• No results found

(R) Me­thio­ninium–(R) mandelate–(R) mandelic acid (1/1/2)

N/A
N/A
Protected

Academic year: 2020

Share "(R) Me­thio­ninium–(R) mandelate–(R) mandelic acid (1/1/2)"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o1933–o1935 doi:10.1107/S160053680501620X Su and Xu C

5H12NO2S+C8H7O3C8H8O3

o1933

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

R

)-Methioninium–(

R

)-mandelate–(

R

)-mandelic

acid (1/1/2)

Jian-Rong Su* and Duan-Jun Xu

Department of Chemistry, Zhejiang University, People’s Republic of China

Correspondence e-mail: chem@zju.edu.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.015 A˚

Rfactor = 0.086

wRfactor = 0.250 Data-to-parameter ratio = 7.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title molecular complex, C5H12NO2S +

C8H7O3

2C8H8O3,

contains (R)-methioninium cations, (R)-mandelate anions and (R)-mandelic acid molecules. The (R)-methioninium cation assumes an anti conformation for all of its single bonds. Hydrophilic and hydrophobic layers alternate in the crystal structure. Hydrogen-bond interactions and van der Waals contacts occur in the hydrophilic and hydrophobic layers, respectively.

Comment

During investigations on separating a racemic mixture into its enantiomers through formation of a diastereomeric molecular complex by reaction with an optically active compound in our laboratory (Hu et al., 2001), the title molecular complex, (I) (Fig. 1), has been prepared and its crystal structure is presented here.

The crystal structure of (I) consists of (R)-methioninium cations, (R)-mandelate anions and (R)-mandelic acid mol-ecules. The absolute configuration of (I) was established on the basis of the known configuration of the starting reagent

[image:1.610.208.461.372.438.2] [image:1.610.206.459.527.723.2]

Received 6 May 2005 Accepted 20 May 2005 Online 31 May 2005

Figure 1

(2)

[(R)-methionine]. Whereas racemic mixtures of mandelic acid are used in the preparation of (I), only one enantiomer (R configuration) occurs in the crystals of (I). The (R )-methio-ninium cation displays the most stable conformation, i.e. an anticonformation for all single bonds. Thus atoms C2–C5 and S are essentially coplanar, the maximum deviation being 0.043 (7) A˚ for atom C3.

The differences between C—O bond distances in each carboxy group are 0.140 (16) A˚ (C1 carboxy), 0.082 (17) A˚ (C11 carboxy) and 0.108 (16) A˚ (C21 carboxy), while the corresponding difference in the C31 carboxylate group is 0.068 (18) A˚ . All carboxy H atoms form O—H O hydrogen bonds in the crystal structure of (I) (Table 2).

The molecular packing of (I) is presented in Fig. 2. The skeletons of all components display similar spatial orienta-tions, and are oriented nearly parallel to each other. In the crystal structure of (I), the ions and molecules are arranged to form layers, with the hydrophilic groups on one side and the hydrophobic groups on the other side. The hydrophilic and hydrophobic layers alternate in the crystal structure along the crystallographic c axis. The components in the hydrophilic layers link to each other via N—H O and O—H O hydrogen bonds (Table 2), whereas in the hydrophobic layers they interact through van der Waals contacts.

Experimental

All reagents were commercially available and of analytical grade. (R)-Methionine (0.14g, 1mmol) and racemic mandelic acid (0.30g, 2mmol) were dissolved in a water/ethanol solution (20ml, 1:1). The solution was refluxed for 2 h, and then cooled to room temperature and filtered. Colorless single crystals of (I) were obtained from the filtrate after one week.

