• No results found

trans Bis(4 amino­pyridine κN)bis­­(succinimidato κN)copper(II) dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "trans Bis(4 amino­pyridine κN)bis­­(succinimidato κN)copper(II) dihydrate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m625–m627 doi:10.1107/S1600536806006209 Akitsu and Einaga [Cu(C4H4NO2)2(C5H6N2)2].2H2O

m625

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

trans

-Bis(4-aminopyridine-

j

N

)bis(succinimidato-j

N

)copper(II) dihydrate

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study T= 297 K

Mean(C–C) = 0.007 A˚ Rfactor = 0.052 wRfactor = 0.158

Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 17 January 2006 Accepted 20 February 2006

#2006 International Union of Crystallography All rights reserved

The title compound, [Cu(C4H4NO2)2(C5H6N2)2]2H2O, has its

metal atom in a square-planar trans-[CuN4] coordination

environment; the CuIIatom lies on a center of symmetry. Both succinimidate and 4-aminopyridine ligands behave as mono-dentate ligands, which coordinate through deprotonated imidate and pyridine (not amino) N atoms, respectively. The 4-aminopyridine is the first ligand in such CuII complexes containing two different N atoms to take potentially different coordination modes.

Comment

Recently, supramolecular self-assembling metal-organic frameworks of transition-metal complexes have been studied widely (Eddaoudiet al., 2001; Evanset al., 2002; Yaghiet al., 1998). In particular, rational design of crystals as well as molecular structures with anisotropy may be important fundamentals in the production of optical and electronic functional materials. It has been found that CuII complexes

show flexible coordination geometries and electronic states (Hathaway & Billing, 1970). We have reported that the tetragonal Jahn–Teller distortion can be affected by the external temperature or light irradiation for CuIIcomplexes with amine ligands (Akitsu & Einaga, 2003). Succinimidate ligands give rise to square-planar CuN4 complexes, not only

[image:1.610.206.458.507.713.2]

with four identical ligands (Akitsu, Komorita & Urushiyama, 2001) but also with mixed ligands such astrans-forms with two succinimidate and two monodentate amine ligands (Akitsu,

Figure 1

(2)

Komorita & Kushi, 2001). Furthermore, five-coordinate CuN4O or six-coordinate CuN4O2 square-bipyramidal

chro-mophores have been reported for cis-forms with bidentate diimine (Akitsu et al., 1999) or bidentate amine (Akitsu & Komorita, 2002). However, the related CuII complexes with amine ligands containing two different coordinating N atoms have not been reported so far. Here, we report the crystal structure of the title compound, (I), incorporating 4-amino-pyridine ligands with competitive amino and 4-amino-pyridine N-atom sites.

In (I) (Fig. 1), the Cu atom exists in a square-planar CuN4

coordination geometry; it lies on an inversion center. Both succinimidate and 4-aminopyridine ligands behave as mono-dentate. The Cu—N bond distances, the N—Cu—N bond angles, and other geometric parameters of the ligands (Table 1) are comparable to those of the analogous CuIIcomplexes with pyridine derivative ligands (Latavalya & Taylor, 1975). The C1—N1—C4 angle of 110.2 (4)indicates thesp2

character of the deprotonated N1 atom; the O1—C1—N1 and O2—C4— N1 angles of 123.6 (4) and 124.6 (4), respectively, also reflect

electron delocalization in the-conjugated system, similar to the CuII complexes with 5,5-diphenylhydantoinate ligands (Akitsu & Einaga, 2004, 2005). The dihedral angle between the coordination plane [Cu1/N1/N2/N1i/N2i, symmetry code: (i) x, y, z] and the succinimidate five-membered ring (N1/C1–C4) is 80.2 (2), and that between the coordination

plane and the pyridine ring (N2/C5–C9) is 81.9 (2). The

dihedral angle between the succinimidate and pyridine rings is 85.0 (2).

As seen from Fig. 1, there is a water molecule of crystal-lization (together with an inversion-related one) near the Cu complex to form the O1 H3E—O3—H3F O2i hydrogen-bonding linkage (Table 2). There are also N—H O inter-molecular hydrogen bonds involving the amino groups.

