• No results found

mer Tri­aqua(2 carboxyl­ato­phen­oxy­acetato)­cobalt(II)

N/A
N/A
Protected

Academic year: 2020

Share "mer Tri­aqua(2 carboxyl­ato­phen­oxy­acetato)­cobalt(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1126

Meng, Zhu, Zeng and Ng [Co(C

9H6O5)(H2O)3] doi:10.1107/S1600536805012961 Acta Cryst.(2005). E61, m1126–m1127 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

mer

-Triaqua(2-carboxylatophenoxyacetato)cobalt(II)

Fa-Yan Meng,aLi-Hong Zhu,b

Ming-Hua Zenga* and

Seik Weng Ngc

aDepartment of Chemistry, Guangxi Normal

University, Guilin 541000, Guangxi, People’s Republic of China,bDepartment of Chemistry,

Huanggang Normal College, Huangzhou 438000, Hubei, People’s Republic of China, andcDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.028

wRfactor = 0.078

Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Co(C9H6O5)(H2O)3], the Co II

atom is coordinated by three O atoms from the 2-carboxylato-phenoxyacetate ligand in meridional sites, forming chelate rings. The other three coordination sites of the octahedron are occupied by the water molecules.

Comment

The preceding report describes a polymeric zinc(II) complex with 2-carboxylatophenoxyacetic acid (2-cbphacH2) as a ligand, [Zn(2-cbphac)(H2O)]n; this was synthesized hydro-thermally. The compound adopts a carboxylate-bridged chain motif (Zhuet al., 2005). Under non-hydrothermal conditions, the cobalt(II) compound crystallizes as the title monomeric complex, [Co(2-cbphac)(H2O)3], (I).

In (I), the CoIIatom is coordinated by three O atoms from

the 2-cbphac2 ligand which occupy mer sites; adjacent

complexes are linked by O—H O hydrogen bonds (Table 2) into a three-dimensional network. The cobalt(II) complex of 3-carboxyphenoxyacetic acid (3-cbphacH2) exists as [Co(3-cbphacH)2(H2O)4], in which the 3-carboxyl group retains the acid H atom (Liet al., 2004).

Experimental

Cobalt(II) nitrate hexahydrate (0.149 g, 0.5 mmol) and 2-carboxy-phenoxyacetic acid (0.196 g, 1 mmol) were dissolved in ethanol (3 ml) and water (15 ml) to give a purple solution. Crystals of (I) separated from the solution after a week (yieldca70%).

Crystal data

[Co(C9H6O5)(H2O)3] Mr= 307.12 Monoclinic,P21=c a= 8.762 (1) A˚

b= 6.7707 (8) A˚

c= 19.841 (2) A˚ = 96.515 (2)

V= 1169.5 (2) A˚3 Z= 4

Dx= 1.744 Mg m 3

MoKradiation Cell parameters from 934

reflections = 3.2–27.0 = 1.50 mm1

T= 295 (2) K Block, dark purple 0.360.250.21 mm

(2)

Data collection

Bruker SMART 1K area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2001)

Tmin= 0.615,Tmax= 0.744

6758 measured reflections

2549 independent reflections 2132 reflections withI> 2(I)

Rint= 0.021 max= 27.0

h=9!11

k=8!7

l=25!22

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.028 wR(F2) = 0.078 S= 1.06 2549 reflections 187 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0461P)2 + 0.1445P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.34 e A˚

3

min=0.20 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Co1—O2 2.031 (1)

Co1—O3 2.203 (1)

Co1—O4 1.989 (1)

Co1—O1w 2.097 (2)

Co1—O2w 2.044 (1)

Co1—O3w 2.108 (2)

O2—Co1—O3 76.77 (5)

O2—Co1—O4 160.59 (6)

O2—Co1—O1w 90.82 (7)

O2—Co1—O2w 97.28 (6)

O2—Co1—O3w 89.57 (7)

O3—Co1—O4 83.83 (5)

O3—Co1—O1w 91.69 (6)

O3—Co1—O2w 174.04 (6)

O3—Co1—O3w 90.14 (6)

O4—Co1—O1w 90.28 (7)

O4—Co1—O2w 102.11 (6)

O4—Co1—O3w 89.96 (7)

O1w—Co1—O2w 88.81 (6) O1w—Co1—O3w 178.16 (6) O2w—Co1—O3w 89.35 (6)

O2—C1—C2—O3 0.0 (3)

C2—O3—C3—C4 1.5 (3)

O3—C3—C8—C9 1.7 (3)

C3—C8—C9—O4 3.2 (3)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 O5i

0.85 (1) 1.93 (1) 2.760 (2) 166 (3) O1w—H1w2 O4ii

0.85 (1) 1.97 (1) 2.804 (2) 169 (2) O2w—H2w2 O1iii

0.84 (1) 1.93 (1) 2.766 (2) 173 (2) O2w—H2w1 O5ii 0.84 (1) 1.87 (1) 2.703 (2) 171 (2) O3w—H3w1 O2iii

0.85 (1) 1.92 (1) 2.757 (2) 167 (3) O3w—H3w2 O1iv

0.84 (1) 2.03 (1) 2.861 (2) 172 (2)

Symmetry codes: (i) x;1þy;z; (ii) 2x;1 2þy;

3

2z; (iii) 1x;y 1 2;

3 2z; (iv)

x;y1;z.

The carbon-bound H atoms were positioned geometrically (C—H = 0.93 A˚ for the aromatic H atoms and 0.97 A˚ for the methylene H atoms) and were included in the refinement in the riding-model approximation, withUiso(H) values set at 1.2 timesUeq(C). The water

H atoms were located in difference Fourier maps and refined isotropically, with restraints of O—H and H H distances to 0.85 (1) and 1.39 (1) A˚ , respectively.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT (Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the Guangxi Normal University and the Univer-sity of Malaya for supporting this study.

References

Bruker (2001).SADABS(Version 6.45),SAINT(Version 6.45) andSMART

(Version 5.0). Bruker AXS Inc, Madison, Wisconsin, USA.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Li, S.-J., Gu, C.-S., Gao, S., Zhao, H., Zhao, J.-G. & Huo, L.-H. (2004).Chin. J. Struct. Chem.23, 835–838.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

[image:2.610.317.563.70.333.2]

Zhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005).Acta Cryst.E61, m916–m918. Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m1126–m1127

supporting information

Acta Cryst. (2005). E61, m1126–m1127 [https://doi.org/10.1107/S1600536805012961]

mer

-Triaqua(2-carboxylatophenoxyacetato)cobalt(II)

Fa-Yan Meng, Li-Hong Zhu, Ming-Hua Zeng and Seik Weng Ng

Triaqua(2-carboxylatophenoxyactetato)cobalt(II)

Crystal data

[Co(C9H6O5)(H2O)3]

Mr = 307.12

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 8.762 (1) Å b = 6.7707 (8) Å c = 19.841 (2) Å β = 96.515 (2)° V = 1169.5 (2) Å3

Z = 4

F(000) = 628 Dx = 1.744 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 934 reflections θ = 3.2–27.0°

µ = 1.50 mm−1

T = 295 K

Block, dark purple 0.36 × 0.25 × 0.21 mm

Data collection

Bruker SMART 1K area-detector diffractometer

Radiation source: medium-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.615, Tmax = 0.744

6758 measured reflections 2549 independent reflections 2132 reflections with I > 2σ(I) Rint = 0.021

θmax = 27.0°, θmin = 2.1°

h = −9→11 k = −8→7 l = −25→22

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.028

wR(F2) = 0.078

S = 1.06 2549 reflections 187 parameters 9 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0461P)2 + 0.1445P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.34 e Å−3

Δρmin = −0.20 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

O2 0.6033 (2) 0.8508 (2) 0.6891 (1) 0.0381 (4) O3 0.6994 (2) 0.6452 (2) 0.5895 (1) 0.0311 (3) O4 0.8605 (2) 0.3735 (2) 0.6775 (1) 0.0409 (4) O5 0.9543 (2) 0.1180 (2) 0.6288 (1) 0.0392 (4) O1w 0.9369 (2) 0.7831 (2) 0.7069 (1) 0.0421 (4) O2w 0.7601 (2) 0.5956 (3) 0.8040 (1) 0.0403 (4) O3w 0.5409 (2) 0.4289 (2) 0.6973 (1) 0.0405 (4) C1 0.5630 (2) 0.9216 (3) 0.6317 (1) 0.0295 (4) C2 0.6106 (2) 0.8179 (3) 0.5695 (1) 0.0319 (4) C3 0.7462 (2) 0.5282 (3) 0.5380 (1) 0.0258 (4) C4 0.7105 (3) 0.5811 (3) 0.4706 (1) 0.0372 (5) C5 0.7591 (3) 0.4665 (4) 0.4193 (1) 0.0442 (6) C6 0.8419 (3) 0.2977 (4) 0.4345 (1) 0.0472 (6) C7 0.8755 (2) 0.2443 (3) 0.5016 (1) 0.0396 (5) C8 0.8306 (2) 0.3559 (3) 0.5551 (1) 0.0274 (4) C9 0.8836 (2) 0.2790 (3) 0.6250 (1) 0.0285 (4) H1w1 0.930 (3) 0.894 (2) 0.687 (1) 0.054 (8)* H1w2 0.992 (3) 0.798 (4) 0.744 (1) 0.071 (9)* H2w1 0.845 (1) 0.613 (3) 0.827 (1) 0.037 (6)* H2w2 0.689 (2) 0.581 (4) 0.829 (1) 0.052 (8)* H3w1 0.508 (3) 0.415 (3) 0.736 (1) 0.063 (9)* H3w2 0.533 (3) 0.320 (2) 0.677 (1) 0.054 (8)*

