• No results found

catena Poly­[[[(ethyl­enedi­amine κ2N,N′)­zinc(II)] μ oxalato] dihydrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[[(ethyl­enedi­amine κ2N,N′)­zinc(II)] μ oxalato] dihydrate]"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1160

G. A. van Albadaet al. [Zn(C2O4)(C2H8N2)]2H2O DOI: 10.1107/S160053680401668X Acta Cryst.(2004). E60, m1160±m1162 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[[(ethylenediamine-

j

2

N,N

000

)zinc(II)]-l

-oxalato] dihydrate]

Gerard A. van Albada,a* Aminou

Mohamadou,bIlpo Mutikainen,c

Urho Turpeinencand

Jan Reedijka

aLeiden Institute of Chemistry, Gorlaeus

Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands,bGRECI

(Groupe de Recherche en Chimie Inorganique), Universite de Reims Champagne-Ardenne, Faculte des Sciences, Moulin de la Housse, BP 1039, 51687 Reims, France, andcUniversity of

Helsinki, Department of Chemistry, Laboratory of Inorganic Chemistry, FIN-00014 Helsinki, Finland

Correspondence e-mail: g.albada@chem.leidenuniv.nl

Key indicators Single-crystal X-ray study

T= 173 K

Mean(C±C) = 0.007 AÊ Disorder in main residue

Rfactor = 0.060

wRfactor = 0.163

Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the crystal structure of the title compound, {[Zn(C2O4)(C2H8N2)]2H2O}n, the ZnII atom adopts an

octahedral geometry, formed by two N atoms of an ethyl-enediamine ligand [ZnÐN = 2.112 (4)±2.124 (4)) AÊ] and four O atoms of two bridging oxalate ligands [ZnÐO = 2.105 (3)± 2.154 (3) AÊ]. The asymmetric unit consists of one and one-half formula units.

Comment

The title compound, (I), was obtained by in situ synthesis during the preparation of a zinc(II) compound with the ligand 2,20-biimidazoline (abbreviated as biz) and ammonium

thio-cyanate. The ligand biz is known to hydrolysein situto form new organic ligands (Woodburn & O'Gee 1952; Wang & Bauman, 1965; van Albada et al., 2003). In this study, it has been observed that the biz ligand hydrolyses to give ethyl-enediamine molecules and oxalate anions, a type of hydrolysis which was already reported in the literature (Woodburn & O'Gee, 1952).

The Zn atom adopts an octahedral geometry, formed by two N atoms of an ethylenediamine ligand [ZnÐN = 2.112 (4)± 2.124 (4) AÊ] and four O atoms of two bridging oxalate ligands [ZnÐO = 2.105 (3)±2.154 (3) AÊ, see Table 1 for details], forming a polymeric one-dimensional array of Zn±oxalate units (Fig. 1). Such a polymeric ZnII±oxalate array has only been reported once previously, with the ligand 2-methyl-imidazole (Jansenet al., 1979). The asymmetric unit consists of one and one-half formula units, one Zn atom lying on a twofold rotation axis.

The crystal structure of (I) is stabilized by intricate inter-molecular hydrogen bonding between the amine N atoms and the O atoms of the oxalate ligand and the water molecules, with N O distances in the range 3.121 (6)±3.210 (6) AÊ, and

(2)

between the O atoms of the oxalate ligand and the O atoms of the water molecules, with O O distances ranging from 2.736 (6)±2.895 (4) AÊ (Table 2).

Experimental

The ligand 2,20-biimidazoline (biz) was prepared according to a

method reported in the literature (Wang & Bauman, 1965). The title Zn complex was obtained by Zn-induced hydrolysis of the biz ligand. The title compound was synthesized by mixing biz (2 mmol) and zinc(II) perchlorate hexahydrate (1 mmol) in an ethanol solution. To the resulting solution, an aqueous solution (3 ml) of ammonium thiocyanate (2 mmol) was added dropwise, and the mixture was boiled for about 1 h. It was then ®ltered and left to stand at room temperature. After about one month, white crystals were obtained, which were recrystallized from an ethanol±acetonitrile (1:1) solution

(yield 66%). Elemental analysis [found (calculated)] for C12H36

-N6O18Zn3: C 19.5 (19.3), H 4.9 (4.8), N 11.4% (11.2%). In the IR

spectrum, the OH and NH vibrations were observed at 3488, 3410

and 3361 cmÿ1, while the C O vibration of the oxalate ligand was

observed at 1602 cmÿ1.