Experimental

Treatment of copper(II) acetate (0.226 g, 1.25 mmol), succinimide (0.495 g, 5.00 mmol), and 4-aminopyridine (0.235 g, 2.50 mmol) in ethanol (50 ml) at 318 K for 2 h gave rise to a deep blue solution. Brown microcrystals (anhydrous) were obtained from the resulting

solution. Yield 0.0752 g (13.2%). IR (KBr): 1618 cm1(amide I). UV (reflectance spectra): 16700 cm1 [sh, F(R

d) = 1.44], 21000 cm

1

[F(Rd) = 2.36]. Anal. Found: C 44.42, H 5.12, N 17.21%; calcd. for C18H24N6CuO6: C 44.67, H 5.00, N 17.36%. m.p. 559 K

(decomposi-tion). Brown crystals of (I) suitable for X-ray analysis were obtained from a methanol solution over a period of several days. The water solvent molecules came from undried methanol.

Crystal data

[Cu(C4H4NO2)2(C5H6N2)2].2H2O

Mr= 483.98 Triclinic,P1 a= 7.945 (2) A˚ b= 8.729 (3) A˚ c= 9.161 (3) A˚ = 65.04 (2)

= 86.86 (3)

= 67.59 (2)

V= 528.2 (3) A˚3

Z= 1

Dx= 1.521 Mg m

3

MoKradiation Cell parameters from 20

reflections = 10.1–13.7

= 1.08 mm1

T= 297 (2) K Prism, brown 0.200.200.20 mm

Data collection

Rigaku AFC-7R diffractometer !–2scans

Absorption correction: scan (Northet al., 1968) Tmin= 0.696,Tmax= 0.807

2736 measured reflections 2430 independent reflections 1771 reflections withI> 2(I)

Rint= 0.058

max= 27.5

h=11!10 k=11!11 l=4!10 3 standard reflections

every 150 reflections intensity decay: 0.4%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.052 wR(F2) = 0.158

S= 1.06 2430 reflections 144 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0697P)2

+ 0.5544P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.58 e A˚ 3

[image:2.610.123.219.206.359.2]

min=0.54 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Cu1—N1 1.971 (3)

Cu1—N2 2.011 (4)

O1—C1 1.235 (6)

O2—C4 1.214 (6)

N1—C1 1.349 (6)

N1—C4 1.371 (6)

N2—C5 1.339 (6)

N2—C9 1.342 (6)

N1—Cu1—N2 89.93 (14)

C1—N1—C4 110.2 (4)

C1—N1—Cu1 127.0 (3)

C4—N1—Cu1 122.8 (3)

C5—N2—C9 116.2 (4)

C5—N2—Cu1 121.5 (3)

[image:2.610.314.565.663.720.2]

C9—N2—Cu1 122.0 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H3E O1 0.73 (3) 2.13 (2) 2.827 (5) 161 (2)

O3—H3F O2i

0.79 (3) 1.99 (2) 2.770 (7) 168 (2) N3—H3C O1ii

0.86 2.20 3.016 (5) 158

N3—H3D O3iii

0.86 2.08 2.917 (6) 164

Symmetry codes: (i)x;y;z; (ii)xþ1;y1;z; (iii)x;y1;zþ1.

metal-organic papers

(3)

The water H atoms were located in difference Fourier maps and their positions were refined withUiso= 0.064 A˚

2

. H atoms bonded to C and N atoms were placed in calculated positions, with C—H and N—H = 0.93–0.97 and 0.86 A˚ , respectively, and with Uiso(H) =

1.2Ueq(C,N).

Data collection: WinAFC Diffractometer Control Software

(Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction:TEXSAN(Molecular Structure Corpora-tion, 1989); program(s) used to solve structure:SIR92(Altomareet al., 1994); program(s) used to refine structure: SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII(Johnson, 1976); software used to prepare material for publication:TEXSAN.

This work was supported by a Grant-in-Aid for the 21st Century COE program ‘KEIO Life Conjugate Chemistry’ from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors are grateful to Professor Tohru Yamada and Dr Taketo Ikeno (Keio University) for the use of the apparatus for differential scanning calorimetry measurements.

References

Akitsu, T. & Einaga, Y. (2003).Bull. Chem. Soc. Jpn,77, 763–764. Akitsu, T. & Einaga, Y. (2004).Acta Cryst.E60, m524–m526. Akitsu, T. & Einaga, Y. (2005).Acta Cryst.C61, m183–m186. Akitsu, T. & Komorita, S. (2002).Bull. Chem. Soc. Jpn,75, 767–768. Akitsu, T., Komorita, S. & Kushi, Y. (1999).Bull. Chem. Soc. Jpn,72, 447–454. Akitsu, T., Komorita, S, & Kushi, Y. (2001).Inorg. Chim. Acta,315, 18–25. Akitsu, T, Komorita, S. & Urushiyama, A. (2001).Bull. Chem. Soc. Jpn,74,

851–860.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001).Acc. Chem. Res.34, 319–330.

Evans, O. R. & Lin, W. (2002).Acc. Chem. Res.35, 511–522. Hathaway, B. J. & Billing, D. E. (1970).Coord. Chem. Rev.5, 143–207. Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA.

Latavalya, N. & Taylor, M. R. (1975).Cryst. Struct. Commun.4, 163–166. Molecular Structure Corporation (1989).TEXSAN. Version 1.11. MSC, 3200

Research Forest Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351– 359.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998).Acc. Chem.

Res.31, 474–484.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, m625–m627

supporting information

Acta Cryst. (2006). E62, m625–m627 [https://doi.org/10.1107/S1600536806006209]

trans

-Bis(4-aminopyridine-

κ

N

)bis(succinimidato-

κ

N

)copper(II) dihydrate

Takashiro Akitsu and Yasuaki Einaga

trans-Bis(4-aminopyridine-κN)bis(succinimidato-κN)copper(II) dihydrate

Crystal data

[Cu(C4H4NO2)2(C5H6N2)2].2H2O

Mr = 483.98 Triclinic, P1 Hall symbol: -P 1 a = 7.945 (2) Å b = 8.729 (3) Å c = 9.161 (3) Å α = 65.04 (2)° β = 86.86 (3)° γ = 67.59 (2)° V = 528.2 (3) Å3

Z = 1

F(000) = 251.0 Dx = 1.521 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 20 reflections θ = 10.1–13.7°

µ = 1.08 mm−1

T = 297 K Prism, brown

0.20 × 0.20 × 0.20 mm

Data collection

Rigaku AFC-7R diffractometer

Radiation source: Rigaku rotating anode generator

Graphite monochromator ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.696, Tmax = 0.807

2736 measured reflections

2430 independent reflections 1771 reflections with I > 2σ(I) Rint = 0.058

θmax = 27.5°, θmin = 2.8°

h = −11→10 k = −11→11 l = −4→10

3 standard reflections every 150 reflections intensity decay: 0.4%

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.052

wR(F2) = 0.158

S = 1.06 2430 reflections 144 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0697P)2 + 0.5544P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.58 e Å−3

Δρmin = −0.54 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, m625–m627

O1 0.1355 (5) −0.0913 (5) −0.3077 (5) 0.0609 (9) O2 −0.2430 (6) −0.2366 (6) 0.0641 (5) 0.0742 (12) O3 0.3782 (6) 0.0535 (5) −0.2564 (5) 0.0712 (12) H3E 0.337 (2) −0.005 (3) −0.2640 (6) 0.064* H3F 0.325 (3) 0.107 (3) −0.205 (3) 0.064* N1 −0.0485 (5) −0.1353 (4) −0.1076 (4) 0.0380 (8) N2 0.1873 (5) −0.2370 (5) 0.1653 (4) 0.0394 (8) N3 0.5537 (6) −0.7599 (5) 0.4788 (5) 0.0515 (10) H3C 0.6602 −0.8071 0.4525 0.062* H3D 0.5218 −0.8221 0.5684 0.062* C1 0.0229 (6) −0.1547 (6) −0.2387 (5) 0.0419 (10) C2 −0.0534 (7) −0.2613 (7) −0.2885 (6) 0.0520 (12) H2A −0.1156 −0.1888 −0.3987 0.062* H2B 0.0433 −0.3743 −0.2814 0.062* C3 −0.1862 (7) −0.3016 (7) −0.1694 (7) 0.0547 (12) H3A −0.1545 −0.4329 −0.1114 0.065* H3B −0.3107 −0.2420 −0.2239 0.065* C4 −0.1661 (6) −0.2235 (6) −0.0562 (6) 0.0456 (10) C5 0.3571 (7) −0.3126 (6) 0.1324 (6) 0.0510 (11) H5A 0.3919 −0.2458 0.0355 0.061* C6 0.4815 (6) −0.4820 (6) 0.2333 (6) 0.0505 (11) H6A 0.5978 −0.5272 0.2041 0.061* C7 0.4368 (6) −0.5885 (5) 0.3795 (5) 0.0380 (9) C8 0.2613 (6) −0.5063 (6) 0.4159 (5) 0.0407 (9) H8A 0.2244 −0.5681 0.5138 0.050* C9 0.1447 (6) −0.3364 (6) 0.3084 (5) 0.0431 (10) H9A 0.0285 −0.2861 0.3356 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, m625–m627

Geometric parameters (Å, º)

Cu1—N1 1.971 (3) C2—C3 1.503 (7) Cu1—N2 2.011 (4) C2—H2A 0.9700 O1—C1 1.235 (6) C2—H2B 0.9700 O2—C4 1.214 (6) C3—C4 1.505 (6) O3—H3E 0.73 (3) C3—H3A 0.9700 O3—H3F 0.79 (3) C3—H3B 0.9700 N1—C1 1.349 (6) C5—C6 1.360 (6) N1—C4 1.371 (6) C5—H5A 0.9300 N2—C5 1.339 (6) C6—C7 1.390 (6) N2—C9 1.342 (6) C6—H6A 0.9300 N3—C7 1.346 (5) C7—C8 1.399 (6) N3—H3C 0.8600 C8—C9 1.359 (6) N3—H3D 0.8600 C8—H8A 0.9300 C1—C2 1.503 (6) C9—H9A 0.9300

N1—Cu1—N2 89.93 (14) C4—C3—H3A 111.0 H3E—O3—H3F 113 (2) C2—C3—H3B 111.0 C1—N1—C4 110.2 (4) C4—C3—H3B 111.0 C1—N1—Cu1 127.0 (3) H3A—C3—H3B 109.0 C4—N1—Cu1 122.8 (3) O2—C4—N1 124.6 (4) C5—N2—C9 116.2 (4) O2—C4—C3 124.8 (4) C5—N2—Cu1 121.5 (3) N1—C4—C3 110.6 (4) C9—N2—Cu1 122.0 (3) N2—C5—C6 123.5 (4) C7—N3—H3C 120.0 N2—C5—H5A 118.2 C7—N3—H3D 120.0 C6—C5—H5A 118.2 H3C—N3—H3D 120.0 C5—C6—C7 120.8 (4) O1—C1—N1 123.6 (4) C5—C6—H6A 119.6 O1—C1—C2 125.4 (4) C7—C6—H6A 119.6 N1—C1—C2 111.1 (4) N3—C7—C6 122.3 (4) C3—C2—C1 104.2 (4) N3—C7—C8 122.2 (4) C3—C2—H2A 110.9 C6—C7—C8 115.5 (4) C1—C2—H2A 110.9 C9—C8—C7 120.1 (4) C3—C2—H2B 110.9 C9—C8—H8A 119.9 C1—C2—H2B 110.9 C7—C8—H8A 119.9 H2A—C2—H2B 108.9 N2—C9—C8 123.9 (4) C2—C3—C4 103.7 (4) N2—C9—H9A 118.1 C2—C3—H3A 111.0 C8—C9—H9A 118.1

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m625–m627

O1—C1—C2—C3 −178.6 (5) N3—C7—C8—C9 −176.8 (4) N1—C1—C2—C3 1.1 (5) C6—C7—C8—C9 2.5 (6) C1—C2—C3—C4 −3.1 (5) C5—N2—C9—C8 −1.5 (6) C1—N1—C4—O2 176.2 (5) Cu1—N2—C9—C8 172.7 (3) Cu1—N1—C4—O2 −4.4 (7) C7—C8—C9—N2 −0.7 (7) C1—N1—C4—C3 −3.8 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H3E···O1 0.73 (3) 2.13 (2) 2.827 (5) 161 (2) O3—H3F···O2i 0.79 (3) 1.99 (2) 2.770 (7) 168 (2)

N3—H3C···O1ii 0.86 2.20 3.016 (5) 158

N3—H3D···O3iii 0.86 2.08 2.917 (6) 164

Figure

Figure 1
Table 1

References

Related documents

The comparison of autoregressive ADF model with linear trend model (Table 1) demonstrates similarity of results for most of the economies: Australia and Sweden

In this work, we further extend this line of exploration and propose a novel but simple approach, which utilizes a ranking model based on word or- der precedence in the target

Setting n = 10 , for each source sentence we re-rank the ten best sentences as scored by the decoder according to the Leven- shtein Distance (or edit distance) measure (Leven-

In general, Result 3 provides contradictory evidence to the conventional wisdom that market competition will divert decision rights to individuals who are better able to utilise

companies with low investment opportunities experience a stronger market reaction. FCF : Free cash flow per share. DIVINC : A binary variable taking the value of 1 if on the date

The reduction of the rank of a LCFRS , called binarization, is a process very similar to the reduction of a context-free grammar into Chomsky normal form.. While in the special case

PWYW for several products (cinema tickets, DVD, digital album, flight tickets, hotel, rental car, opera, wine), online survey which varied social distance, product value, external

For elsewhere he states (1978b: 356), “The socialist essential, it must always be remembered, is not the plan; it is the democratic power of the people over the plan and the