H2a 0.5199 0.7804 0.5396 0.038*

H2b 0.6710 0.9071 0.5449 0.038*

H4 0.6534 0.6948 0.4597 0.045*

H5 0.7353 0.5045 0.3743 0.053*

H6 0.8748 0.2204 0.4002 0.057*

H7 0.9307 0.1287 0.5117 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m1126–m1127

C8 0.026 (1) 0.025 (1) 0.030 (1) 0.002 (1) 0.002 (1) −0.001 (1) C9 0.026 (1) 0.025 (1) 0.034 (1) 0.003 (1) 0.001 (1) 0.000 (1)

Geometric parameters (Å, º)

Co1—O2 2.031 (1) O3w—H3w1 0.85 (1)

Co1—O3 2.203 (1) O3w—H3w2 0.84 (1)

Co1—O4 1.989 (1) C1—C2 1.520 (3)

Co1—O1w 2.097 (2) C3—C4 1.385 (3)

Co1—O2w 2.044 (1) C3—C8 1.403 (3)

Co1—O3w 2.108 (2) C4—C5 1.385 (3)

O1—C1 1.244 (2) C5—C6 1.369 (3)

O2—C1 1.249 (2) C6—C7 1.379 (3)

O3—C3 1.392 (2) C7—C8 1.395 (3)

O3—C2 1.436 (2) C8—C9 1.504 (3)

O4—C9 1.259 (2) C2—H2a 0.97

O5—C9 1.252 (2) C2—H2b 0.97

O1w—H1w1 0.85 (1) C4—H4 0.93

O1w—H1w2 0.85 (1) C5—H5 0.93

O2w—H2w1 0.84 (1) C6—H6 0.93

O2w—H2w2 0.84 (1) C7—H7 0.93

O2—Co1—O3 76.77 (5) C6—C7—C8 123.0 (2)

O2—Co1—O4 160.59 (6) C7—C8—C3 116.9 (2)

O2—Co1—O1w 90.82 (7) C7—C8—C9 115.4 (2)

O2—Co1—O2w 97.28 (6) C3—C8—C9 127.6 (2)

O2—Co1—O3w 89.57 (7) O5—C9—O4 121.1 (2)

O3—Co1—O4 83.83 (5) O5—C9—C8 117.2 (2)

O3—Co1—O1w 91.69 (6) O4—C9—C8 121.7 (2)

O3—Co1—O2w 174.04 (6) Co1—O1w—H1w1 117 (2)

O3—Co1—O3w 90.14 (6) Co1—O1w—H1w2 121 (2)

O4—Co1—O1w 90.28 (7) H1w1—O1w—H1w2 108 (2)

O4—Co1—O2w 102.11 (6) Co1—O2w—H2w1 121 (1)

O4—Co1—O3w 89.96 (7) Co1—O2w—H2w2 127 (1)

O1w—Co1—O2w 88.81 (6) H2w1—O2w—H2w2 112 (2)

O1w—Co1—O3w 178.16 (6) Co1—O3w—H3w1 114 (2)

O2w—Co1—O3w 89.35 (6) Co1—O3w—H3w2 122 (2)

C1—O2—Co1 120.9 (1) H3w1—O3w—H3w2 109 (2)

C3—O3—C2 117.1 (1) O3—C2—H2a 109.7

C3—O3—Co1 129.9 (1) C1—C2—H2a 109.7

C2—O3—Co1 113.0 (1) O3—C2—H2b 109.7

C9—O4—Co1 137.3 (1) C1—C2—H2b 109.7

O1—C1—O2 125.5 (2) H2a—C2—H2b 108.2

O1—C1—C2 115.3 (2) C3—C4—H4 119.7

O2—C1—C2 119.3 (2) C5—C4—H4 119.7

O3—C2—C1 109.9 (2) C6—C5—H5 119.8

C4—C3—O3 120.6 (2) C4—C5—H5 119.8

(6)

