• No results found

Crystal structures of 4 (pyrimidin 2 yl)piperazin 1 ium chloride and 4 (pyrimidin 2 yl)piperazin 1 ium nitrate

N/A
N/A
Protected

Academic year: 2020

Share "Crystal structures of 4 (pyrimidin 2 yl)piperazin 1 ium chloride and 4 (pyrimidin 2 yl)piperazin 1 ium nitrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

research communications

Acta Cryst.(2014).E70, 203–206 doi:10.1107/S1600536814020169

203

Received 30 August 2014 Accepted 7 September 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords:crystal structure; pyrimidine–piper-azine heterocyclic salts; chloride salt; nitrate salt; bifurcated hydrogen bonds

CCDC references:1023201; 1023202

Supporting information:this article has supporting information at journals.iucr.org/e

Crystal structures of

4-(pyrimidin-2-yl)piperazin-1-ium chloride and 4-(pyrimidin-2-yl)piperazin-1-4-(pyrimidin-2-yl)piperazin-1-ium

nitrate

Thammarse S. Yamuna,aJerry P. Jasinski,b* Manpreet Kaur,aBrian J. Andersonband H. S. Yathirajana

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, andbDepartment of

Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA. *Correspondence e-mail: jjasinski@keene.edu

The title salts, C8H13N4 +

Cl, (I), and C8H13N4 +

NO3

, (II), contain linked pyridinium–piperazine heterocycles. In both salts, the piperazine ring adopts a chair conformation with protonation at the N atom not linked to the other ring. In the crystal of (I), weak N—H Cl interactions are observed, leading to zigzag chains along [100]. In the crystal of (II), both H atoms on the NH2

+

group form bifurcated N—H (O,O) hydrogen bonds. Weak C—H O interactions are also observed. These bonds collectively link the components into infinite chains along [100].

1. Chemical context

Pyrimidine-containing compounds exhibit various biological activities (Goldmann & Stoltefuss, 1991) and related fused heterocycles are unique classes of heterocyclic compounds that exhibit a broad spectrum of biological activities such as anticancer (Amin et al., 2009; Pandey et al., 2004), antiviral (Ibrahim & El-Metwally, 2010), antibacterial (Kuyper et al., 1996) and anti-oxidant (Padmajaet al., 2009), antidepressant (Kimet al., 2010) and possess anti-inflammatory effects (Clark

et al., 2007). In addition, several piperazine derivatives have reached the stage of clinical application; among the known drugs that are used to treat anxiety is a pyrimidinylpiperazinyl compound, buspirone (trade name BuSpar1) (Tollefsonet al., 1991). Our research group has published a number of papers on incorporated heterocyclic ring structures,viz.imatinibium dipicrate (Jasinski et al., 2010), 1-(2-hydroxyethyl)-4-[3-(2-trifluoromethyl-9H -thioxanthen-9-ylidene)propyl]piperazine-1,4-diium dichloride, which is the dihydrochloride salt of flupentixol (Siddegowda et al., 2011a) and opipramolium fumarate (Siddegowda et al., 2011b). Other related crystal structures are 4-(pyrimidin-2-yl)piperazin-1-ium (E )-3-carb-oxyprop-2-enoate (Yamunaet al., 2014a), flupentixol tartarate and enrofloxacinium oxalate (Yamunaet al., 2014b,c). As part of our ongoing studies in this area, we report herein the crystal structures of the title salts, (I) and (II).

(2)

2. Structural commentary

The structure of (I) and its atom numbering are shown in Fig. 1. It consists of a pyrimidylpiperazine cation joined by the C1/N3 atoms of each unit and a chloride anion. The C1—N3 bond is 1.373 (3) A˚ long, which compares favorably with similar ionic structures containing this cation [1.369 (3) (Yamunaet al., 2014a), and 1.36 (6) and 1.37 (1) A˚ (Dinget al., 2014)]. The N3/C5/C6/N4/C7/C8 piperazine unit adopts a slightly distorted chair conformation with protonation at the N4 nitrogen atom. The structure of (II) and its atom numbering are shown in Fig. 2. Similarly, it consists of a pyrimidylpiperazine cation joined by the C1/N3 atoms of each unit and a nitrate anion. The C1—N3 bond is 1.369 (3) A˚ , also in the range of the related structures described above. The N3/ C5/C6/N4/C7/C8 piperazine unit also adopts a slightly distorted chair conformation with protonation at the N4 atom.

