Acta Cryst.(2004). E60, m65±m68 DOI: 10.1107/S160053680302782X Sakai and Ishigami [Pt2(C4H7O2)2(NH3)4]2(ClO4)4
m65
metal-organic papers
Acta Crystallographica Section E Structure Reports
Online
ISSN 1600-5368
Bis{di-l-isobutyrato-bis[
cis
-diammine-platinum(II)]} tetraperchlorate
Ken Sakai* and Eri Ishigami
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan
Correspondence e-mail: [email protected]
Key indicators Single-crystal X-ray study
T= 296 K
Mean(C±C) = 0.015 AÊ H-atom completeness 97% Disorder in solvent or counterion
Rfactor = 0.043
wRfactor = 0.102
Data-to-parameter ratio = 20.2
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved
The title compound, [Pt2(-C4H7O2)2(NH3)4]2(ClO4)4,
involves two independent diplatinum(II) units. For each unit, a pair of dimeric units located around an inversion center are associated with one another to give a tetranuclear PtII
4cation,
in which the interdimer association is stabilized by four hydrogen bonds formed between the ammines and the butyrate O atoms. The intradimer and interdimer PtÐPt distances within these tetraplatinum(II) chain cations are, respectively, 2.9881 (4) and 3.2619 (6) AÊ for one set of dimers, and 3.0246 (4) and 3.3049 (6) AÊ for the other set of dimers.
Comment
We recently reported that cis-diammineplatinum dimers doubly bridged with carboxylate ligands, [Pt2(NH3)4(
-carboxylato)2]2+(carboxylate = acetate, glycolate, propionate
etc), afford one-dimensional platinum chain systems based on linear stacks of diplatinum entities. The attractive feature lies in their ability to form quadruple hydrogen bonds at both sides of the dimer unit, leading to the achievement of an in®nite Pt chain in the crystal structure (Sakai, Takeshitaet al., 1998). In addition, we also found that electrochemical oxid-ation of the compounds results in the formoxid-ation of black mixed-valence compounds which show relatively high elec-trical conduction properties (Sakaiet al., 2002). On the other hand, we also reported that extended linear platinum chains are not formed when hydrophobic interactions between the bridging ligands play a major role in the stabilization of the crystal packing; benzoate (Sakai, Takeshitaet al., 1998) and pivalate (Sakai et al., 2003a,b) are known to give discrete dimers in the crystal structure. We report here the crystal structure of a butyrate-bridged cis-diammineplatinum(II) complex, [PtII
2(NH3)4(-butyrato)2]2(ClO4)4, (I). This is the
®rst example of a tetranuclear platinum chain complex obtained for the compounds derived from carboxylate-bridgedcis-diammineplatinum dimers.
The asymmetric unit of (I) consists of two diplatinum(II) cations and four perchlorate anions (Fig. 1). Two of the four
metal-organic papers
m66
Sakai and Ishigami [Pt2(C4H7O2)2(NH3)4]2(ClO4)4 Acta Cryst.(2004). E60, m65±m68 isopropyl units and two of the four perchlorate anions are disordered over two sites (see Experimental). As shown in Fig. 2, each dimer unit is associated with the crystal-lographically identical dimer unit through an inversion center to give a tetranuclear platinum(II) chain structure. Therefore, it is considered that two crystallographically different tetra-nuclear platinum chain cations are involved in the unit cell of (I) (see Fig. 3). The dimer±dimer interactions are stabilized by a weak metal±metal association between the dimers, as well as four hydrogen bonds formed between the ammines and the O atoms of butyrates [Pt1ÐPt1i = 3.2619 (6), N1 O3i =3.105 (8), N2 O1i = 3.093 (8), Pt4ÐPt4ii = 3.3049 (6),
N7 O8ii= 3.167(9), N8 O6ii= 3.109(9) AÊ; symmetry codes:
(i)ÿx, 1ÿy, 1ÿz; (ii) 1ÿx,ÿy,ÿz; see also Table 2]. The intradimer PtÐPt distances are Pt1ÐPt2 = 2.9881 (4) and Pt3ÐPt4 = 3.0246 (4) AÊ in (I). The intra- and interdimer PtÐ Pt distances [respectively abbreviated as PtÐPt(intra) and PtÐPt(inter)] are comparable to those reported for [PtII
2(NH3)4(-acetato)2](SiF6)4H2O [PtÐPt(intra) =
2.9713 (8) AÊ and PtÐPt(inter) = 3.176 (1) and 3.2265 (9) AÊ], [PtII
2(NH3)4(-glycolato)2](SiF6)4H2O [PtÐPt(intra) =
2.9892 (9) AÊ and PtÐPt(inter) = 3.2735 (9) AÊ], and [PtII
2(NH3)4(-benzoato)2]2[cis-PtII(NH3)2(benzoato)2](SiF6
)-(BF4)23H2O [PtÐPt(intra) = 2.952 (1) and 2.990 (1) AÊ; Sakai,
Takeshita et al., 1998]. However, two pivalate-bridged compounds which give discrete dimers in the crystal structure show somewhat exceptional PtÐPt distances; PtÐPt(intra) = 2.9011 (9) AÊ for [PtII
2(NH3)4(-pivalato)2](SO4)H2O (Sakaiet
al., 2003a) and PtÐPt(intra) = 3.0928 (9) AÊ for [PtII
2(NH3)4(
-pivalato)2](ClO4)2C5H10O2(C5H10O2= pivalic acid; Sakaiet
al., 2003b).
The two tetranuclear PtII
4 cations in (I) are hydrogen
bonded with one another [N5 O2 = 3.110 (8) AÊ and N6 O4 = 3.248 (8) AÊ; see also Table 2] to give a
one-Figure 1
The cations and anions (aandb) involved in the asymmetric unit of (I), together with the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are omitted for clarity.
Figure 3
Crystal packing of (I), viewed along theaaxis, where H atoms have been omitted for clarity. Hydrogen bonds are not drawn.
Figure 2
dimensional network (Fig. 4), even though there is no PtÐPt interaction between the tetramers [Pt2 Pt3 = 4.5478 (5) AÊ]. The crystal packing is stabilized by extensive hydrogen bonds formed between the ammines and the O atoms of butyrates and perchlorates (Table 2).
The two Pt atoms within each dimeric unit are displaced from their individual Pt coordination planes in such a manner that they have an attractive interaction with one another. Atoms Pt1 and Pt2 are displaced by 0.081 (3) and 0.102 (3) AÊ, respectively, where the four-atom r.m.s. deviations estimated in the mean-plane calculations are 0.003 and 0.013 AÊ, respectively. Similarly, atoms Pt3 and Pt4 are displaced by 0.088 (3) and 0.084 (3) AÊ, respectively, where the four-atom r.m.s. deviations estimated in the mean-plane calculations are 0.012 and 0.014 AÊ, respectively. Structural features of this type of dimers have also been evaluated by use of two structural parameters as follows. One is a dihedral angle between the two Pt coordination planes within the dimeric unit (), and the other is an average torsional twist of these planes about the PtÐPt axis (!). The dimer unit involving Pt1 and Pt2 has= 37.2 (2)and!= 2.0, while that involving Pt3 and Pt4 has=
40.4 (2)and!= 11.7.
It must be ®nally noted that the fundamental structural features of the present tetranuclear PtII
4compound agree well
with those previously reported for the amidate-bridged tetranuclear PtII
4 analogs (Sakai & Takahashi, 2003; Sakai,
Tanakaet al., 1998).
Experimental
To an aqueous solution ofcis-[Pt(NH3)2(OH2)2](ClO4)2(0.2 mmol/
1.4 ml H2O), prepared as previously described (Sakai, Takeshitaet al.,
1998; Sakai et al., 2002), was added (CH3)2CHCO2Na (0.2 mmol).
The solution was left in a refrigerator (ca278 K) for a week to give the product as pale yellow prisms, which were collected by ®ltration
and air-dried (yield: 30%). Analysis calculated for
C16H52Cl4N8O24Pt4: C 11.56, H 3.15, N 6.74%; found: C 11.72, H 3.22,
N, 6.72%.
Crystal data
[Pt2(C4H7O2)2(NH3)4]2(ClO4)4
Mr= 1662.82 Triclinic,P1
a= 10.1557 (6) AÊ
b= 14.5963 (8) AÊ
c= 15.5209 (9) AÊ
= 74.354 (1)
= 84.621 (1)
= 85.052 (1)
V= 2201.3 (2) AÊ3
Z= 2
Dx= 2.509 Mg mÿ3
MoKradiation Cell parameters from 5928
re¯ections
= 2.2±28.3
= 13.00 mmÿ1
T= 296 (2) K Prism, yellow 0.310.140.05 mm
Data collection
Bruker SMART APEX CCD-detector diffractometer
!scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Tmin= 0.205,Tmax= 0.536
21380 measured re¯ections
10024 independent re¯ections 7784 re¯ections withI> 2(I)
Rint= 0.058
max= 27.5
h=ÿ13!13
k=ÿ18!18
l=ÿ20!20
Re®nement
Re®nement onF2
R[F2> 2(F2)] = 0.043
wR(F2) = 0.102
S= 0.96 10024 re¯ections 497 parameters
H-atom parameters constrained
w= 1/[2(Fo2) + (0.0372P)2]
whereP= (Fo2+ 2Fc2)/3
(/)max< 0.001
max= 2.97 e AÊÿ3
min=ÿ2.16 e AÊÿ3
Table 1
Selected geometric parameters (AÊ,).
Pt1ÐPt2 2.9881 (4) Pt1ÐPt1i 3.2619 (6)
Pt3ÐPt4 3.0246 (4) Pt4ÐPt4ii 3.3049 (6)
Pt2 Pt3 4.5478 (5) Pt1ÐN1 2.037 (7) Pt1ÐN2 2.023 (7) Pt1ÐO1 2.034 (6) Pt1ÐO3 2.044 (5) Pt2ÐN3 2.016 (6) Pt2ÐN4 2.002 (7)
Pt2ÐO2 2.031 (6) Pt2ÐO4 2.023 (5) Pt3ÐN5 2.017 (7) Pt3ÐN6 2.011 (7) Pt3ÐO5 2.035 (6) Pt3ÐO7 2.027 (6) Pt4ÐN7 2.020 (7) Pt4ÐN8 2.033 (7) Pt4ÐO6 2.055 (6) Pt4ÐO8 2.032 (6)
Pt2ÐPt1ÐPt1i 161.515 (18)
Pt3ÐPt4ÐPt4ii 155.255 (19)
N2ÐPt1ÐO1 175.1 (2) N2ÐPt1ÐN1 91.1 (3) O1ÐPt1ÐN1 90.0 (3) N2ÐPt1ÐO3 89.2 (3) O1ÐPt1ÐO3 89.3 (2) N1ÐPt1ÐO3 175.6 (2) N4ÐPt2ÐN3 89.8 (3) N4ÐPt2ÐO4 89.1 (3) N3ÐPt2ÐO4 174.8 (2) N4ÐPt2ÐO2 173.4 (2) N3ÐPt2ÐO2 90.5 (3)
O4ÐPt2ÐO2 90.0 (2) N6ÐPt3ÐN5 91.4 (3) N6ÐPt3ÐO7 88.9 (3) N5ÐPt3ÐO7 175.7 (3) N6ÐPt3ÐO5 174.3 (3) N5ÐPt3ÐO5 87.8 (3) O7ÐPt3ÐO5 91.5 (3) N7ÐPt4ÐO8 176.0 (3) N7ÐPt4ÐN8 91.5 (3) O8ÐPt4ÐN8 88.1 (3) N7ÐPt4ÐO6 88.8 (3) O8ÐPt4ÐO6 91.2 (3) N8ÐPt4ÐO6 174.5 (3)
N2ÐPt1ÐPt2ÐN4 ÿ2.2 (3) N1ÐPt1ÐPt2ÐN3 ÿ2.1 (3) O3ÐPt1ÐPt2ÐO4 ÿ1.2 (3) O1ÐPt1ÐPt2ÐO2 ÿ2.5 (2)
N5ÐPt3ÐPt4ÐN7 ÿ12.4 (3) O7ÐPt3ÐPt4ÐO8 ÿ11.4 (3) N6ÐPt3ÐPt4ÐN8 ÿ12.0 (3) O5ÐPt3ÐPt4ÐO6 ÿ10.9 (3)
Symmetry codes: (i)ÿx;1ÿy;1ÿz; (ii) 1ÿx;ÿy;ÿz.
Acta Cryst.(2004). E60, m65±m68 Sakai and Ishigami [Pt2(C4H7O2)2(NH3)4]2(ClO4)4
m67
metal-organic papers
Figure 4
metal-organic papers
m68
Sakai and Ishigami [Pt2(C4H7O2)2(NH3)4]2(ClO4)4 Acta Cryst.(2004). E60, m65±m68Table 2
Hydrogen-bonding geometry (AÊ,).
DÐH A DÐH H A D A DÐH A
N1ÐH1B O21A 0.89 2.36 3.222 (17) 162 N1ÐH1B O24B 0.89 2.60 3.117 (19) 118 N2ÐH2A O18B 0.89 2.22 3.065 (17) 159 N2ÐH2A O20A 0.89 2.37 3.135 (18) 144 N2ÐH2B O21A 0.89 2.29 3.135 (18) 158 N3ÐH3C O13 0.89 2.47 3.128 (9) 131 N3ÐH3B O24A 0.89 2.13 2.970 (16) 157 N3ÐH3B O24B 0.89 1.92 2.768 (16) 159 N4ÐH4A O18A 0.89 2.11 2.716 (11) 125 N4ÐH4C O23A 0.89 2.07 2.963 (16) 176 N5ÐH5A O2 0.89 2.71 3.110 (8) 108 N5ÐH5B O13 0.89 2.31 3.057 (11) 141 N6ÐH6C O4 0.89 2.38 3.248 (8) 165 N6ÐH6A O11 0.89 2.36 2.943 (10) 123 N6ÐH6A O12 0.89 2.50 3.348 (11) 160 N6ÐH6B O16 0.89 2.41 3.231 (10) 154 N8ÐH8B O11 0.89 2.16 2.963 (11) 149 N1ÐH1C O14i 0.89 2.21 3.005 (9) 149
N1ÐH1A O3ii 0.89 2.34 3.105 (8) 144
N2ÐH2C O1ii 0.89 2.28 3.093 (8) 152
N3ÐH3C O10iii 0.89 2.29 3.041 (11) 142
N3ÐH3A O10iv 0.89 2.16 2.998 (11) 157
N4ÐH4B O11iii 0.89 2.59 3.151 (11) 122
N4ÐH4A O15iii 0.89 2.48 3.013 (10) 119
N5ÐH5C O22Bi 0.89 2.30 3.133 (19) 156
N5ÐH5C O24Ai 0.89 2.40 3.172 (16) 145
N5ÐH5A O9iv 0.89 2.44 3.213 (13) 146
N7ÐH7B O22Ai 0.89 2.34 3.185 (17) 160
N7ÐH7B O22Bi 0.89 2.16 2.91 (2) 142
N7ÐH7A O8v 0.89 2.47 3.167 (9) 135
N7ÐH7A O19Aiii 0.89 2.39 2.938 (15) 120
N8ÐH8C O6v 0.89 2.39 3.109 (9) 138
N8ÐH8A O19Aiii 0.89 2.44 3.155 (14) 138
N8ÐH8A O19Biii 0.89 1.92 2.759 (12) 156
Symmetry codes: (i) ÿx;ÿy;1ÿz; (ii) ÿx;1ÿy;1ÿz; (iii) 1ÿx;ÿy;1ÿz; (iv) xÿ1;y;z; (v) 1ÿx;ÿy;ÿz.
Two of the four ClO4ÿanions show orientational disorder. Around
each Cl atom there are two sets of possible positions as follows: O17A, O18A, O19A, O20A, and O17B, O18B, O19B, O20Baround Cl3; O21A, O22A, O23A, O24A, and O21B, O22B, O23B, O24B
around Cl4. It was assumed that the disordered O atoms around each Cl atom have the same isotropic displacement parameter. Further-more, ClÐO distances were restrained to 1.43 (1) AÊ and the six O O distances within each perchlorate anion were restrained as equal. The occupation factors of sitesAandBwere assumed to be 50%, since the preliminary least-squares experiments suggested that they were equally populated. Two of the four propyl units were also judged to be partially disordered. In each case, one of the two methyl units was assumed to be disordered over two sites (C11Aand C11B
for one case; C16Aand C16Bfor the other case) with 50% occupancy each.
All H atoms, except for two methine H atoms on C atoms adjacent to the disordered methyl units, were located at their idealized posi-tions [CÐH(methyl) = 0.96 AÊ, CÐH(methine) = 0.98 AÊ and NÐ H(ammine) = 0.89 AÊ], and included in the re®nement in a riding-model approximation, withUiso(methyl H) = 1.5Ueq(C),Uiso(methine H) = 1.2Ueq(C), andUiso(ammine H) = 1.5Ueq(N). Two H atoms on C atoms adjacent to the disordered methyl groups were not located. In the ®nal difference Fourier synthesis, 32 residual peaks in the range 1.03±2.97 e AÊÿ3were observed primarily within 1.2 AÊ of the Pt atoms.
The highest peak (2.97 e AÊÿ3) was located 0.94 AÊ from atom Pt2,
while the deepest hole (ÿ2.16 e AÊÿ3) was located 0.93 AÊ from atom
Pt3.
Data collection:SMART(Bruker, 2001); cell re®nement:SAINT
(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:KENX
(Sakai, 2002) and ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97,TEXSAN(Molecular Structure Corporation, 2001) andKENX.
This work was supported by Grants-in-Aid for Scienti®c Research on Priority Areas (Nos. 10149248, 11136246, and 12023247 `Metal-assembled Complexes') from the Ministry of Education, Science, Sports, and Culture of Japan.
References
Bruker (2001).SAINT(Version 6.22) andSMART(Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (2001). TEXSAN, Version 1.11r1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sakai, K. (2002).KENX. GUI forSHELXL97. Tokyo University of Science, Japan.
Sakai, K., Ishigami, E., Konno, Y., Kajiwara, T. & Ito, T. (2002).J. Am. Chem. Soc.124, 12088±12089.
Sakai, K., Ishigami, E., Yokokawa, K., Kajiwara, T. & Ito, T. (2003a).Acta Cryst.E59, m443±m445.
Sakai, K., Ishigami, E., Yokokawa, K., Kajiwara, T. & Ito, T. (2003b).Acta Cryst.E59, m1178±m1180.
Sakai, K. & Takahashi, S. (2003).Acta Cryst.E59, m532±m535.
Sakai, K., Takeshita, M., Tanaka, Y., Ue, T., Yanagisawa, M., Kosaka, M., Tsubomura, T., Ato, M. & Nakano, T. (1998).J. Am. Chem. Soc.120, 11353± 11363.
Sakai, K., Tanaka, Y., Tsuchiya, Y., