mainly via the

cyto-chrome P-450 isoenzyme CYP3A4 (Bohets et al., 2000).

Certain therapeutic agents (e.g.ketoconazole) that inhibit the metabolic pathway of cisapride can give rise to undesirably high cisapride blood levels that may cause side effects.

It has been discovered that (ÿ)-norcisapride is a potent

drug for the treatment of gastro-oesophageal re¯ux disease, while substantially reducing adverse effects associated with the administration of racemic cisapride (McCullough & Aberg, 1998). It has also been found that (+)-norcisapride has both 5-HT3 antagonistic and 5-HT4 agonistic properties and is further substantially devoid of central nervous system effects (Heykantset al., 1999).

To contribute to a better understanding of the mechanism of action of (ÿ)- and (+)-norcisapride, the crystal structure and absolute con®guration of the title compound was deter-mined.

The absolute con®guration of the (+)-norcisapride moiety is 3S,4Rin view of the fact that the Flack (1983) parameter for

this con®guration isÿ0.01 (2) and that the known

con®gura-tion 2R,3Rfor (+)-tartrate is obtained. As in the structures of

(2)

organic papers

o1170

Peeters and Blaton C14H21ClN3O3+C4H5O6ÿH2O Acta Cryst.(2002). E58, o1169±o1171

cisapride (Collinet al., 1989) and cisapride tartrate (Peeterset

al., 1997), an intramolecular hydrogen bond between the

amido N atom and the O atom of theo-methoxy substituent

(Table 1) forces the amido moiety and the substituted benzene ring to be roughly coplanar [dihedral angle between the two

least-squares planes: 10.8 (1)]. The C-atom chain of the

hydrogen tartrate ion is in an extended conformation, with the

hydroxyl O atoms having aÿscconformation with respect to

one another. The hydrogen bonds listed in Table 1 form a three-dimensional network in the crystal.

Experimental

The title compound was obtained from the Janssen Research Foun-dation, Beerse, Belgium. The synthesis has been described by Heykantset al.(1999). Single crystals were grown by slow evapora-tion from a soluevapora-tion in methanol±water.

Crystal data

C14H21ClN3O3+C4H5O6ÿH2O

Mr= 481.89 Monoclinic,P21

a= 7.6086 (4) AÊ

b= 10.664 (1) AÊ

c= 14.0482 (6) AÊ = 93.980 (6)

V= 1137.1 (1) AÊ3

Z= 2

Dx= 1.407 Mg mÿ3 CuKradiation Cell parameters from 39

re¯ections = 10.8±28.0 = 2.01 mmÿ1

T= 293 K Block, colourless 0.450.300.26 mm

Data collection

SiemensP4 four-circle diffractometer !/2scans

Absorption correction: scan (XEMP; Siemens, 1989)

Tmin= 0.325,Tmax= 0.593

2935 measured re¯ections 2350 independent re¯ections 2280 re¯ections withF2> 2(F2)

Rint= 0.033

max= 69.0

h=ÿ1!8

k=ÿ1!12

l=ÿ17!17 3 standard re¯ections

every 100 re¯ections intensity decay: none

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.037

wR(F2) = 0.107

S= 1.06 2350 re¯ections 295 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.069P)2 + 0.2043P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.21 e AÊÿ3

min=ÿ0.26 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.026 (2) Absolute structure: Flack (1983),

220 Friedel pairs Flack parameter =ÿ0.01 (2)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N9ÐH9 O18 0.86 1.97 2.643 (3) 134

O26ÐH26 O22 0.82 2.03 2.545 (4) 120

O28ÐH28 O11 0.82 1.97 2.776 (3) 167

O32ÐH32A O26 0.85 1.96 2.764 (5) 158

N1ÐH1A O11i 0.90 2.21 2.953 (3) 140

N1ÐH1B O22ii 0.90 1.86 2.728 (4) 161

N20ÐH20A O23iii 0.86 2.16 2.955 (4) 155

N20ÐH20B O31iv 0.86 2.41 2.970 (4) 123

O30ÐH30 O23v 0.82 1.72 2.535 (3) 171

O32ÐH32B O28vi 0.85 2.34 3.107 (5) 150

Symmetry codes: (i) 1‡x;y;z; (ii) 2ÿx;1

2‡y;1ÿz; (iii) 1ÿx;12‡y;2ÿz; (iv) ÿx;1

2‡y;2ÿz; (v)xÿ1;y;z; (vi) 1ÿx;yÿ12;1ÿz.

The positions of the H atoms of the water molecule were obtained with the programHYDROGEN(Nardelli, 1999). Those of the OH and methyl groups were found from a circular difference Fourier synthesis. The remaining H atoms were calculated geometrically. All H atoms were included in the re®nement, but constrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were ®xed at 1.25Ueqof their parent atoms.

Data collection: XSCANS (Siemens, 1996); cell re®nement:

XSCANS; data reduction: XSCANS; program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

DIAMOND (Bergerhoff, 1996); software used to prepare material for publication:PARST(Nardelli, 1983),PLATON(Spek, 1998) and

WinGX(Farrugia, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straûe 1, Bonn, Germany.

Bohets, H., Lavrijsen, K., Hendrickx, J., Van Houdt, J., Van Genechten, V., Verboven, P., Meuldermans, W. & Heykants, J. (2000).Br. J. Pharmacol.129, 1655±1667.

Collin, S., Vercauteren, D. P., Evrard, G., Durant, F., Tollenaere, J. P. & Moereels, H. (1989).J. Mol. Struct.214, 159±175.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Heykants, J., Megens, A., Meuldermans, W. & Schuurkes, J. (1999). Patent No. WO9902496.

McCullough, J. & Aberg, A. (1998). Patent No. WO9640133.

Meuldermans, W., Vanpeer A., Hendrickx, J., Lauwers, W., Swysen, E., Bockx, M., Woestenborghs, R. & Heykants, J. (1988).Drug Metab. Dispos.16, 403± 409.

Figure 1

(3)

Nardelli, M. (1983).Comput. Chem.7, 95±98. Nardelli, M. (1999).J. Appl. Cryst.32, 563±571.

Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1997).Acta Cryst.C53, 597± 599.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany.

Siemens (1989).XEMP.Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996).XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1998).PLATON.University of Utrecht, The Netherlands.

(4)

supporting information

sup-1

Acta Cryst. (2002). E58, o1169–o1171

supporting information

Acta Cryst. (2002). E58, o1169–o1171 [doi:10.1107/S1600536802017683]

(+)-(3

S

,4

R

)-Norcisapride hydrogen (2

R

,3

R

)-tartrate monohydrate

Oswald M. Peeters and Norbert M. Blaton

S1. Comment

The title compound, (I), is the (+)-tartrate salt of the (+)-enantiomer of norcisapride.

Racemic norcisapride is the principal metabolite of racemic cisapride, a widely used gastrokinetic drug (Meuldermans

et al., 1988). The metabolization occurs mainly via the cytochrome P-450 isoenzyme CYP3A4 (Bohets et al., 2000). Certain therapeutic agents (e.g. ketoconazole) that inhibit the metabolic pathway of cisapride can give rise to undesirably high cisapride blood levels that may cause side effects.

It has been discovered that (-)-norcisapride is a potent drug for the treatment of gastro-esophageal reflux disease while substantially reducing adverse effects associated with the administration of racemic cisapride (McCullough & Aberg, 1998). It has also been found that (+)-norcisapride has both 5-HT3 antagonistic and 5-HT4 agonistic properties and is further substantially devoid of central nervous system effects (Heykants et al., 1999).

To contribute to a better understanding of the mechanism of action of the (-)- and (+)-norcisapride, the crystal structure and absolute configuration of the title compound was determined.

The absolute configuration of the (+)-norcisapride moiety is 3S,4R in view of the fact that the Flack (1983) parameter for this configuration is −0.01 (2) and that the known configuration 2R,3R for (+)-tartrate is obtained. As in the structures of cisapride (Collin et al., 1989) and cisapride tartrate (Peeters et al., 1997) an intramolecular hydrogen bond between the amidic N atom and the O atom of the o-methoxy substituent (Table 1) forces the amido moiety and the substituted benzene ring to be roughly coplanar [dihedral angle between the two least-squares planes: 10.8 (1)°]. The C atom chain of the hydrogen tartrate ion is in an extended conformation with the hydroxyl O atoms -sc with respect to one another. The hydrogen bonds listed in Table 2 form a three-dimensional network in the crystal.

S2. Experimental

The title compound was obtained from the Janssen Rechearch Foundation, Beerse, Belgium. The synthesis has been described by Heykants et al. (1999). Single crystals were grown by slow evaporation from a solution in methanol–water.

S3. Refinement

(5)

supporting information

sup-2

[image:5.610.128.487.68.444.2]

Acta Cryst. (2002). E58, o1169–o1171

Figure 1

Perspective view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(+)-(3S,4R)-cis-4-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-1-ium-4-yl) benzamide hydrogen (2R,3R

)-dihydroxybutanedioate monohydrate

Crystal data

C14H21ClN3O3+·C4H5O6−·H2O Mr = 481.89

Monoclinic, P21 a = 7.6086 (4) Å

b = 10.664 (1) Å

c = 14.0482 (6) Å

β = 93.980 (6)°

V = 1137.1 (1) Å3 Z = 2

F(000) = 508

Dx = 1.407 Mg m−3

Cu radiation, λ = 1.54178 Å Cell parameters from 39 reflections

θ = 10.8–28.0°

(6)

supporting information

sup-3

Acta Cryst. (2002). E58, o1169–o1171

Data collection

Siemens P4 four-circle diffractometer

ω/2θ scans

Absorption correction: ψ scan (XEMP; Siemens, 1989)

Tmin = 0.325, Tmax = 0.593 2935 measured reflections 2350 independent reflections

2280 reflections with F2 > 2σ(F2) Rint = 0.033

θmax = 69.0°

h = −1→8

k = −1→12

l = −17→17

3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.107 S = 1.06 2350 reflections 295 parameters

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.069P)2 + 0.2043P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.21 e Å−3

Δρmin = −0.26 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin((2θ)]-1/4

Extinction coefficient: 0.026 (2)

Absolute structure: Flack (1983), 220 Friedel pairs

Absolute structure parameter: −0.01 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(7)

supporting information

sup-4

Acta Cryst. (2002). E58, o1169–o1171

O26 0.4549 (3) 0.2500 (3) 0.5963 (2) 0.0650 (9)* C27 0.4360 (4) 0.4391 (3) 0.6895 (2) 0.0434 (9)* O28 0.4358 (3) 0.5134 (2) 0.6063 (2) 0.0475 (7)* C29 0.2509 (4) 0.4065 (3) 0.7192 (2) 0.047 (1)* O30 0.1244 (3) 0.4570 (3) 0.6666 (2) 0.0628 (8)* O31 0.2339 (3) 0.3397 (4) 0.7876 (2) 0.081 (1)* O32 0.3290 (5) 0.0093 (4) 0.5658 (3) 0.109 (2)* H1A 1.0982 0.8417 0.6244 0.059* H1B 1.0877 0.8485 0.5207 0.059* H2A 0.8349 0.9639 0.5174 0.065* H2B 0.9857 1.0322 0.5795 0.065* H3 0.7268 1.0272 0.6625 0.056* H4 0.6027 0.8395 0.6020 0.055* H5A 0.7224 0.6454 0.6411 0.059* H5B 0.8714 0.7062 0.7088 0.059* H6A 0.9954 0.6549 0.5678 0.064* H6B 0.8449 0.7249 0.5070 0.064* H8A 1.0636 1.0446 0.8347 0.117* H8B 0.8994 1.1179 0.7901 0.117* H8C 1.0592 1.0904 0.7286 0.117* H9 0.6446 0.8589 0.7958 0.064* H14 0.3645 0.9297 1.0536 0.063* H17 0.1398 0.6945 0.7974 0.054* H19A 0.7553 1.0375 0.9779 0.104* H19B 0.6540 0.9551 1.0485 0.104* H19C 0.5655 1.0761 1.0036 0.104* H20A 0.1097 0.8759 1.1359 0.089* H20B −0.0334 0.7957 1.0912 0.089* H25 0.5348 0.2672 0.7312 0.058* H26 0.5276 0.2355 0.5572 0.081* H27 0.4983 0.4851 0.7420 0.054* H28 0.4080 0.5855 0.6188 0.059* H30 0.0299 0.4393 0.6880 0.078* H32A 0.3552 0.0810 0.5891 0.137* H32B 0.3534 0.0097 0.5077 0.137*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-5

Acta Cryst. (2002). E58, o1169–o1171

C10 0.037 (2) 0.055 (2) 0.038 (1) 0.003 (1) 0.005 (1) −0.004 (1) O11 0.041 (1) 0.064 (1) 0.041 (1) −0.003 (1) 0.0038 (7) −0.010 (1) C12 0.030 (1) 0.055 (2) 0.040 (1) 0.002 (1) 0.007 (1) −0.003 (1) C13 0.043 (2) 0.056 (2) 0.042 (1) −0.002 (1) 0.007 (1) −0.008 (1) C14 0.048 (2) 0.063 (2) 0.042 (1) −0.001 (2) 0.008 (1) −0.008 (1) C15 0.051 (2) 0.058 (2) 0.041 (1) 0.008 (1) 0.017 (1) 0.005 (1) C16 0.035 (2) 0.059 (2) 0.047 (1) 0.003 (1) 0.011 (1) 0.008 (1) C17 0.035 (2) 0.053 (2) 0.041 (1) 0.002 (1) 0.003 (1) 0.001 (1) O18 0.048 (1) 0.087 (2) 0.050 (1) −0.022 (1) 0.0130 (9) −0.024 (1) C19 0.074 (3) 0.110 (4) 0.066 (2) −0.031 (3) 0.008 (2) −0.035 (3) N20 0.072 (2) 0.093 (2) 0.052 (1) −0.006 (2) 0.032 (1) −0.002 (2) Cl21 0.0483 (5) 0.0927 (7) 0.0693 (5) −0.0162 (4) 0.0172 (3) 0.0086 (5) O22 0.057 (2) 0.111 (2) 0.064 (1) −0.009 (2) 0.032 (1) −0.015 (2) O23 0.029 (1) 0.083 (2) 0.056 (1) −0.003 (1) 0.0063 (8) 0.001 (1) C24 0.030 (1) 0.065 (2) 0.047 (1) 0.003 (1) 0.011 (1) 0.006 (1) C25 0.035 (2) 0.056 (2) 0.049 (2) −0.004 (1) 0.008 (1) 0.001 (1) O26 0.048 (1) 0.069 (2) 0.078 (2) −0.007 (1) 0.004 (1) −0.020 (1) C27 0.031 (2) 0.061 (2) 0.039 (1) −0.006 (1) 0.009 (1) −0.005 (1) O28 0.037 (1) 0.054 (1) 0.053 (1) −0.0037 (9) 0.0135 (8) −0.001 (1) C29 0.028 (1) 0.072 (2) 0.043 (1) −0.001 (1) 0.009 (1) −0.001 (1) O30 0.026 (1) 0.098 (2) 0.065 (1) −0.002 (1) 0.0074 (9) 0.021 (1) O31 0.042 (1) 0.136 (3) 0.067 (1) 0.005 (2) 0.019 (1) 0.039 (2) O32 0.105 (3) 0.072 (2) 0.149 (3) −0.017 (2) 0.000 (2) 0.003 (3)