O3—C3—C8 119.1 (2) C7—C6—H6 120.6

C3—C4—C5 120.7 (2) C6—C7—H7 118.5

C6—C5—C4 120.3 (2) C8—C7—H7 118.5

C5—C6—C7 118.8 (2)

O4—Co1—O2—C1 −4.7 (3) O2—C1—C2—O3 0.0 (3)

O2w—Co1—O2—C1 177.4 (2) C2—O3—C3—C4 1.5 (3)

O1w—Co1—O2—C1 88.4 (2) Co1—O3—C3—C4 −179.1 (1)

O3w—Co1—O2—C1 −93.4 (2) C2—O3—C3—C8 −178.8 (2)

O3—Co1—O2—C1 −3.1 (2) Co1—O3—C3—C8 0.7 (3)

O4—Co1—O3—C3 2.9 (2) O3—C3—C4—C5 179.0 (2)

O2—Co1—O3—C3 −176.6 (2) C8—C3—C4—C5 −0.8 (3)

O1w—Co1—O3—C3 93.0 (2) C3—C4—C5—C6 0.7 (4)

O3w—Co1—O3—C3 −87.1 (2) C4—C5—C6—C7 0.1 (4)

O4—Co1—O3—C2 −177.7 (1) C5—C6—C7—C8 −0.8 (4)

O2—Co1—O3—C2 2.9 (1) C6—C7—C8—C3 0.7 (3)

O1w—Co1—O3—C2 −87.6 (1) C6—C7—C8—C9 −177.5 (2)

O3w—Co1—O3—C2 92.4 (1) C4—C3—C8—C7 0.1 (3)

O2—Co1—O4—C9 −7.5 (4) O3—C3—C8—C7 −179.6 (2)

O2w—Co1—O4—C9 170.4 (2) C4—C3—C8—C9 178.0 (2)

O1w—Co1—O4—C9 −100.8 (2) O3—C3—C8—C9 −1.7 (3)

O3w—Co1—O4—C9 81.1 (2) Co1—O4—C9—O5 −170.6 (2)

O3—Co1—O4—C9 −9.1 (2) Co1—O4—C9—C8 10.6 (3)

Co1—O2—C1—O1 −177.1 (2) C7—C8—C9—O5 −4.1 (3)

Co1—O2—C1—C2 2.7 (3) C3—C8—C9—O5 178.0 (2)

C3—O3—C2—C1 177.2 (2) C7—C8—C9—O4 174.7 (2)

Co1—O3—C2—C1 −2.4 (2) C3—C8—C9—O4 −3.2 (3)

O1—C1—C2—O3 179.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O5i 0.85 (1) 1.93 (1) 2.760 (2) 166 (3)

O1w—H1w2···O4ii 0.85 (1) 1.97 (1) 2.804 (2) 169 (2)

O2w—H2w2···O1iii 0.84 (1) 1.93 (1) 2.766 (2) 173 (2)

O2w—H2w1···O5ii 0.84 (1) 1.87 (1) 2.703 (2) 171 (2)

O3w—H3w1···O2iii 0.85 (1) 1.92 (1) 2.757 (2) 167 (3)

O3w—H3w2···O1iv 0.84 (1) 2.03 (1) 2.861 (2) 172 (2)

Figure

Figure 1

References

Related documents

The features to our machine learning models con- sists of character, lexical and word level features such as char N-Grams of size 2 and 3 in order to capture the information

The app also logs rich process data which allow reconstructing the time- line of a user’s interaction with the app, such as timestamps for the beginning and end of each user

Figure 4: Percent of non-covered types (y) in Wiki cor- pus, with dict_uk (‘wiki’ line), with only proposed al- gorithm and paradigms generated from News corpus (‘Par(w)’ line),

For both translation directions, we trained super- vised neural MT (NMT) and statistical MT (SMT) systems, and combined them through n -best list reranking using different

Ao considerar o dinamismo do mercado acionário, essa pesquisa traz, como contribuição principal, o questionamento de existência de mercado eficiente para os

Indeed, by treat- ing the seed words of each category as a query, the zero-shot document filtering is equivalent to ranking documents based on their relevance to the query..

3 Annotation Projection Approach The existing annotation projection approaches re- quire parallel corpora or translations between a source language and a target language with

When sadaqat results in flows of benefits that are expected to be stable and permanent (such as through endowment of a physical property), it is called