Crystal data

C5H12NO2S+C8H7O

3C8H8O3 Mr= 605.65

Orthorhombic,P212121 a= 9.562 (3) A˚ b= 9.830 (3) A˚ c= 31.393 (5) A˚ V= 2950.8 (14) A˚3 Z= 4

Dx= 1.363 Mg m 3

MoKradiation Cell parameters from 25

reflections

= 5.6–14.6 = 0.17 mm1 T= 298 (2) K Prism, colorless 0.200.180.16 mm

Data collection

Rigaku AFC-7Sdiffractometer

!/2scans

Absorption correction: none 3416 measured reflections 2974 independent reflections 1383 reflections withI> 2(I) Rint= 0.017

max= 25.0

h=5!11 k=5!11 l=19!37 3 standard reflections

every 150 reflections intensity decay: 0.3%

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.086 wR(F2) = 0.250 S= 0.98 2974 reflections 380 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.136P)2] whereP= (Fo2+ 2Fc2)/3 (/)max<0.001

max= 0.42 e A˚

3

min=0.48 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

C1—O1 1.310 (12) C1—O2 1.170 (11) C11—O11 1.296 (12) C11—O12 1.214 (12)

C21—O21 1.312 (11) C21—O22 1.204 (11) C31—O31 1.194 (12) C31—O32 1.262 (13)

C4—S—C5 100.1 (6) O1—C1—O2 129.0 (11) O11—C11—O12 126.3 (12)

[image:2.610.46.295.71.403.2]

O21—C21—O22 127.0 (11) O31—C31—O32 126.4 (11)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 O22i

0.96 1.80 2.751 (10) 170 O11—H11 O32ii

0.95 1.66 2.495 (10) 144 O13—H13 O23iii

0.87 2.11 2.978 (8) 179 O21—H21 O12iv

1.00 1.67 2.640 (10) 163 O23—H23 O32v 0.87 2.02 2.679 (10) 131 O33—H33 O13 0.96 2.10 2.921 (11) 142 N—H1A O31i

0.89 2.10 2.973 (9) 168 N—H1B O23 0.89 2.06 2.924 (11) 164 N—H1C O33 0.89 1.96 2.833 (10) 166 Symmetry codes: (i)xþ1;y1

2;zþ 1

2; (ii)xþ1;y;z; (iii)xþ1;yþ 1 2;zþ

1 2; (iv)

x1;y;z; (v)x;y1;z.

organic papers

o1934

Su and Xu C

5H12NO2S+C8H7O3C8H8O3 Acta Cryst.(2005). E61, o1933–o1935 Figure 2

[image:2.610.314.565.609.707.2]
(3)

H atoms on carboxy and hydroxy groups were located in a difference Fourier map and refined riding in their as-found positions, with fixed isotropic displacement parameters of 0.08 A˚2. Other H atoms were placed in calculated positions, with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) or 0.98A˚ (methine) and N—H = 0.89A˚ , and were included in the final cycles of refinement as riding, with Uiso(H) = 1.5Ueq(N,C) (aminium and methyl) or

1.2Ueq(C) (methylene, methine and aromatic). The absolute

config-uration of (I) could not be established in this analysis and was assigned on the basis of the known configuration of the starting reagent [(R)-methionine]. Friedel pairs were merged during the refinement.

Data collection: MSC/AFC Diffractometer Control Software

(Molecular Structure Corporation, 1992); cell refinement:MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Mol-ecular Structure Corporation, 1993); program(s) used to solve structure:SIR92 (Altomareet al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).J. Appl. Cryst.26, 343-350.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Hu, Z.-Q., Nie, J.-J., Xu, D.-J., Xu, Y.-Z. & Chen, C.-L. (2001).J. Chem. Crystallogr.31, 109-114.

Molecular Structure Corporation (1992).MSC/AFC Diffractometer Control Software.MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation (1993).TEXSAN. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany.

organic papers

Acta Cryst.(2005). E61, o1933–o1935 Su and Xu C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o1933–o1935

supporting information

Acta Cryst. (2005). E61, o1933–o1935 [https://doi.org/10.1107/S160053680501620X]

(

R

)-Methioninium

(

R

)-mandelate

(

R

)-mandelic acid (1/1/2)

Jian-Rong Su and Duan-Jun Xu

(I)

Crystal data

C5H12NO2S+·C8H7O3−·C8H8O3

Mr = 605.65

Orthorhombic, P212121 Hall symbol: P 2ac 2ab

a = 9.562 (3) Å

b = 9.830 (3) Å

c = 31.393 (5) Å

V = 2950.8 (14) Å3

Z = 4

F(000) = 1280

Dx = 1.363 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 5.6–14.6°

µ = 0.17 mm−1

T = 298 K Prism, colorless 0.20 × 0.18 × 0.16 mm

Data collection

Rigaku AFC-7S diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 3 pixels mm-1