3. Supramolecular features

In the crystal of (I), N4—H4A Cl1 and N4—H4B Cl1 interactions are observed between pyrimidylpiperazine cations and chloride anions, forming zigzag chains along [100] (Fig. 3 and Table 1). In the crystal of (II), both of the H atoms on the N4 atom of the pyrimidylpiperazine cation are bifur-cated, forming N—H (O,O) hydrogen bonds (Fig. 4 and Table 2). Additional C—H O interactions between the pyrimidyl unit and the nitrate anion are present which, in concert with the N—H O hydrogen bonds between the

piperazine group and nitrate anions, form infinite chains along [100].

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014: Allen 2002) revealed only three

struc-204

Yamunaet al. C

8H13N4+Cland C8H13N4+NO3 Acta Cryst.(2014).E70, 203–206

[image:2.610.313.567.72.296.2]

research communications

Figure 1

ORTEP drawing of C8H13N4+Cl, (I), showing 30% probability

displacement ellipsoids.

Figure 2

ORTEP drawing of C8H13N4 +

NO3

, (II), showing 30% probability displacement ellipsoids.

Figure 3

Molecular packing for C8H13N4+Cl, (I), viewed along thebaxis. Dashed

lines indicate N—H Cl interactions forming zigzag chains along thea

[image:2.610.46.296.72.174.2] [image:2.610.315.565.462.685.2]

axis (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 4

Molecular packing for C8H13N4 +

NO3

[image:2.610.46.296.586.722.2]
(3)

tures containing the 4-(pyrimidin-2-yl)piperazin-1-ium cation similar to the structures reported here. These include the salts of 4-(pyrimidin-2-yl)piperazin-1-ium 3-carboxyprop-2-enoate (Yamuna et al. 2014a), 4-(pyrimidin-2-yl)piperazin-1-ium hydrogen d-tartrate monohydrate (Ding et al., 2014) and

4-(pyrimidin-2-yl)piperazin-1-ium hydrogen l-tartrate

mono-hydrate (Ding et al. 2014). The 3-carboxyprop-2-enoate

complex crystallizes in space group P21/c while the two

hydrogen (DandL)-tartrate monohydrate salts both crystal-lize in P212121. In comparison, title salt (I) crystallizes in

P212121 while (II) crystallizes in space group P21/c. In

addi-tion, as a related observaaddi-tion, 109 structures containing the pyrimidine–piperazine unit were also identified in this search. Some of these include, uniquely, the 4-(pyrimidin-2-yl)piper-azin-1-yl unit itself. These include 1-[4-(pyrimidin-2-yl)piper-azin-1-yl]ethanone, (1-methyl-1H -pyrrol-2-yl)[4-(pyrimidin-2-yl)piperazin-1-yl]methanone, [4-(pyrimidin-2-yl)piperazin-1-yl](2-thienyl)methanone, (4-fluorophenyl)[4-(pyrimidin-2-yl)-piperazin-1-yl]methanone (Spenceret al., 2011), (E )-1-phenyl-3-[4-(pyrimidin-2-yl)piperazin-1-yl]propan-1-one oxime (Kol-asa et al., 2006), N -(4-chlorophenyl)-4-(pyrimidin-2-yl)piper-azine-1-carboxamide (Li, 2011) and 6-{3-[4-(pyrimidin-2-yl)-piperazin-1-yl]propyl}-2,3-dihydro-5H-[1,4]dithiino[2,3-c ]pyr-role-5,7(6H)-dione (Bielenicaet al., 2011).

5. Synthesis and crystallization

For the preparation of title salt (I), a mixture of 1-(pyrimidin-2-yl)piperazine (0.2 g) and concentrated hydrochloric acid (5 ml) was stirred well over a magnetic stirrer at room temperature for 10 min and then warmed at 313 K for another 10 min. A white precipitate was obtained, which was dried in

research communications

Acta Cryst.(2014).E70, 203–206 Yamunaet al. C

[image:3.610.44.292.186.263.2]

8H13N4+Cland C8H13N4+NO3

205

Table 3

Experimental details.