Geometric parameters (Å, º)

N1—H1A 0.900 C14—H14 0.930

N1—H1B 0.900 C14—C15 1.398 (5)

N1—C2 1.487 (5) C15—C16 1.404 (4)

N1—C6 1.489 (5) C15—N20 1.358 (5)

C2—H2A 0.970 C16—C17 1.384 (4)

C2—H2B 0.970 C16—Cl21 1.735 (3)

C2—C3 1.513 (4) C17—H17 0.930

C3—H3 0.980 O18—C19 1.427 (5)

C3—C4 1.526 (5) C19—H19A 0.960

C3—O7 1.423 (3) C19—H19B 0.960

C4—H4 0.980 C19—H19C 0.960

C4—C5 1.517 (5) N20—H20A 0.860

C4—N9 1.459 (4) N20—H20B 0.860

C5—H5A 0.970 O22—C24 1.242 (4)

C5—H5B 0.970 O23—C24 1.249 (4)

C5—C6 1.527 (5) C24—C25 1.529 (4)

C6—H6A 0.970 C25—H25 0.980

C6—H6B 0.970 C25—O26 1.413 (4)

O7—C8 1.408 (6) C25—C27 1.517 (5)

C8—H8A 0.960 O26—H26 0.820

C8—H8B 0.960 C27—H27 0.980

(9)

supporting information

sup-6

Acta Cryst. (2002). E58, o1169–o1171

N9—H9 0.860 C27—C29 1.536 (4)

N9—C10 1.323 (4) O28—H28 0.820

C10—O11 1.254 (3) C29—O30 1.290 (4) C10—C12 1.488 (4) C29—O31 1.210 (5)

C12—C13 1.408 (4) O30—H30 0.820

C12—C17 1.392 (4) O32—H32A 0.850 C13—C14 1.382 (4) O32—H32B 0.850 C13—O18 1.364 (4)

(10)

supporting information

sup-7

Acta Cryst. (2002). E58, o1169–o1171

O7—C8—H8C 109.5 C25—C27—C29 109.1 (2) H8A—C8—H8B 109.5 H27—C27—O28 108.3 H8A—C8—H8C 109.5 H27—C27—C29 108.3 H8B—C8—H8C 109.5 O28—C27—C29 113.8 (2) C4—N9—H9 117.3 C27—O28—H28 109.5 C4—N9—C10 125.4 (2) C27—C29—O30 114.3 (2) H9—N9—C10 117.3 C27—C29—O31 120.0 (3) N9—C10—O11 122.0 (3) O30—C29—O31 125.7 (3) N9—C10—C12 118.0 (2) C29—O30—H30 109.5 O11—C10—C12 120.0 (2) H32A—O32—H32B 107.7 C10—C12—C13 126.5 (2)

(11)