ω/2θ scans

3416 measured reflections

2974 independent reflections 1383 reflections with I > 2σ(I)

Rint = 0.017

θmax = 25.0°, θmin = 2.2°

h = −5→11

k = −5→11

l = −19→37

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.086

wR(F2) = 0.250

S = 0.98 2974 reflections 380 parameters 234 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.136P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.42 e Å−3 Δρmin = −0.48 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o1933–o1935

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S 0.5694 (4) 0.3925 (4) 0.07515 (9) 0.0748 (12) O1 0.7771 (8) 0.3428 (8) 0.2153 (2) 0.055 (2)

H1 0.7995 0.2697 0.2346 0.080*

O2 0.5594 (8) 0.3282 (7) 0.24108 (18) 0.047 (2) O11 0.9952 (7) 1.0870 (7) 0.18233 (19) 0.0413 (18)

H11 1.0858 1.0912 0.1950 0.080*

O12 1.0059 (8) 0.8825 (7) 0.21361 (19) 0.048 (2) O13 0.7253 (8) 0.8458 (7) 0.20166 (19) 0.047 (2)

H13 0.7336 0.8576 0.2291 0.080*

O21 −0.0285 (7) 0.6178 (8) 0.20412 (19) 0.0460 (19)

H21 −0.0258 0.7154 0.2128 0.080*

O22 0.1891 (8) 0.6227 (7) 0.23157 (19) 0.0453 (19) O23 0.2497 (7) 0.3827 (7) 0.20448 (17) 0.0386 (17)

H23 0.2784 0.3213 0.1863 0.080*

O31 0.4753 (9) 1.0613 (8) 0.1917 (2) 0.051 (2) O32 0.2541 (8) 1.1170 (8) 0.1855 (2) 0.052 (2) O33 0.4447 (8) 0.8107 (6) 0.16652 (18) 0.0385 (17)

H33 0.5301 0.8604 0.1713 0.080*

N 0.4853 (10) 0.5696 (9) 0.2144 (2) 0.048 (2)

H1A 0.4855 0.5745 0.2427 0.071*

H1B 0.4186 0.5124 0.2060 0.071*

H1C 0.4689 0.6517 0.2036 0.071*

C1 0.6473 (10) 0.3811 (12) 0.2212 (3) 0.036 (3) C2 0.6240 (11) 0.5195 (11) 0.1993 (3) 0.037 (3)

H2 0.6962 0.5827 0.2092 0.044*

C3 0.6350 (11) 0.5079 (11) 0.1511 (3) 0.044 (3)

H3A 0.7312 0.4878 0.1437 0.052*

H3B 0.6115 0.5952 0.1386 0.052*

C4 0.5397 (12) 0.3979 (12) 0.1313 (3) 0.052 (3)

H4A 0.4424 0.4192 0.1369 0.062*

H4B 0.5604 0.3099 0.1438 0.062*

C5 0.4372 (15) 0.2709 (14) 0.0596 (4) 0.082 (5)

H5A 0.4271 0.2717 0.0292 0.123*

H5B 0.3497 0.2947 0.0726 0.123*

H5C 0.4646 0.1816 0.0688 0.123*

C11 0.9441 (13) 0.9709 (11) 0.1943 (3) 0.044 (3) C12 0.7902 (12) 0.9568 (10) 0.1805 (2) 0.042 (3)

H12 0.7398 1.0409 0.1872 0.050*

C13 0.7901 (11) 0.9346 (10) 0.1329 (2) 0.035 (2) C14 0.7548 (13) 1.0399 (11) 0.1058 (3) 0.055 (3)

H14 0.7252 1.1230 0.1167 0.066*

C15 0.7640 (15) 1.0205 (15) 0.0615 (3) 0.066 (4)

H15 0.7471 1.0927 0.0431 0.079*

C16 0.7973 (15) 0.8977 (16) 0.0458 (4) 0.083 (5)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o1933–o1935

