• No results found

(3S*,4S*) 1,3,4 Tri­phenyl­azetidin 2 one

N/A
N/A
Protected

Academic year: 2020

Share "(3S*,4S*) 1,3,4 Tri­phenyl­azetidin 2 one"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o3956

Luoet al. C

21H17NO doi:10.1107/S1600536805035063 Acta Cryst.(2005). E61, o3956–o3957

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3

S

*,4

S

*)-1,3,4-Triphenylazetidin-2-one

Cheng-Cai Luo,* Hua-Xing Zhang and Tian-Xing Wu

Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Tech-nology, Zhejiang University, Ningbo 315100 , People’s Republic of China

Correspondence e-mail: luochengcai@nit.net.cn

Key indicators

Single-crystal X-ray study

T= 296 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.036

wRfactor = 0.077

Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the crystal structure of the title compound, C21H17NO, the

nitrogen configuration is almost planar.

[image:1.610.290.374.392.488.2]

Comment

Fig. 1 shows the structure of the title compound, (I). Selected molecular parameters are listed in Table 1. The compound crystallizes in the monoclinic space group P21/c, with one

molecule in the asymmetric unit. The nitrogen configuration is almost planar, as indicated by the large C16—N1—C2—C1 torsion angle [166.39 (9)], which is different from the

reported related structure (Deschampset al., 2003). This is due to the strong interactions between the nitrogen lone pair and the electrons of the C O double bond. There are no–

stacking or other weak intermolecular interactions in (I), and the crystal packing (Fig. 2) is controlled by van der Waals forces.

Experimental

To a solution of phenylacetylene (102 mg, 1 mmol) in dimethyl-formamide (DMF, 3 ml) under argon at 273 K, triethylamine (101 mg, 1 mmol) was added and the mixture was stirred for 30 min. Cuprous iodide (190 mg, 1 mmol) was added and the solution was stirred for another 5 min, after which a DMF solution of the ,N -diphenyl-nitrone (197 mg, 1 mmol) was added slowly over a period of 5 min. After stirring for another 30 min, the reaction was stirred at room temperature overnight. The mixture was diluted with water and filtered through celite. The celite bed was washed with ethyl acetate (5 ml). The combined filtrate and washings were extracted with ethyl acetate (20 ml), which was washed three times with 10 ml aliquots of brine. After drying over anhydrous Na2SO4, the solvent was removed

under reduced pressure and the resulting oil was purified by column chromatography to afford the product (I) (170 mg, yield 57%). Compound (I) was recrystallized from hexane as colorless crystals.1H NMR (500 MHz, CDCl3):5.03 (d, 1H,J= 6.1 Hz), 5.48 (d, 1H,J=

6.1 Hz), 7.00–7.50 (m, 15H); 13 C NMR (125 MHz, CDCl3):60.53,

60.58, 117.47, 124.31, 127.37, 127.41, 128.11, 128.33, 128.47, 129.14, 129.34, 132.34, 134.61, 137.95.

(2)

Crystal data

C21H17NO

Mr= 299.37

Monoclinic,P21=c

a= 9.016 (3) A˚

b= 8.752 (3) A˚

c= 20.664 (8) A˚ = 100.614 (14)

V= 1602.7 (10) A˚3

Z= 4

Dx= 1.241 Mg m3

MoKradiation

Cell parameters from 11258 reflections

= 3.1–27.5

= 0.08 mm1

T= 296 (1) K Platelet, colorless 0.360.300.12 mm

Data collection

Rigaku R-AXIS RAPID diffractometer !scans

Absorption correction: none 15391 measured reflections 3669 independent reflections

2161 reflections withF2> 2(F2)

Rint= 0.030

max= 27.5

h=11!11

k=11!11

l=26!26

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.036

wR(F2) = 0.077

S= 1.00 3669 reflections 209 parameters

H-atom parameters constrained

w= 1/[0.0001Fo2+ 1.1(Fo2)]/(4Fo2) (/)max< 0.001

max= 0.22 e A˚ 3

min=0.18 e A˚3 Extinction correction: Larson

(1970)

[image:2.610.308.563.74.228.2]

Extinction coefficient: 5.2 (3)102

Table 1

Selected geometric parameters (A˚ ,).

O1—C3 1.2122 (14)

N1—C2 1.4773 (13)

N1—C3 1.3681 (14)

N1—C16 1.4048 (14)

C2—N1—C3 94.64 (8)

C2—N1—C16 129.93 (8)

C3—N1—C16 133.43 (8)

All H atoms were placed in calculated positions (C—H = 0.98 A˚ ), withUiso(H) = 1.2Ueqof the carrier atoms, and included in the final

cycles of refinement using a riding model.

Data collection: PROCESS-AUTO (Rigaku,1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure:SIR97(Altomareet al., 1999); program(s) used to refine structure:CRYSTALS (Better-idge et al., 2003); molecular graphics: ORTEP-3 for Windows

(Farrugia, 1997); software used to prepare material for publication:

CrystalStructureandPLATON(Spek, 2003).

Financial support from the Industrial Science and Research Project of Ningbo City (No. 2003B10015) is gratefully acknowledged.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115–119.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Deschamps, J. R., McCain, M. & Konaklieva, M. (2003).Acta Cryst.E59, o36– o37.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Larson, A. C. (1970).Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.

Rigaku (1998).PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004).CrystalStructure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

[image:2.610.318.564.271.398.2]

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

The molecule of (I). Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.

Figure 2

[image:2.610.45.297.379.430.2]
(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o3956–o3957

supporting information

Acta Cryst. (2005). E61, o3956–o3957 [https://doi.org/10.1107/S1600536805035063]

(3

S

*,4

S

*)-1,3,4-Triphenylazetidin-2-one

Cheng-Cai Luo, Hua-Xing Zhang and Tian-Xing Wu

(I)

Crystal data

C21H17NO

Mr = 299.37 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.016 (3) Å

b = 8.752 (3) Å

c = 20.664 (8) Å

β = 100.614 (14)°

V = 1602.7 (10) Å3

Z = 4

F(000) = 632.00

Dx = 1.241 Mg m−3

Mo radiation, λ = 0.71075 Å Cell parameters from 11258 reflections

θ = 3.1–27.5°

µ = 0.08 mm−1

T = 296 K Platelet, colorless 0.36 × 0.30 × 0.12 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1

ω scans

15391 measured reflections 3669 independent reflections

2161 reflections with F2 > 2.0σ(F2)

Rint = 0.030

θmax = 27.5°

h = −11→11

k = −11→11

l = −26→26

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.036

wR(F2) = 0.077

S = 1.00 3669 reflections 209 parameters

H-atom parameters constrained

w = 1/[0.0001Fo2 + 1.1σ(Fo2)]/(4Fo2)

(Δ/σ)max < 0.001

Δρmax = 0.22 e Å−3

Δρmin = −0.18 e Å−3

Extinction correction: Larson (1970) Extinction coefficient: 519 (31)

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R

-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.01120 (9) 0.42040 (10) 0.15838 (4) 0.0774 (2)

N1 0.17655 (9) 0.63038 (10) 0.17528 (4) 0.0541 (2)

(4)

C2 0.19156 (10) 0.71175 (12) 0.23879 (5) 0.0509 (3)

C3 0.07615 (11) 0.52482 (13) 0.19024 (6) 0.0580 (3)

C4 0.12439 (10) 0.48815 (12) 0.31659 (5) 0.0530 (3)

C5 0.22813 (12) 0.37125 (13) 0.31522 (6) 0.0674 (3)

C6 0.26662 (13) 0.27453 (17) 0.36843 (8) 0.0831 (4)

C7 0.20294 (17) 0.29205 (19) 0.42309 (8) 0.0897 (5)

C8 0.10095 (18) 0.4060 (2) 0.42481 (6) 0.0907 (5)

C9 0.06224 (12) 0.50405 (16) 0.37219 (6) 0.0713 (4)

C10 0.34738 (10) 0.72451 (12) 0.27950 (5) 0.0473 (2)

C11 0.46847 (11) 0.64163 (12) 0.26606 (6) 0.0572 (3)

C12 0.60986 (12) 0.65953 (13) 0.30504 (6) 0.0672 (3)

C13 0.63073 (12) 0.75786 (16) 0.35743 (6) 0.0738 (4)

C14 0.51054 (12) 0.84009 (16) 0.37152 (6) 0.0728 (4)

C15 0.36935 (12) 0.82405 (12) 0.33245 (5) 0.0586 (3)

C16 0.21990 (11) 0.67543 (12) 0.11622 (5) 0.0533 (3)

C17 0.16952 (12) 0.59697 (14) 0.05786 (6) 0.0643 (3)

C18 0.21041 (13) 0.64842 (17) 0.00057 (6) 0.0765 (4)

C19 0.30166 (13) 0.77446 (18) 0.00051 (6) 0.0802 (4)

C20 0.35196 (13) 0.85077 (16) 0.05836 (6) 0.0767 (4)

C21 0.31217 (12) 0.80129 (13) 0.11619 (6) 0.0653 (3)

H1 −0.0188 0.6377 0.2606 0.066*

H2 0.1447 0.8129 0.2323 0.060*

H5 0.2747 0.3598 0.2762 0.082*

H6 0.3388 0.1917 0.3665 0.099*

H7 0.2311 0.2240 0.4610 0.106*

H8 0.0542 0.4176 0.4637 0.111*

H9 −0.0105 0.5864 0.3741 0.087*

H11 0.4538 0.5707 0.2287 0.068*

H12 0.6957 0.6010 0.2952 0.080*

H13 0.7312 0.7699 0.3846 0.086*

H14 0.5254 0.9096 0.4093 0.086*

H15 0.2838 0.8837 0.3418 0.070*

H17 0.1049 0.5069 0.0578 0.075*

H18 0.1754 0.5934 −0.0407 0.091*

H19 0.3280 0.8107 −0.0408 0.097*

H20 0.4185 0.9394 0.0589 0.092*

H21 0.3475 0.8557 0.1576 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0775 (5) 0.0834 (6) 0.0658 (5) −0.0284 (4) −0.0008 (4) −0.0115 (4)

N1 0.0562 (4) 0.0579 (5) 0.0460 (5) −0.0057 (4) 0.0034 (4) −0.0048 (4)

C1 0.0412 (5) 0.0660 (7) 0.0583 (7) 0.0003 (4) 0.0072 (4) −0.0048 (5)

C2 0.0525 (5) 0.0500 (6) 0.0488 (6) 0.0043 (4) 0.0057 (4) −0.0047 (5)

C3 0.0476 (5) 0.0662 (8) 0.0562 (7) −0.0048 (5) −0.0012 (4) −0.0030 (6)

C4 0.0440 (5) 0.0613 (7) 0.0534 (6) −0.0102 (5) 0.0081 (4) −0.0083 (5)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o3956–o3957

C6 0.0812 (8) 0.0700 (9) 0.0951 (11) 0.0004 (7) 0.0081 (8) 0.0119 (8)

C7 0.1071 (10) 0.0870 (11) 0.0701 (10) −0.0222 (9) 0.0030 (8) 0.0155 (8)

C8 0.1110 (11) 0.1043 (12) 0.0611 (9) −0.0192 (9) 0.0275 (8) −0.0034 (9)

C9 0.0693 (7) 0.0828 (9) 0.0647 (8) −0.0050 (6) 0.0200 (6) −0.0106 (7)

C10 0.0501 (5) 0.0486 (6) 0.0432 (5) −0.0043 (4) 0.0082 (4) 0.0025 (5)

C11 0.0552 (5) 0.0563 (7) 0.0595 (7) 0.0001 (5) 0.0091 (5) −0.0008 (5)

C12 0.0523 (6) 0.0697 (8) 0.0787 (9) 0.0013 (5) 0.0098 (5) 0.0142 (7)

C13 0.0581 (7) 0.0881 (10) 0.0690 (8) −0.0182 (6) −0.0043 (6) 0.0153 (7)

C14 0.0767 (7) 0.0851 (9) 0.0531 (7) −0.0237 (7) 0.0024 (6) −0.0080 (6)

C15 0.0604 (6) 0.0638 (7) 0.0524 (7) −0.0073 (5) 0.0128 (5) −0.0060 (5)

C16 0.0517 (5) 0.0587 (7) 0.0470 (6) 0.0044 (5) 0.0024 (4) −0.0004 (5)

C17 0.0655 (6) 0.0704 (8) 0.0526 (7) 0.0012 (5) −0.0005 (5) −0.0062 (6)

C18 0.0873 (8) 0.0909 (10) 0.0483 (7) 0.0055 (7) 0.0043 (6) −0.0088 (7)

C19 0.0895 (8) 0.0979 (11) 0.0550 (8) 0.0067 (8) 0.0177 (6) 0.0083 (8)

C20 0.0850 (8) 0.0798 (9) 0.0663 (8) −0.0082 (7) 0.0161 (7) 0.0069 (7)

C21 0.0745 (7) 0.0684 (8) 0.0514 (7) −0.0079 (6) 0.0078 (5) −0.0018 (6)

Geometric parameters (Å, º)

O1—C3 1.2122 (14) C17—C18 1.3787 (18)

N1—C2 1.4773 (13) C18—C19 1.376 (2)

N1—C3 1.3681 (14) C19—C20 1.3715 (19)

N1—C16 1.4048 (14) C20—C21 1.3792 (19)