supporting information

sup-8

Acta Cryst. (2002). E58, o1169–o1171

C2—C3—O7—C8 77.3 (4) C13—O18—C19—H19A 176.4 H3—C3—O7—C8 −44.1 C13—O18—C19—H19B 56.4 C4—C3—O7—C8 −162.6 (3) C13—O18—C19—H19C −63.6 C3—C4—C5—H5A −173.9 O22—C24—C25—H25 115.9 C3—C4—C5—H5B 68.1 O22—C24—C25—O26 −2.4 (4) C3—C4—C5—C6 −52.9 (3) O22—C24—C25—C27 −125.1 (3) H4—C4—C5—H5A −54.1 O23—C24—C25—H25 −62.9 H4—C4—C5—H5B −172.1 O23—C24—C25—O26 178.8 (3) H4—C4—C5—C6 66.9 O23—C24—C25—C27 56.1 (4) N9—C4—C5—H5A 65.8 C24—C25—O26—H26 2.6 N9—C4—C5—H5B −52.1 H25—C25—O26—H26 −115.7 N9—C4—C5—C6 −173.1 (3) C27—C25—O26—H26 125.3 C3—C4—N9—H9 −36.7 C24—C25—C27—H27 −56.2 C3—C4—N9—C10 143.3 (3) C24—C25—C27—O28 61.4 (3) H4—C4—N9—H9 −154.7 C24—C25—C27—C29 −173.9 (3) H4—C4—N9—C10 25.3 H25—C25—C27—H27 62.8 C5—C4—N9—H9 85.3 H25—C25—C27—O28 −179.6 C5—C4—N9—C10 −94.7 (3) H25—C25—C27—C29 −54.9 C4—C5—C6—N1 53.0 (3) O26—C25—C27—H27 −178.1 C4—C5—C6—H6A 173.9 O26—C25—C27—O28 −60.5 (3) C4—C5—C6—H6B −67.9 O26—C25—C27—C29 64.2 (3) H5A—C5—C6—N1 174.0 C25—C27—O28—H28 −164.0 H5A—C5—C6—H6A −65.1 H27—C27—O28—H28 −46.4 H5A—C5—C6—H6B 53.1 C29—C27—O28—H28 74.2 H5B—C5—C6—N1 −68.0 C25—C27—C29—O30 −125.1 (3) H5B—C5—C6—H6A 52.9 C25—C27—C29—O31 55.8 (4) H5B—C5—C6—H6B 171.0 H27—C27—C29—O30 117.2 C3—O7—C8—H8A −178.4 H27—C27—C29—O31 −61.9 C3—O7—C8—H8B 61.6 O28—C27—C29—O30 −3.3 (4) C3—O7—C8—H8C −58.4 O28—C27—C29—O31 177.6 (3) C4—N9—C10—O11 4.3 (5) C27—C29—O30—H30 −176.7 C4—N9—C10—C12 −175.6 (3) O31—C29—O30—H30 2.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N9—H9···O18 0.86 1.97 2.643 (3) 134 O26—H26···O22 0.82 2.03 2.545 (4) 120 O28—H28···O11 0.82 1.97 2.776 (3) 167 O32—H32A···O26 0.85 1.96 2.764 (5) 158 N1—H1A···O11i 0.90 2.21 2.953 (3) 140

N1—H1B···O22ii 0.90 1.86 2.728 (4) 161

N20—H20A···O23iii 0.86 2.16 2.955 (4) 155

N20—H20B···O31iv 0.86 2.41 2.970 (4) 123

O30—H30···O23v 0.82 1.72 2.535 (3) 171

O32—H32B···O28vi 0.85 2.34 3.107 (5) 150

Figure

Figure 1

References

Related documents

The index page cluster ratio is used to estimate the cost of large I/O for queries that need to read a large number of leaf-level pages from nonclustered indexes or clustered

• First, unfold your disposable washcloth and put it on your lap. Then, use your finger tips to wet your face. Then, put the cleanser on your fingers. You will want to suds it up

preprocessing, the extended-minima transform is used to detect the initial candidates, and a Bayesian classifier was used to perform the pixel-based MA classification.

Regions of the Brain Clivus/ Pituitary Area Clivus/ Pituitary Area Midbrain Frontal Parietal &amp; Occipital Temporal Temporal Cerebellum Clivus/ Pituitary Area Clivus/

We find that due to network externalities, prices for both products in the closed source model and for the complementary product in the open source model will begin low in order

Drag and direction of motion is called a quantity, it does not work with these quantities, speed and direction attached to be broken down and.. The magnitude both a direction that

NATO must be prepared to create a strong deterrence to aggressive actions by the Russians while providing active support, reassurance, moderation, and defense to the Baltic States

Based on the review of the quality, safety and efficacy data, the Member States have granted a marketing authorisation for Lercanidipinhydrochlorid ”Sandoz” 10 mg and 20 mg