C17 0.8329 (14) 0.7906 (13) 0.0725 (3) 0.068 (4)

H17 0.8597 0.7071 0.0612 0.082*

C18 0.8282 (13) 0.8094 (11) 0.1162 (3) 0.052 (3)

H18 0.8506 0.7379 0.1344 0.062*

C21 0.0976 (10) 0.5700 (12) 0.2111 (3) 0.035 (3) C22 0.1168 (10) 0.4307 (10) 0.1901 (3) 0.033 (2)

H22 0.0436 0.3689 0.2003 0.039*

C23 0.1075 (12) 0.4425 (10) 0.1419 (3) 0.042 (3) C24 0.1807 (12) 0.5447 (11) 0.1206 (3) 0.052 (3)

H24 0.2363 0.6046 0.1361 0.062*

C25 0.1717 (14) 0.5579 (12) 0.0772 (3) 0.062 (4)

H25 0.2211 0.6262 0.0633 0.074*

C26 0.0899 (14) 0.4703 (15) 0.0547 (3) 0.070 (4)

H26 0.0861 0.4771 0.0251 0.083*

C27 0.0122 (14) 0.3711 (13) 0.0753 (3) 0.062 (4)

H27 −0.0456 0.3129 0.0599 0.075*

C28 0.0219 (12) 0.3598 (12) 0.1193 (3) 0.048 (3)

H28 −0.0311 0.2946 0.1334 0.058*

C31 0.3593 (13) 1.0424 (12) 0.1789 (3) 0.040 (3) C32 0.3286 (11) 0.9033 (11) 0.1578 (2) 0.037 (3)

H32 0.2426 0.8655 0.1699 0.045*

C33 0.3110 (12) 0.9169 (11) 0.1096 (3) 0.044 (3) C34 0.1916 (13) 0.9750 (14) 0.0928 (3) 0.064 (4)

H34 0.1213 1.0037 0.1112 0.077*

C35 0.1734 (15) 0.9918 (15) 0.0494 (4) 0.075 (4)

H35 0.0943 1.0355 0.0390 0.090*

C36 0.2743 (13) 0.9427 (14) 0.0218 (3) 0.067 (4)

H36 0.2629 0.9517 −0.0075 0.080*

C37 0.3920 (14) 0.8805 (13) 0.0381 (3) 0.066 (4)

H37 0.4597 0.8459 0.0198 0.079*

C38 0.4090 (12) 0.8697 (11) 0.0815 (3) 0.047 (3)

H38 0.4897 0.8289 0.0920 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o1933–o1935