Crystal data

[Zn(C2O4)(C2H8N2)]2H2O

Mr= 249.53 Monoclinic,C2=c a= 25.757 (5) AÊ

b= 9.053 (3) AÊ

c= 11.623 (2) AÊ

= 93.05 (3)

V= 2706.4 (11) AÊ3

Z= 12

Dx= 1.837 Mg mÿ3 MoKradiation

Cell parameters from 20 214 re¯ections

= 2.9±27.6

= 2.73 mmÿ1

T= 173 (2) K Prism, colorless 0.200.120.10 mm

Data collection

Nonius KappaCCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.606,Tmax= 0.764

20 214 measured re¯ections

3121 independent re¯ections 2425 re¯ections withI> 2(I)

Rint= 0.044

max= 27.6

h=ÿ33!33

k=ÿ11!11

l=ÿ14!15

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.060

wR(F2) = 0.163

S= 1.23 3121 re¯ections 196 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0528P)2 + 25.3123P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 1.47 e AÊÿ3

min=ÿ2.17 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Zn1ÐO2 2.105 (3)

Zn1ÐN2 2.112 (4)

Zn1ÐN1 2.116 (4)

Zn1ÐO5 2.116 (3)

Zn1ÐO6 2.149 (3)

Zn1ÐO1 2.154 (3)

Zn2ÐN3 2.124 (4)

Zn2ÐO3 2.127 (3)

Zn2ÐO4 2.148 (3)

O2ÐZn1ÐO5 165.94 (14)

N1ÐZn1ÐO6 173.48 (14)

N2ÐZn1ÐO1 173.90 (15)

O3ÐZn2ÐO3i 164.82 (17)

N3ÐZn2ÐO4 176.95 (15)

Symmetry code: (i) 1ÿx;y;3 2ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH11A O8 0.92 2.29 3.174 (5) 160

N1ÐH11B O8 0.92 2.46 3.174 (5) 135

N1ÐH12A O9vi 0.92 2.29 3.133 (6) 153

N1ÐH12B O9vi 0.92 2.42 3.133 (6) 135

N2ÐH21A O9ii 0.92 2.27 3.166 (7) 165

N2ÐH21B O9ii 0.92 2.46 3.166 (7) 134

N2ÐH22A O8iii 0.92 2.36 3.210 (6) 154

N2ÐH22B O8iii 0.92 2.46 3.210 (6) 139

N3ÐH31 O10iv 0.83 2.36 3.121 (6) 153

N3ÐH32 O10v 0.93 2.35 3.147 (6) 144

O8ÐH81 O4i 0.84 2.08 2.895 (4) 166

O8ÐH82 O2vii 0.87 1.89 2.747 (5) 168

O9ÐH91 O5v 0.84 1.92 2.736 (6) 164

O9ÐH92 O1 0.84 2.05 2.852 (6) 159

O10ÐH101 O3vi 0.84 1.98 2.757 (6) 152

O10ÐH102 O6ii 0.84 2.00 2.832 (5) 167

Symmetry codes: (i) 1ÿx;y;3

2ÿz; (ii) 12ÿx;12ÿy;1ÿz; (iii) x;ÿy;zÿ12; (iv) 1

2‡x;12ÿy;12‡z; (v)12ÿx;12‡y;32ÿz; (vi)12ÿx;yÿ12;32ÿz; (vii)x;ÿy;12‡z.

One of the ethylenediamine ligands was found to be disordered over two conformations. The occupancies of the two conformers were initially re®ned to 0.56 (1) and 0.44 (1), respectively, but later ®xed at 0.50 each. The C- and N-bound H atoms were placed in calculated positions (NÐH = 0.92 AÊ and CÐH = 0.99 AÊ) and allowed to ride on

their parent atoms, withUiso(H) = 1.2Ueq(parent atom). The H atoms

of the water molecules were located in a difference map and their

positions were not re®ned but theirUiso(H) values were set equal to

1.5Ueq(O).

Data collection: COLLECT (Nonius, 2002); cell re®nement:

COLLECT and DENZO/SCALEPACK (Otwinowski & Minor,

1997); data reduction: COLLECT and DENZO/SCALEPACK;

program(s) used to solve structure:SHELXS97 (Sheldrick, 1997a);

program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997a);

molecular graphics:SHELXTL(Sheldrick, 1997b); software used to

prepare material for publication:SHELXTL.

metal-organic papers

Acta Cryst.(2004). E60, m1160±m1162 G. A. van Albadaet al. [Zn(C2O4)(C2H8N2)]2H2O

m1161

Figure 1

Part of the molecular structure of (I), showing 50% probability displacement ellipsoids. The non-coordinating water molecules have been omitted for clarity. Only one site of the disordered ethylenediamine molecule is shown. Atom labels with suf®xesA,BandCare generated by the symmetry codes (1ÿx, y,3

2ÿz), (12ÿx,12ÿy, 1-z) and (12+x,12-y, 1

(3)

The work described in this paper was supported by the Leiden University Study group WFMO (Werkgroep Funda-menteel Materialen Onderzoek).

References

Albada, G. A. van, Mohamadou, A., Reedijk, J., Kooijman, H. & Spek, A. L. (2003).Z. Anorg. Allg. Chem.629, 2190±2194.

Jansen, J. C., van Koningsveld, H. & van Ooijen, J. A. C. (1979).Cryst. Struct. Commun.8, 499±505.

Nonius (2002).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL.Bruker AXS Inc., Madison, Wisconsin, USA.

Wang, J. C. & Bauman, J. E. Jr (1965).Inorg. Chem.4, 1613±1615.

Woodburn, H. M. & O'Gee, R. C. (1952). J. Org. Chem. 17, 1235± 1241.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1160–m1162

supporting information

Acta Cryst. (2004). E60, m1160–m1162 [https://doi.org/10.1107/S160053680401668X]

catena

-Poly[[[(ethylenediamine-

κ

2

N,N

)zinc(II)]-

µ

-oxalato] dihydrate]

Gerard A. van Albada, Aminou Mohamadou, Ilpo Mutikainen, Urho Turpeinen and Jan Reedijk

catena-Poly[[[(ethylenediamine-κ2N,N)zinc(II)]-µ-oxalato] dihydrate]

Crystal data

[Zn(C2O4)(C2H8N2)]·2H2O

Mr = 249.53 Monoclinic, C2/c Hall symbol: -C 2yc a = 25.757 (5) Å b = 9.053 (3) Å c = 11.623 (2) Å β = 93.05 (3)° V = 2706.4 (11) Å3

Z = 12

F(000) = 1536 Dx = 1.837 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 20214 reflections θ = 2.9–27.6°

µ = 2.73 mm−1

T = 173 K Prism, colorless 0.20 × 0.12 × 0.10 mm

Data collection

Nonius KappaCCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.606, Tmax = 0.764

20214 measured reflections 3121 independent reflections 2425 reflections with I > 2σ(I) Rint = 0.044

θmax = 27.6°, θmin = 2.9°

h = −33→33 k = −11→11 l = −14→15

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.060

wR(F2) = 0.163

S = 1.23 3121 reflections 196 parameters 66 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0528P)2 + 25.3123P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.47 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1160–m1162

Special details

Experimental. A crystal was selected for the X–ray measurements and mounted to the glass fiber using the oil drop method (Kottke & Stalke, 1993) and data were collected at 193 K. The intensity data were corrected for Lorentz and polarization effects and for absorption. one of the ethylenediamine ligands was found to be disordered and was refined in two positions with population parameter 0.5. The positional and atomic displacement factors of nitrogen N1A and N1B and N2A and N2B, respectively, of the disordered ethylenediammine ligand were fixed to be the same. N1A and N1B, as well as, N2A and N2B, effectively act as single nitrogen atom. The reason for this model is to model the hydrogen atoms at these N atoms correctly.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Zn1 0.33312 (2) 0.07555 (6) 0.57783 (4) 0.01721 (19)

Zn2 0.5000 0.41017 (7) 0.7500 0.0166 (2)

O1 0.35169 (12) 0.2426 (3) 0.7054 (3) 0.0177 (7)

O2 0.41333 (13) 0.1046 (4) 0.5592 (3) 0.0223 (7)

C1 0.39860 (17) 0.2815 (4) 0.7083 (4) 0.0140 (8)

C2 0.43456 (17) 0.2014 (5) 0.6244 (4) 0.0153 (8)

O3 0.41929 (12) 0.3791 (3) 0.7723 (3) 0.0187 (7)

O4 0.48126 (12) 0.2378 (3) 0.6277 (3) 0.0172 (6)

N1 0.34208 (16) −0.1042 (4) 0.6935 (3) 0.0192 (8)

H11A 0.3703 −0.0919 0.7446 0.023* 0.50

H12A 0.3127 −0.1197 0.7334 0.023* 0.50

H11B 0.3766 −0.1124 0.7172 0.023* 0.50

H12B 0.3237 −0.0849 0.7575 0.023* 0.50

C3A 0.3121 (4) −0.2192 (10) 0.5056 (7) 0.0154 (17) 0.50

H31A 0.3154 −0.3047 0.4533 0.019* 0.50

H32A 0.2763 −0.2167 0.5322 0.019* 0.50

C4A 0.3510 (4) −0.2300 (9) 0.6062 (8) 0.0143 (16) 0.50

H41A 0.3866 −0.2230 0.5788 0.017* 0.50

H42A 0.3474 −0.3268 0.6446 0.017* 0.50

N2 0.32348 (18) −0.0895 (4) 0.4501 (4) 0.0249 (9)

H21A 0.2968 −0.0647 0.3979 0.030* 0.50

H22A 0.3535 −0.0998 0.4112 0.030* 0.50

H21B 0.2893 −0.0970 0.4235 0.030* 0.50

H22B 0.3438 −0.0709 0.3890 0.030* 0.50

C3B 0.3246 (4) −0.2433 (9) 0.6441 (7) 0.0154 (17) 0.50

H31B 0.2863 −0.2510 0.6433 0.018* 0.50

H32B 0.3400 −0.3273 0.6885 0.018* 0.50

C4B 0.3432 (4) −0.2425 (9) 0.5217 (7) 0.0156 (17) 0.50

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1160–m1162

H42B 0.3816 −0.2479 0.5245 0.019* 0.50

O5 0.25265 (12) 0.1034 (4) 0.5992 (3) 0.0206 (7)

N3 0.51433 (18) 0.5843 (5) 0.8701 (4) 0.0309 (10)

H31 0.5432 0.5651 0.9012 0.037*

H32 0.4892 0.5992 0.9233 0.037*

C5 0.5211 (2) 0.7224 (6) 0.7996 (5) 0.0293 (11)

H5A 0.5561 0.7238 0.7682 0.035*

H5B 0.5175 0.8111 0.8484 0.035*

O6 0.31469 (12) 0.2532 (4) 0.4600 (3) 0.0235 (7)

C6 0.26805 (18) 0.2933 (5) 0.4599 (4) 0.0189 (9)

O8 0.43549 (12) 0.0229 (3) 0.8530 (3) 0.0186 (7)

H81 0.4626 0.0741 0.8521 0.028*

H82 0.4332 −0.0212 0.9190 0.028*

O9 0.26722 (17) 0.4462 (6) 0.7070 (4) 0.0626 (17)

H91 0.2674 0.4962 0.7676 0.094*

H92 0.2959 0.4047 0.6974 0.094*

O10 0.09839 (15) 0.0553 (5) 0.5403 (4) 0.0466 (12)

H102 0.1270 0.1003 0.5409 0.070*

H101 0.1035 0.0096 0.6031 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.0135 (3) 0.0204 (3) 0.0175 (3) −0.00060 (18) −0.00122 (19) −0.00589 (19)

Zn2 0.0127 (4) 0.0087 (3) 0.0280 (4) 0.000 −0.0011 (3) 0.000

O1 0.0154 (16) 0.0143 (14) 0.0232 (16) −0.0014 (12) 0.0002 (12) −0.0041 (12)

O2 0.0166 (16) 0.0294 (17) 0.0207 (17) −0.0019 (13) −0.0004 (13) −0.0146 (14)

C1 0.0140 (11) 0.0135 (11) 0.0145 (11) 0.0004 (9) 0.0006 (9) 0.0000 (9)

C2 0.0153 (12) 0.0152 (11) 0.0155 (11) 0.0008 (9) 0.0003 (9) −0.0002 (9)

O3 0.0155 (15) 0.0134 (14) 0.0272 (17) −0.0012 (12) 0.0016 (13) −0.0065 (13)

O4 0.0122 (15) 0.0193 (15) 0.0200 (16) 0.0008 (12) 0.0007 (12) −0.0041 (12)

N1 0.0196 (10) 0.0186 (10) 0.0193 (10) 0.0000 (7) −0.0016 (7) −0.0020 (7)

C3A 0.0163 (19) 0.0157 (19) 0.0143 (19) −0.0003 (10) −0.0001 (10) −0.0001 (10)

C4A 0.0151 (18) 0.0143 (18) 0.0136 (18) 0.0003 (10) −0.0004 (10) −0.0008 (10)

N2 0.0257 (12) 0.0272 (12) 0.0222 (12) −0.0029 (9) 0.0033 (9) −0.0020 (9)

C3B 0.016 (2) 0.015 (2) 0.015 (2) −0.0015 (18) −0.0026 (18) 0.0012 (18)

C4B 0.018 (5) 0.012 (4) 0.017 (4) 0.005 (3) 0.000 (3) −0.003 (3)

O5 0.0152 (16) 0.0262 (16) 0.0205 (16) −0.0002 (13) 0.0017 (13) 0.0009 (13)

N3 0.0283 (13) 0.0298 (13) 0.0346 (13) 0.0021 (9) 0.0020 (9) −0.0055 (9)

C5 0.0270 (14) 0.0267 (14) 0.0344 (14) −0.0005 (9) 0.0023 (10) −0.0021 (9)

O6 0.0122 (16) 0.0351 (19) 0.0233 (17) −0.0011 (14) 0.0009 (13) 0.0049 (15)

C6 0.0184 (12) 0.0202 (12) 0.0182 (12) −0.0005 (9) 0.0007 (9) −0.0005 (9)

O8 0.0227 (17) 0.0204 (16) 0.0126 (15) −0.0054 (13) 0.0000 (12) 0.0007 (12)

O9 0.032 (2) 0.087 (4) 0.066 (3) 0.029 (2) −0.022 (2) −0.057 (3)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1160–m1162

Geometric parameters (Å, º)

Zn1—O2 2.105 (3) C4A—H42A 0.99

Zn1—N2 2.112 (4) N2—H21A 0.92

Zn1—N1 2.116 (4) N2—H22A 0.92

Zn1—O5 2.116 (3) C3B—C4B 1.524 (12)

Zn1—O6 2.149 (3) C3B—H31B 0.99

Zn1—O1 2.154 (3) C3B—H32B 0.99

Zn2—N3 2.124 (4) C4B—H41B 0.99

Zn2—N3i 2.124 (4) C4B—H42B 0.99

Zn2—O3 2.127 (3) O5—C6ii 1.262 (6)

Zn2—O3i 2.127 (3) N3—C5 1.510 (7)

Zn2—O4 2.148 (3) N3—H31 0.83

Zn2—O4i 2.148 (3) N3—H32 0.93

O1—C1 1.257 (5) C5—C5i 1.543 (10)

O2—C2 1.264 (5) C5—H5A 0.99

C1—O3 1.255 (5) C5—H5B 0.99

C1—C2 1.559 (6) O6—C6 1.255 (6)

C2—O4 1.246 (5) C6—O5ii 1.262 (6)

N1—C4A 1.549 (9) C6—C6ii 1.562 (9)

N1—H11A 0.92 O8—H81 0.84

N1—H12A 0.92 O8—H82 0.87

C3A—N2 1.379 (9) O9—H91 0.84

C3A—C4A 1.501 (12) O9—H92 0.84

C3A—H31A 0.99 O10—H102 0.84

C3A—H32A 0.99 O10—H101 0.84

C4A—H41A 0.99

O2—Zn1—N2 95.48 (15) H11A—N1—H12A 109.6

O2—Zn1—N1 95.00 (15) N2—C3A—C4A 105.7 (7)

N2—Zn1—N1 84.68 (16) N2—C3A—H31A 110.6

O2—Zn1—O5 165.94 (14) C4A—C3A—H31A 110.6

N2—Zn1—O5 95.03 (16) N2—C3A—H32A 110.6

N1—Zn1—O5 95.25 (15) C4A—C3A—H32A 110.6

O2—Zn1—O6 91.47 (13) H31A—C3A—H32A 108.7

N2—Zn1—O6 93.88 (15) C3A—C4A—N1 110.3 (7)

N1—Zn1—O6 173.48 (14) C3A—C4A—H41A 109.6

O5—Zn1—O6 78.53 (13) N1—C4A—H41A 109.6

O2—Zn1—O1 78.45 (12) C3A—C4A—H42A 109.6

N2—Zn1—O1 173.90 (15) N1—C4A—H42A 109.6

N1—Zn1—O1 95.17 (14) H41A—C4A—H42A 108.1

O5—Zn1—O1 91.05 (13) C3A—N2—Zn1 107.1 (4)

O6—Zn1—O1 86.94 (14) C3A—N2—H21A 110.3

N3—Zn2—N3i 84.2 (3) Zn1—N2—H21A 110.3

N3—Zn2—O3 98.91 (15) C3A—N2—H22A 110.3

N3i—Zn2—O3 92.36 (16) Zn1—N2—H22A 110.3

N3—Zn2—O3i 92.36 (16) H21A—N2—H22A 108.6

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m1160–m1162

O3—Zn2—O3i 164.82 (17) C4B—C3B—H32B 110.7

N3—Zn2—O4 176.95 (15) H31B—C3B—H32B 108.8

N3i—Zn2—O4 94.54 (16) C3B—C4B—H41B 109.3

O3—Zn2—O4 78.34 (12) C3B—C4B—H42B 109.3

O3i—Zn2—O4 90.58 (12) H41B—C4B—H42B 108.0

N3—Zn2—O4i 94.54 (16) C6ii—O5—Zn1 114.4 (3)

N3i—Zn2—O4i 176.95 (15) C5—N3—Zn2 106.2 (3)

O3—Zn2—O4i 90.58 (12) C5—N3—H31 106.5

O3i—Zn2—O4i 78.34 (12) Zn2—N3—H31 104.6

O4—Zn2—O4i 86.82 (17) C5—N3—H32 110.2

C1—O1—Zn1 113.2 (3) Zn2—N3—H32 116.3

C2—O2—Zn1 114.9 (3) H31—N3—H32 112.4

O1—C1—O3 126.2 (4) N3—C5—C5i 107.9 (4)

O1—C1—C2 117.0 (4) N3—C5—H5A 110.1

O3—C1—C2 116.8 (4) C5i—C5—H5A 110.1

O4—C2—O2 126.0 (4) N3—C5—H5B 110.1

O4—C2—C1 117.5 (4) C5i—C5—H5B 110.1

O2—C2—C1 116.4 (4) H5A—C5—H5B 108.4

C1—O3—Zn2 114.1 (3) C6—O6—Zn1 113.3 (3)

C2—O4—Zn2 113.3 (3) O6—C6—O5ii 126.3 (4)

C4A—N1—Zn1 99.5 (4) O6—C6—C6ii 117.0 (5)

C4A—N1—H11A 111.9 O5ii—C6—C6ii 116.7 (5)

Zn1—N1—H11A 111.9 H81—O8—H82 111.0

C4A—N1—H12A 111.9 H91—O9—H92 112.8

Zn1—N1—H12A 111.9 H102—O10—H101 97.7

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H11A···O8 0.92 2.29 3.174 (5) 160

N1—H11B···O8 0.92 2.46 3.174 (5) 135

N1—H12A···O9iii 0.92 2.29 3.133 (6) 153

N1—H12B···O9iii 0.92 2.42 3.133 (6) 135

N2—H21A···O9ii 0.92 2.27 3.166 (7) 165

N2—H21B···O9ii 0.92 2.46 3.166 (7) 134

N2—H22A···O8iv 0.92 2.36 3.210 (6) 154

N2—H22B···O8iv 0.92 2.46 3.210 (6) 139

N3—H31···O10v 0.83 2.36 3.121 (6) 153

N3—H32···O10vi 0.93 2.35 3.147 (6) 144

O8—H81···O4i 0.84 2.08 2.895 (4) 166

O8—H82···O2vii 0.87 1.89 2.747 (5) 168

O9—H91···O5vi 0.84 1.92 2.736 (6) 164

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, m1160–m1162

O10—H101···O3iii 0.84 1.98 2.757 (6) 152

O10—H102···O6ii 0.84 2.00 2.832 (5) 167

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x, −y, z−1/2; (v) x+1/2, −y+1/2, z+1/2; (vi) −x+1/2,

References

Related documents

(2014) Knowledge, Attitude, Utilization of Emergency Contraceptive and Associated Factors among Female Students of Debre Markos Higher Institutions, Northwest Ethiopia.

Spre finele anului 2000, când a trecut valul următor prin băncile moldovenești, ceea ce a dus la micșorarea bugetelor pentru secțiile de programare și tehnice, au fost

Our data suggest that ERAD of nascent POMC proteins, presumably in the misfolded confor- mation, is a prerequisite for maturation and exit of other POMC molecules from the ER,

MCC, JHS, and DCA conceived the project; MCC performed experiments on mitochondrial trafficking, chemotaxis, tumor cell invasion, the xenograft mouse model of localized and

This study aims to study impact of personality traits- Openness, Conscientiousness, Extraversion, Agreeableness ad Neuroticism- on Impulse Buying

3.1 Vanilla Transformer Language Models In order to apply Transformer or self-attention to language modeling, the central problem is how to train a Transformer to effectively encode

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 2 (Short Papers) ,

emissions functions to examine effect of foreign direct investment, and financial development on clean energy consumption and carbon emissions by considering role of economic