(I) (II)

Crystal data

Chemical formula C8H13N4+Cl

C8H13N4+NO3

Mr 200.67 227.23

Crystal system, space group Orthorhombic,P212121 Monoclinic,P21/c

Temperature (K) 173 173

a,b,c(A˚ ) 6.84764 (17), 7.27667 (18), 19.1751 (5) 10.5272 (6), 7.2230 (3), 14.1575 (7) ,,(

) 90, 90, 90 90, 107.341 (6), 90

V(A˚3) 955.46 (4) 1027.58 (9)

Z 4 4

Radiation type CuK CuK

(mm1) 3.21 0.98

Crystal size (mm) 0.260.140.08 0.220.160.06

Data collection

Diffractometer Agilent Agilent Eos Gemini Agilent Agilent Eos Gemini

Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012) Multi-scan (CrysAlis RED; Agilent, 2012)

Tmin,Tmax 0.417, 1.000 0.727, 1.000

No. of measured, independent and observed [I> 2(I)] reflections

5514, 1841, 1761 6218, 1960, 1752

Rint 0.045 0.040

(sin/)max(A˚

1) 0.615 0.613

Refinement

R[F2> 2(F2)],wR(F2),S 0.035, 0.091, 1.08 0.058, 0.163, 1.10

No. of reflections 1841 1960

No. of parameters 119 146

H-atom treatment H-atom parameters constrained H-atom parameters constrained

max, min(e A˚

3) 0.23,0.20 0.42,0.25

Absolute structure Flackxdetermined using 687 quotients

[(I+)(I

)]/[(I+)+(I

)] (Parsonset al. (2013)

Absolute structure parameter 0.056 (15) –

Computer programs:CrysAlis PROandCrysAlis RED(Agilent, 2012),SUPERFLIP(Palatinus & Chapuis, 2007),SHELXL2012(Sheldrick, 2008) andOLEX2(Dolomanovet al., 2009).

Table 1

Hydrogen-bond geometry (A˚ ,) for (I).

D—H A D—H H A D A D—H A

N4—H4A Cl1 0.91 2.21 3.102 (2) 167

N4—H4B Cl1i 0.91 2.21 3.114 (2) 175

Symmetry code: (i)xþ1 2;yþ

3 2;zþ1.

Table 2

Hydrogen-bond geometry (A˚ ,) for (II).

D—H A D—H H A D A D—H A

N4—H4A O2i 0.91 1.92 2.829 (3) 177

N4—H4A O3i 0.91 2.52 3.138 (3) 126

N4—H4B O1 0.91 2.35 3.197 (3) 155

N4—H4B O2 0.91 2.10 2.900 (3) 146

C3—H3 O1ii 0.95 2.46 3.240 (3) 140

C4—H4 O2iii 0.95 2.51 3.291 (3) 139

Symmetry codes: (i)xþ1;y1 2;zþ

1

[image:3.610.50.568.423.724.2]
(4)

the open air overnight and then dissolved in hot dimethyl sulfoxide solvent. After few days, colourless blocks were obtained on slow evaporation (m.p. above 563 K).

For the preparation of title salt (II), a mixture of 1-(pyrimidin-2-yl)piperazine, from Sigma–Aldrich (0.2 g), and concentrated nitric acid (5 ml) was stirred well over a magnetic stirrer at room temperature for 10 min. A white precipitate was obtained immediately, which was dried in the open air overnight and then dissolved in water. After a few days, colourless blocks were obtained on slow evaporation (m.p. 463–470 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. In both (I) and (II), all of the H atoms were placed in their calculated positions and then refined using a riding model with C—H bond lengths of 0.93 (CH) or 0.97 A˚ (CH2) and N—H bond lengths of 0.97 A˚ .

Isotropic displacement parameters for these atoms were set at 1.2Ueq(CH,CH2,NH).

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to under-take research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

Agilent (2012).CrysAlis PROandCrysAlis RED. Agilent

Technol-ogies, Yarnton, England.

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. &

George, R. F. (2009).Eur. J. Med. Chem.44, 4572–4584.

Bielenica, A., Kossakowski, J., Struga, M., Dybala, I., La Colla, P.,

Tamburini, E. & Loddo, R. (2011).Med. Chem. Res.20, 1411–1420.

Clark, M. P., George, K. M. & Bookland, R. G. (2007).Bioorg. Med.

Chem. Lett.17, 1250–1253.

Ding, X.-H., Li, Y.-H., Wang, S. & Huang, W. (2014).J. Mol. Struct.

1062, 61–67.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &

Puschmann, H. (2009).J. Appl. Cryst.42, 339–341.