N 0.082 (7) 0.035 (5) 0.027 (4) 0.000 (5) 0.011 (5) −0.003 (4) C1 0.023 (5) 0.072 (8) 0.015 (4) 0.000 (6) 0.010 (4) −0.002 (5) C2 0.051 (7) 0.039 (6) 0.021 (5) 0.002 (6) 0.011 (5) 0.008 (4) C3 0.060 (7) 0.048 (7) 0.023 (5) 0.003 (6) 0.010 (5) 0.007 (5) C4 0.067 (8) 0.060 (7) 0.029 (5) 0.003 (8) 0.004 (5) 0.002 (5) C5 0.091 (11) 0.100 (11) 0.056 (7) 0.013 (10) −0.033 (8) −0.037 (8) C11 0.084 (9) 0.041 (6) 0.007 (4) 0.007 (7) −0.001 (5) 0.003 (4) C12 0.084 (8) 0.029 (5) 0.013 (4) 0.002 (6) −0.003 (5) 0.002 (4) C13 0.050 (6) 0.045 (6) 0.012 (4) −0.002 (6) −0.013 (4) 0.000 (4) C14 0.086 (9) 0.050 (7) 0.029 (5) 0.007 (8) −0.006 (6) 0.005 (5) C15 0.087 (10) 0.078 (9) 0.032 (6) −0.008 (9) −0.016 (6) 0.009 (6) C16 0.102 (11) 0.113 (13) 0.033 (6) 0.011 (11) −0.027 (7) −0.009 (8) C17 0.107 (10) 0.069 (8) 0.029 (5) 0.015 (8) −0.008 (7) −0.027 (6) C18 0.087 (9) 0.045 (6) 0.024 (5) −0.002 (7) −0.008 (6) −0.009 (5) C21 0.021 (5) 0.070 (8) 0.014 (4) −0.002 (6) −0.008 (4) 0.004 (5) C22 0.042 (6) 0.037 (6) 0.019 (4) −0.009 (5) −0.018 (4) −0.002 (4) C23 0.081 (8) 0.034 (6) 0.011 (4) 0.005 (6) −0.013 (5) 0.005 (4) C24 0.079 (8) 0.050 (7) 0.026 (5) −0.008 (7) −0.003 (5) 0.000 (5) C25 0.101 (10) 0.058 (8) 0.027 (5) −0.010 (8) 0.010 (6) 0.003 (5) C26 0.093 (10) 0.095 (10) 0.020 (5) 0.014 (10) 0.010 (6) 0.015 (6) C27 0.096 (9) 0.061 (8) 0.031 (5) 0.003 (8) −0.037 (6) −0.009 (6) C28 0.067 (8) 0.060 (7) 0.018 (4) −0.005 (7) −0.008 (5) 0.002 (5) C31 0.054 (7) 0.049 (7) 0.018 (5) 0.002 (7) −0.010 (5) 0.003 (5) C32 0.051 (6) 0.045 (6) 0.016 (4) −0.005 (6) −0.008 (4) 0.000 (4) C33 0.068 (8) 0.049 (6) 0.014 (4) −0.011 (6) −0.023 (5) 0.004 (4) C34 0.067 (8) 0.104 (10) 0.021 (5) −0.002 (8) −0.003 (6) −0.002 (6) C35 0.096 (10) 0.089 (10) 0.040 (7) 0.008 (9) −0.024 (7) 0.012 (7) C36 0.088 (10) 0.099 (10) 0.015 (5) −0.002 (10) −0.006 (6) 0.001 (6) C37 0.105 (10) 0.071 (8) 0.023 (5) 0.000 (9) −0.018 (6) 0.001 (6) C38 0.064 (7) 0.053 (7) 0.022 (5) 0.004 (7) 0.000 (5) 0.001 (5)

Geometric parameters (Å, º)

C1—O1 1.310 (12) C13—C18 1.387 (14)

C1—O2 1.170 (11) C14—C15 1.406 (14)

C11—O11 1.296 (12) C14—H14 0.9300

C11—O12 1.214 (12) C15—C16 1.342 (18)

C21—O21 1.312 (11) C15—H15 0.9300

C21—O22 1.204 (11) C16—C17 1.389 (17)

C31—O31 1.194 (12) C16—H16 0.9300

C31—O32 1.262 (13) C17—C18 1.384 (13)

S—C4 1.785 (9) C17—H17 0.9300

S—C5 1.807 (13) C18—H18 0.9300

O1—H1 0.9645 C21—C22 1.530 (15)

O11—H11 0.9543 C22—C23 1.521 (11)

O13—C12 1.420 (11) C22—H22 0.9800

O13—H13 0.8717 C23—C28 1.354 (13)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o1933–o1935

O23—C22 1.428 (11) C24—C25 1.371 (14)

O23—H23 0.8746 C24—H24 0.9300

O33—C32 1.462 (12) C25—C26 1.362 (16)

O33—H33 0.9637 C25—H25 0.9300

N—C2 1.492 (12) C26—C27 1.387 (17)

N—H1A 0.8900 C26—H26 0.9300

N—H1B 0.8900 C27—C28 1.388 (13)

N—H1C 0.8900 C27—H27 0.9300

C1—C2 1.541 (14) C28—H28 0.9300

C2—C3 1.520 (12) C31—C32 1.547 (14)

C2—H2 0.9800 C32—C33 1.526 (11)

C3—C4 1.545 (15) C32—H32 0.9800

C3—H3A 0.9700 C33—C38 1.369 (14)

C3—H3B 0.9700 C33—C34 1.381 (15)

C4—H4A 0.9700 C34—C35 1.383 (14)

C4—H4B 0.9700 C34—H34 0.9300

C5—H5A 0.9600 C35—C36 1.385 (17)

C5—H5B 0.9600 C35—H35 0.9300

C5—H5C 0.9600 C36—C37 1.379 (16)

C11—C12 1.541 (16) C36—H36 0.9300

C12—C13 1.509 (11) C37—C38 1.376 (12)

C12—H12 0.9800 C37—H37 0.9300

C13—C14 1.383 (13) C38—H38 0.9300

C4—S—C5 100.1 (6) C15—C16—H16 119.4

O1—C1—O2 129.0 (11) C17—C16—H16 119.4

O11—C11—O12 126.3 (12) C18—C17—C16 119.3 (11)

O21—C21—O22 127.0 (11) C18—C17—H17 120.4

O31—C31—O32 126.4 (11) C16—C17—H17 120.4

C1—O1—H1 109.6 C17—C18—C13 120.1 (10)

C11—O11—H11 105.1 C17—C18—H18 119.9

C12—O13—H13 108.6 C13—C18—H18 119.9

C21—O21—H21 106.0 O22—C21—C22 121.9 (9)

C22—O23—H23 107.5 O21—C21—C22 111.1 (8)

C32—O33—H33 110.9 O23—C22—C23 113.1 (8)

C2—N—H1A 109.5 O23—C22—C21 105.5 (7)

C2—N—H1B 109.5 C23—C22—C21 110.6 (8)

H1A—N—H1B 109.5 O23—C22—H22 109.2

C2—N—H1C 109.5 C23—C22—H22 109.2

H1A—N—H1C 109.5 C21—C22—H22 109.2

H1B—N—H1C 109.5 C28—C23—C24 119.0 (8)

O2—C1—C2 121.8 (10) C28—C23—C22 120.7 (9)

O1—C1—C2 109.1 (9) C24—C23—C22 120.2 (9)

N—C2—C3 113.8 (8) C25—C24—C23 120.8 (11)

N—C2—C1 106.1 (8) C25—C24—H24 119.6

C3—C2—C1 111.6 (8) C23—C24—H24 119.6

N—C2—H2 108.4 C26—C25—C24 119.5 (11)

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, o1933–o1935

C1—C2—H2 108.4 C24—C25—H25 120.2

C2—C3—C4 114.4 (9) C25—C26—C27 120.6 (10)

C2—C3—H3A 108.7 C25—C26—H26 119.7

C4—C3—H3A 108.7 C27—C26—H26 119.7

C2—C3—H3B 108.7 C26—C27—C28 119.0 (11)

C4—C3—H3B 108.7 C26—C27—H27 120.5

H3A—C3—H3B 107.6 C28—C27—H27 120.5

C3—C4—S 109.0 (7) C23—C28—C27 120.9 (11)

C3—C4—H4A 109.9 C23—C28—H28 119.5

S—C4—H4A 109.9 C27—C28—H28 119.5

C3—C4—H4B 109.9 O31—C31—C32 117.3 (11)

S—C4—H4B 109.9 O32—C31—C32 115.7 (10)

H4A—C4—H4B 108.3 O33—C32—C33 108.9 (8)

S—C5—H5A 109.5 O33—C32—C31 109.0 (8)

S—C5—H5B 109.5 C33—C32—C31 111.6 (8)

H5A—C5—H5B 109.5 O33—C32—H32 109.1

S—C5—H5C 109.5 C33—C32—H32 109.1

H5A—C5—H5C 109.5 C31—C32—H32 109.1

H5B—C5—H5C 109.5 C38—C33—C34 117.3 (9)

O12—C11—C12 122.7 (10) C38—C33—C32 122.3 (10) O11—C11—C12 111.0 (9) C34—C33—C32 120.3 (10) O13—C12—C13 110.6 (8) C33—C34—C35 122.0 (12)

O13—C12—C11 110.8 (8) C33—C34—H34 119.0

C13—C12—C11 106.9 (8) C35—C34—H34 119.0

O13—C12—H12 109.5 C34—C35—C36 119.2 (13)

C13—C12—H12 109.5 C34—C35—H35 120.4

C11—C12—H12 109.5 C36—C35—H35 120.4

C14—C13—C18 119.6 (8) C37—C36—C35 119.3 (10)

C14—C13—C12 120.2 (9) C37—C36—H36 120.3

C18—C13—C12 120.2 (8) C35—C36—H36 120.3

C13—C14—C15 119.6 (11) C38—C37—C36 119.9 (12)

C13—C14—H14 120.2 C38—C37—H37 120.1

C15—C14—H14 120.2 C36—C37—H37 120.1

C16—C15—C14 119.9 (12) C33—C38—C37 122.1 (11)

C16—C15—H15 120.0 C33—C38—H38 118.9

C14—C15—H15 120.0 C37—C38—H38 118.9

C15—C16—C17 121.3 (11)

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, o1933–o1935

O12—C11—C12—C13 −106.9 (10) C22—C23—C28—C27 179.4 (11) O11—C11—C12—C13 72.9 (10) C26—C27—C28—C23 −1.1 (18) O13—C12—C13—C14 135.8 (10) O31—C31—C32—O33 12.5 (12) C11—C12—C13—C14 −103.4 (12) O32—C31—C32—O33 −158.9 (8) O13—C12—C13—C18 −45.5 (15) O31—C31—C32—C33 −107.9 (11) C11—C12—C13—C18 75.2 (13) O32—C31—C32—C33 80.8 (12) C18—C13—C14—C15 −2.8 (18) O33—C32—C33—C38 −11.8 (14) C12—C13—C14—C15 175.9 (11) C31—C32—C33—C38 108.6 (13) C13—C14—C15—C16 5 (2) O33—C32—C33—C34 166.3 (10) C14—C15—C16—C17 −5 (2) C31—C32—C33—C34 −73.3 (14) C15—C16—C17—C18 3 (2) C38—C33—C34—C35 −3.2 (19) C16—C17—C18—C13 −1 (2) C32—C33—C34—C35 178.6 (12) C14—C13—C18—C17 1.0 (19) C33—C34—C35—C36 3 (2) C12—C13—C18—C17 −177.7 (12) C34—C35—C36—C37 −1 (2) O22—C21—C22—O23 5.9 (12) C35—C36—C37—C38 −1 (2) O21—C21—C22—O23 −172.7 (7) C34—C33—C38—C37 0.9 (18) O22—C21—C22—C23 −116.6 (10) C32—C33—C38—C37 179.1 (11) O21—C21—C22—C23 64.7 (11) C36—C37—C38—C33 1.2 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···O22i 0.96 1.80 2.751 (10) 170

O11—H11···O32ii 0.95 1.66 2.495 (10) 144

O13—H13···O23iii 0.87 2.11 2.978 (8) 179

O21—H21···O12iv 1.00 1.67 2.640 (10) 163

O23—H23···O32v 0.87 2.02 2.679 (10) 131

O33—H33···O13 0.96 2.10 2.921 (11) 142

N—H1A···O31i 0.89 2.10 2.973 (9) 168

N—H1B···O23 0.89 2.06 2.924 (11) 164

N—H1C···O33 0.89 1.96 2.833 (10) 166

Figure

Figure 1
Figure 2

References

Related documents

In both rural and urban areas, least educated households enjoy signi…cantly larger bene…ts from increases in female and male years of schooling at the community level than the

Regarding the duration, as Bennett and Stam (1996), Reiter and Stam (2002) and Stam (1996) claimed, a maneuver strategy can shorten war, while a punishment strategy tends to make

The increased phenomenon of early leavers, the high youth unemployment rate, the total inactivity rate of the young people between 15-24 (NEET rate), the low

We built a system that interprets natural language utterances much more accurately than existing sys- tems, despite using no annotated logical forms.. Our system is based on a

In this paper, we utilize various machine transla- tion evaluation metrics to evaluate the quality of Chinese translation output, and compare their cor- relation with human

La réduction de l’output gap et la stabilisation de l’économie réduit l’écart entre les taux (le spread), cela est expliqué par l’augmentation des taux courts et la

This framework provides a convenient way of integrating information from various knowledge sources by defining their utility functions. Infor- mation from different knowledge

6 context ( B ) comprises information about the grandpar- ent block (original category), the adjacent left sibling block (derived category), the direction of the content word with