C1—C2 1.5730 (15) C1—H1 0.980

C1—C3 1.5217 (17) C2—H2 0.980

C1—C4 1.4933 (15) C5—H5 0.980

C2—C10 1.5029 (12) C6—H6 0.980

C4—C5 1.3900 (15) C7—H7 0.980

C4—C9 1.3750 (16) C8—H8 0.980

C5—C6 1.380 (2) C9—H9 0.980

C6—C7 1.367 (2) C11—H11 0.980

C7—C8 1.361 (2) C12—H12 0.980

C8—C9 1.379 (2) C13—H13 0.980

C10—C11 1.3809 (14) C14—H14 0.980

C10—C15 1.3840 (14) C15—H15 0.980

C11—C12 1.3857 (14) C17—H17 0.980

C12—C13 1.3686 (17) C18—H18 0.980

C13—C14 1.3760 (18) C19—H19 0.980

C14—C15 1.3833 (14) C20—H20 0.980

C16—C17 1.3894 (15) C21—H21 0.980

C16—C21 1.3805 (16)

C2—N1—C3 94.64 (8) C2—C1—H1 111.0

C2—N1—C16 129.93 (8) C3—C1—H1 109.8

C3—N1—C16 133.43 (8) C4—C1—H1 109.5

C2—C1—C3 85.10 (8) N1—C2—H2 110.3

C2—C1—C4 121.22 (7) C1—C2—H2 111.2

(6)

N1—C2—C1 87.06 (7) C4—C5—H5 118.9

N1—C2—C10 117.15 (8) C6—C5—H5 120.6

C1—C2—C10 119.11 (8) C5—C6—H6 119.5

O1—C3—N1 131.30 (11) C7—C6—H6 120.0

O1—C3—C1 135.52 (11) C6—C7—H7 120.4

N1—C3—C1 93.18 (8) C8—C7—H7 120.1

C1—C4—C5 120.85 (10) C7—C8—H8 119.5

C1—C4—C9 121.04 (10) C9—C8—H8 119.9

C5—C4—C9 118.09 (10) C4—C9—H9 119.1

C4—C5—C6 120.43 (12) C8—C9—H9 120.0

C5—C6—C7 120.48 (13) C10—C11—H11 119.6

C6—C7—C8 119.50 (14) C12—C11—H11 120.4

C7—C8—C9 120.63 (14) C11—C12—H12 119.8

C4—C9—C8 120.86 (12) C13—C12—H12 119.6

C2—C10—C11 122.72 (9) C12—C13—H13 120.0

C2—C10—C15 118.18 (9) C14—C13—H13 120.2

C11—C10—C15 119.10 (8) C13—C14—H14 119.7

C10—C11—C12 120.03 (10) C15—C14—H14 120.3

C11—C12—C13 120.57 (11) C10—C15—H15 119.3

C12—C13—C14 119.83 (10) C14—C15—H15 120.2

C13—C14—C15 119.96 (11) C16—C17—H17 119.9

C10—C15—C14 120.50 (10) C18—C17—H17 120.9

N1—C16—C17 121.10 (9) C17—C18—H18 119.5

N1—C16—C21 119.24 (9) C19—C18—H18 119.3

C17—C16—C21 119.65 (10) C18—C19—H19 120.1

C16—C17—C18 119.17 (11) C20—C19—H19 120.5

C17—C18—C19 121.13 (12) C19—C20—H20 119.9

C18—C19—C20 119.43 (13) C21—C20—H20 119.7

C19—C20—C21 120.35 (12) C16—C21—H21 119.1

Figure

Fig. 1 shows the structure of the title compound, (I). Selectedmolecular parameters are listed in Table 1
Figure 1

References

Related documents

While consumers in São Paulo and Piracicaba base their choice of store on attributes in the categories of price and convenience, customers in Ribeirão Preto place greater value

the chromatin, whereas in the former arrangement the entire force transmitted by the kinetochore would converge on a single Cse4 nucleosome (Santaguida and Musacchio 2009).

The main contributions of this work are: (i) a survey and classification of IoT applications, (ii) a taxonomy of IoT application capabilities and properties represented by the

Our method for synonymous collocation extraction comprises of three steps: (1) extract collocations from large monolingual corpora; (2) generate can- didates of synonymous

Date of Birth Driver’s License Number State Marital Status Number of Dependents.. Corporation/LLC/Partnership Name Federal Tax Identification Number (EIN) D &amp;

The distributor may seek to limit the producer’s right to terminate until distributor has recouped its advance (assuming it has given the producer an advance.) Another

Cloud providers offer databases and storage space for enterprises are called Database as a Service (DBaaS) [2]. The enterprise applications send client data to database

Given that implicit prediction of upcoming information is also required for efficient sentence processing, because PwPD are impaired on prediction tasks in the