Goldmann, S. & Stoltefuss, J. (1991).Angew. Chem. Int. Ed. Engl.30,

1559–1578.

Ibrahim, D. A. & El-Metwally, A. M. (2010).Eur. J. Med. Chem.45,

1158–1166.

Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan,

H. S. & Narayana, B. (2010).Acta Cryst.E66, o411–o412.

Kim, J. Y., Kim, D. & Kang, S. Y. (2010).Bioorg. Med. Chem. Lett.20,

6439–6442.

Kolasa, T.,et al.(2006).J. Med. Chem.49, 5093–5109.

Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N.,

Stammers, D. K. & Beddell, C. R. (1996).Bioorg. Med. Chem. Lett.

4, 593–602.

Li, Y.-F. (2011).Acta Cryst.E67, o2575.

Padmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. &

Padmavathi, V. (2009).Eur. J. Med. Chem.44, 4557–4566.

Palatinus, L. & Chapuis, G. (2007).J. Appl. Cryst.40, 786–790.

Pandey, S., Suryawanshi, S. N., Gupta, S. & Srivastava, V. M. L. (2004).

Eur. J. Med. Chem.39, 969–973.

Parsons, S., Flack, H. D. & Wagner, T. (2013).Acta Cryst.B69, 249–

259.

Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. &

Narayana, B. (2011a).Acta Cryst.E67, o2079–o2080.

Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. &

Swamy, M. T. (2011b).Acta Cryst.E67, o2296.

Spencer, J., Patel, H., Callear, S. K., Coles, S. J. & Deadman, J. J.

(2011).Tetrahedron Lett.,52, 5905–5909.

Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991).

Psychopharmacol. Bull.27, 163–170.

Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan,

H. S. (2014b).Acta Cryst.E70, o206–o207.

Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan,

H. S. (2014c).Acta Cryst.E70, o200–o201.

Yamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014a).

Acta Cryst.E70, o702–o703.

206

Yamunaet al. C

8H13N4+Cland C8H13N4+NO3 Acta Cryst.(2014).E70, 203–206

(5)

supporting information

sup-1

Acta Cryst. (2014). E70, 203-206

supporting information

Acta Cryst. (2014). E70, 203-206 [doi:10.1107/S1600536814020169]

Crystal structures of 4-(pyrimidin-2-yl)piperazin-1-ium chloride and

4-(pyrimidin-2-yl)piperazin-1-ium nitrate

Thammarse S. Yamuna, Jerry P. Jasinski, Manpreet Kaur, Brian J. Anderson and H. S. Yathirajan

Computing details

For both compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data

reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007);

program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al.,

2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) 4-(Pyrimidin-2-yl)piperazin-1-ium chloride

Crystal data

C8H13N4+·Cl−

Mr = 200.67

Orthorhombic, P212121

a = 6.84764 (17) Å

b = 7.27667 (18) Å

c = 19.1751 (5) Å

V = 955.46 (4) Å3

Z = 4

F(000) = 424

Dx = 1.395 Mg m−3

Cu radiation, λ = 1.54184 Å Cell parameters from 2676 reflections

θ = 4.6–71.5°

µ = 3.21 mm−1

T = 173 K

Irregular, colourless 0.26 × 0.14 × 0.08 mm

Data collection

Agilent Agilent Eos Gemini diffractometer

Radiation source: Enhance (Cu) X-ray Source Detector resolution: 16.0416 pixels mm-1

ω scans

Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012)

Tmin = 0.417, Tmax = 1.000

5514 measured reflections 1841 independent reflections 1761 reflections with I > 2σ(I)

Rint = 0.045

θmax = 71.4°, θmin = 4.6°

h = −8→8

k = −8→4

l = −23→23

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.091

S = 1.08 1841 reflections 119 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0504P)2 + 0.1163P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.23 e Å−3 Δρmin = −0.20 e Å−3

(6)

supporting information

sup-2

Acta Cryst. (2014). E70, 203-206

Absolute structure: Flack x determined using 687 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013)

Absolute structure parameter: 0.056 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.08383 (9) 0.49612 (9) 0.48653 (3) 0.0262 (2) N1 0.6948 (4) 0.6820 (3) 0.81551 (12) 0.0251 (5) N2 0.9664 (4) 0.5690 (3) 0.74930 (13) 0.0286 (6) N3 0.6688 (3) 0.6293 (3) 0.69659 (12) 0.0224 (5) N4 0.4359 (4) 0.6322 (3) 0.57422 (12) 0.0258 (5)

H4A 0.3467 0.5800 0.5451 0.031*

H4B 0.4718 0.7422 0.5556 0.031*

C1 0.7813 (4) 0.6281 (4) 0.75588 (14) 0.0208 (5) C2 0.8040 (4) 0.6746 (4) 0.87274 (15) 0.0269 (6)

H2 0.7471 0.7097 0.9159 0.032*

C3 0.9968 (5) 0.6181 (4) 0.87217 (16) 0.0318 (7)

H3 1.0742 0.6147 0.9133 0.038*

C4 1.0692 (5) 0.5668 (4) 0.80773 (17) 0.0330 (7)

H4 1.2013 0.5274 0.8052 0.040*

C5 0.7582 (4) 0.5944 (4) 0.62855 (14) 0.0245 (6)

H5A 0.8701 0.5096 0.6341 0.029*

H5B 0.8076 0.7111 0.6088 0.029*

C6 0.6103 (4) 0.5108 (4) 0.57949 (14) 0.0278 (6)

H6A 0.6694 0.4948 0.5328 0.033*

H6B 0.5705 0.3883 0.5969 0.033*

C7 0.3448 (4) 0.6631 (4) 0.64394 (14) 0.0246 (6)

H7A 0.2964 0.5449 0.6628 0.030*

H7B 0.2323 0.7475 0.6392 0.030*

C8 0.4936 (4) 0.7449 (4) 0.69357 (14) 0.0233 (6)

H8A 0.5297 0.8698 0.6777 0.028*

H8B 0.4359 0.7553 0.7407 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-3

Acta Cryst. (2014). E70, 203-206

C1 0.0217 (13) 0.0157 (11) 0.0251 (13) 0.0000 (10) 0.0013 (11) 0.0022 (10) C2 0.0342 (16) 0.0238 (13) 0.0229 (13) −0.0013 (12) 0.0000 (12) −0.0001 (11) C3 0.0353 (16) 0.0287 (14) 0.0314 (14) −0.0017 (14) −0.0114 (14) 0.0056 (12) C4 0.0238 (14) 0.0339 (14) 0.0413 (17) 0.0072 (13) −0.0056 (14) 0.0062 (13) C5 0.0208 (13) 0.0292 (14) 0.0233 (13) 0.0030 (11) 0.0031 (11) −0.0032 (11) C6 0.0256 (14) 0.0316 (14) 0.0261 (13) 0.0000 (14) 0.0035 (10) −0.0058 (12) C7 0.0200 (13) 0.0272 (13) 0.0267 (14) −0.0009 (11) −0.0007 (11) 0.0007 (11) C8 0.0186 (13) 0.0244 (12) 0.0268 (13) 0.0046 (12) −0.0004 (12) −0.0027 (11)

Geometric parameters (Å, º)

N1—C1 1.346 (4) C3—H3 0.9500

N1—C2 1.329 (4) C3—C4 1.383 (4)

N2—C1 1.344 (4) C4—H4 0.9500

N2—C4 1.323 (4) C5—H5A 0.9900

N3—C1 1.373 (3) C5—H5B 0.9900

N3—C5 1.463 (3) C5—C6 1.510 (4)

N3—C8 1.466 (3) C6—H6A 0.9900

N4—H4A 0.9100 C6—H6B 0.9900

N4—H4B 0.9100 C7—H7A 0.9900

N4—C6 1.489 (4) C7—H7B 0.9900

N4—C7 1.492 (3) C7—C8 1.516 (4)

C2—H2 0.9500 C8—H8A 0.9900

C2—C3 1.383 (4) C8—H8B 0.9900

C2—N1—C1 116.2 (2) N3—C5—H5B 109.6

C4—N2—C1 115.2 (3) N3—C5—C6 110.2 (2)

C1—N3—C5 120.2 (2) H5A—C5—H5B 108.1

C1—N3—C8 119.7 (2) C6—C5—H5A 109.6

C5—N3—C8 114.0 (2) C6—C5—H5B 109.6

H4A—N4—H4B 108.0 N4—C6—C5 110.0 (2)

C6—N4—H4A 109.4 N4—C6—H6A 109.7

C6—N4—H4B 109.4 N4—C6—H6B 109.7

C6—N4—C7 111.3 (2) C5—C6—H6A 109.7

C7—N4—H4A 109.4 C5—C6—H6B 109.7

C7—N4—H4B 109.4 H6A—C6—H6B 108.2

N1—C1—N3 117.0 (2) N4—C7—H7A 109.7

N2—C1—N1 126.0 (2) N4—C7—H7B 109.7

N2—C1—N3 116.9 (2) N4—C7—C8 109.9 (2)

N1—C2—H2 118.6 H7A—C7—H7B 108.2

N1—C2—C3 122.9 (3) C8—C7—H7A 109.7

C3—C2—H2 118.6 C8—C7—H7B 109.7

C2—C3—H3 122.3 N3—C8—C7 110.4 (2)

C2—C3—C4 115.5 (3) N3—C8—H8A 109.6

C4—C3—H3 122.3 N3—C8—H8B 109.6

N2—C4—C3 124.2 (3) C7—C8—H8A 109.6

N2—C4—H4 117.9 C7—C8—H8B 109.6

(8)

supporting information

sup-4

Acta Cryst. (2014). E70, 203-206

N3—C5—H5A 109.6

N1—C2—C3—C4 −0.8 (4) C4—N2—C1—N1 −0.6 (4) N3—C5—C6—N4 55.8 (3) C4—N2—C1—N3 −178.9 (3) N4—C7—C8—N3 −54.5 (3) C5—N3—C1—N1 172.5 (2) C1—N1—C2—C3 1.0 (4) C5—N3—C1—N2 −9.0 (4) C1—N2—C4—C3 0.8 (4) C5—N3—C8—C7 55.2 (3) C1—N3—C5—C6 151.9 (2) C6—N4—C7—C8 57.4 (3) C1—N3—C8—C7 −152.4 (2) C7—N4—C6—C5 −58.1 (3) C2—N1—C1—N2 −0.3 (4) C8—N3—C1—N1 21.8 (4) C2—N1—C1—N3 178.0 (2) C8—N3—C1—N2 −159.8 (2) C2—C3—C4—N2 −0.2 (5) C8—N3—C5—C6 −55.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4—H4A···Cl1 0.91 2.21 3.102 (2) 167 N4—H4B···Cl1i 0.91 2.21 3.114 (2) 175

Symmetry code: (i) x+1/2, −y+3/2, −z+1.

(II) 4-(Pyrimidin-2-yl)piperazin-1-ium nitrate

Crystal data

C8H13N4+·NO3−

Mr = 227.23 Monoclinic, P21/c

a = 10.5272 (6) Å

b = 7.2230 (3) Å

c = 14.1575 (7) Å

β = 107.341 (6)°

V = 1027.58 (9) Å3

Z = 4

F(000) = 480

Dx = 1.469 Mg m−3

Cu radiation, λ = 1.54184 Å Cell parameters from 2763 reflections

θ = 6.2–71.4°

µ = 0.98 mm−1

T = 173 K

Irregular, colourless 0.22 × 0.16 × 0.06 mm

Data collection

Agilent Agilent Eos Gemini diffractometer

Radiation source: Cu Kα

Detector resolution: 16.0416 pixels mm-1

ω scans

Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012)

Tmin = 0.727, Tmax = 1.000

6218 measured reflections 1960 independent reflections 1752 reflections with I > 2σ(I)

Rint = 0.040

θmax = 71.0°, θmin = 4.4°

h = −9→12

k = −8→8

l = −17→16

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.058

wR(F2) = 0.163

S = 1.10 1960 reflections 146 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0789P)2 + 0.9595P] where P = (Fo2 + 2Fc2)/3

(9)

supporting information

sup-5

Acta Cryst. (2014). E70, 203-206 Δρmax = 0.42 e Å−3

Δρmin = −0.25 e Å−3

Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0099 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.4119 (2) 0.6964 (4) 0.41222 (17) 0.0615 (7) O2 0.50951 (18) 0.6257 (2) 0.30424 (14) 0.0381 (5) O3 0.55020 (17) 0.8884 (2) 0.37996 (13) 0.0323 (5) N5 0.49103 (17) 0.7390 (3) 0.36677 (13) 0.0238 (4) N1 0.00592 (19) 0.2396 (3) 0.48106 (14) 0.0291 (5) N2 −0.11846 (18) 0.3821 (3) 0.32856 (15) 0.0273 (5) N3 0.10930 (18) 0.3372 (3) 0.36702 (14) 0.0268 (5) N4 0.33344 (18) 0.3134 (3) 0.29632 (15) 0.0278 (5)

H4A 0.3814 0.2536 0.2617 0.033*

H4B 0.3777 0.4191 0.3216 0.033*

C1 −0.0049 (2) 0.3204 (3) 0.39365 (16) 0.0220 (5) C2 −0.1085 (3) 0.2126 (3) 0.50188 (19) 0.0346 (6)

H2 −0.1054 0.1544 0.5627 0.042*

C3 −0.2307 (2) 0.2647 (4) 0.4398 (2) 0.0362 (6)

H3 −0.3111 0.2420 0.4553 0.043*

C4 −0.2290 (2) 0.3519 (3) 0.3537 (2) 0.0329 (6)

H4 −0.3113 0.3927 0.3097 0.039*

C5 0.2387 (2) 0.2876 (4) 0.43489 (16) 0.0282 (5)

H5A 0.2266 0.2035 0.4867 0.034*

H5B 0.2848 0.4005 0.4676 0.034*

C6 0.3222 (2) 0.1932 (3) 0.37877 (17) 0.0270 (5)

H6A 0.4121 0.1674 0.4242 0.032*

H6B 0.2808 0.0738 0.3519 0.032*

C7 0.1993 (2) 0.3620 (3) 0.22801 (17) 0.0277 (5)

H7A 0.1537 0.2483 0.1960 0.033*

H7B 0.2095 0.4461 0.1755 0.033*

C8 0.1166 (2) 0.4552 (3) 0.28517 (17) 0.0276 (5)

H8A 0.1571 0.5756 0.3112 0.033*

H8B 0.0258 0.4789 0.2407 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(10)

supporting information

sup-6

Acta Cryst. (2014). E70, 203-206

N5 0.0175 (9) 0.0301 (10) 0.0240 (9) −0.0015 (7) 0.0064 (7) 0.0012 (8) N1 0.0292 (10) 0.0327 (11) 0.0282 (10) 0.0020 (8) 0.0126 (8) 0.0038 (8) N2 0.0210 (9) 0.0270 (10) 0.0331 (11) 0.0037 (7) 0.0071 (8) 0.0001 (8) N3 0.0189 (9) 0.0380 (11) 0.0243 (9) 0.0068 (8) 0.0075 (7) 0.0087 (8) N4 0.0231 (9) 0.0278 (10) 0.0368 (11) −0.0042 (8) 0.0153 (8) −0.0045 (8) C1 0.0207 (10) 0.0220 (10) 0.0246 (11) 0.0023 (8) 0.0087 (8) −0.0035 (8) C2 0.0416 (14) 0.0328 (13) 0.0372 (13) −0.0021 (11) 0.0235 (11) −0.0014 (10) C3 0.0300 (13) 0.0340 (13) 0.0525 (15) −0.0049 (10) 0.0247 (11) −0.0130 (12) C4 0.0224 (11) 0.0304 (12) 0.0456 (15) 0.0020 (9) 0.0098 (10) −0.0063 (11) C5 0.0208 (11) 0.0395 (13) 0.0234 (11) 0.0087 (9) 0.0054 (9) 0.0023 (9) C6 0.0219 (10) 0.0296 (12) 0.0293 (11) 0.0038 (9) 0.0074 (9) 0.0014 (9) C7 0.0291 (11) 0.0305 (12) 0.0255 (11) −0.0013 (9) 0.0111 (9) 0.0039 (9) C8 0.0267 (11) 0.0290 (12) 0.0283 (11) 0.0033 (9) 0.0098 (9) 0.0080 (9)

Geometric parameters (Å, º)

O1—N5 1.233 (3) C2—C3 1.376 (4)

O2—N5 1.263 (2) C3—H3 0.9500

O3—N5 1.232 (2) C3—C4 1.377 (4)

N1—C1 1.342 (3) C4—H4 0.9500

N1—C2 1.337 (3) C5—H5A 0.9900

N2—C1 1.349 (3) C5—H5B 0.9900

N2—C4 1.333 (3) C5—C6 1.512 (3)

N3—C1 1.369 (3) C6—H6A 0.9900

N3—C5 1.459 (3) C6—H6B 0.9900

N3—C8 1.459 (3) C7—H7A 0.9900

N4—H4A 0.9100 C7—H7B 0.9900

N4—H4B 0.9100 C7—C8 1.512 (3)

N4—C6 1.487 (3) C8—H8A 0.9900

N4—C7 1.496 (3) C8—H8B 0.9900

C2—H2 0.9500

O1—N5—O2 118.2 (2) C3—C4—H4 118.2

O3—N5—O1 121.9 (2) N3—C5—H5A 109.7

O3—N5—O2 119.82 (18) N3—C5—H5B 109.7

C2—N1—C1 115.6 (2) N3—C5—C6 109.86 (18)

C4—N2—C1 115.5 (2) H5A—C5—H5B 108.2

C1—N3—C5 121.45 (19) C6—C5—H5A 109.7

C1—N3—C8 121.92 (18) C6—C5—H5B 109.7

C5—N3—C8 114.01 (18) N4—C6—C5 110.12 (18)

H4A—N4—H4B 108.0 N4—C6—H6A 109.6

C6—N4—H4A 109.4 N4—C6—H6B 109.6

C6—N4—H4B 109.4 C5—C6—H6A 109.6

C6—N4—C7 111.33 (17) C5—C6—H6B 109.6

C7—N4—H4A 109.4 H6A—C6—H6B 108.2

C7—N4—H4B 109.4 N4—C7—H7A 109.7

N1—C1—N2 126.0 (2) N4—C7—H7B 109.7

(11)

supporting information

sup-7

Acta Cryst. (2014). E70, 203-206

N2—C1—N3 117.06 (19) H7A—C7—H7B 108.2

N1—C2—H2 118.3 C8—C7—H7A 109.7

N1—C2—C3 123.4 (2) C8—C7—H7B 109.7

C3—C2—H2 118.3 N3—C8—C7 109.85 (18)

C2—C3—H3 122.1 N3—C8—H8A 109.7

C2—C3—C4 115.8 (2) N3—C8—H8B 109.7

C4—C3—H3 122.1 C7—C8—H8A 109.7

N2—C4—C3 123.6 (2) C7—C8—H8B 109.7

N2—C4—H4 118.2 H8A—C8—H8B 108.2

N1—C2—C3—C4 −1.3 (4) C4—N2—C1—N1 −2.7 (3) N3—C5—C6—N4 55.5 (3) C4—N2—C1—N3 175.4 (2) N4—C7—C8—N3 −55.3 (2) C5—N3—C1—N1 −6.3 (3) C1—N1—C2—C3 −0.7 (4) C5—N3—C1—N2 175.4 (2) C1—N2—C4—C3 0.2 (3) C5—N3—C8—C7 56.9 (3) C1—N3—C5—C6 141.1 (2) C6—N4—C7—C8 56.9 (2) C1—N3—C8—C7 −141.2 (2) C7—N4—C6—C5 −57.0 (2) C2—N1—C1—N2 2.9 (3) C8—N3—C1—N1 −166.9 (2) C2—N1—C1—N3 −175.2 (2) C8—N3—C1—N2 14.8 (3) C2—C3—C4—N2 1.6 (4) C8—N3—C5—C6 −57.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4—H4A···O2i 0.91 1.92 2.829 (3) 177 N4—H4A···O3i 0.91 2.52 3.138 (3) 126

N4—H4B···O1 0.91 2.35 3.197 (3) 155

N4—H4B···O2 0.91 2.10 2.900 (3) 146

C3—H3···O1ii 0.95 2.46 3.240 (3) 140

C4—H4···O2iii 0.95 2.51 3.291 (3) 139

Figure

Figure 3
Table 3

References

Related documents

The model also shows that if a government can credibly commit itself to an announced two-step reform in which it first uses a transaction tax temporarily and then replaces it with

In order to critically evaluate the relationship existing between fiscal policy instruments and economic growth in Nigeria for the period 1970-2015, the following selected

227: Published in: Journal of Comparative Economics, “Ownership Concentration and Corporate Performance in the Czech Republic” 27(3), September 1999, pp. 226: Unemployment

Step 4: Adjust the calculated infiltration rate from Step 3 so that it can be correctly used as EnergyPlus input by multiplying it by the ratio of the wind speed at the roof line

Since the choice between systems is vague, it is up to the energy modeling and life cycle cost analysis to determine the system to be used.. The life cycle cost analysis is a study

Lastly, the study provides strong evidence that fathers’ financial burden associated with child support arrears are likely to affect fathers’ residential union formation with a

We first document that college-educated married mothers of young children are more likely to be self-employed and especially unlikely to work in paid employment compared to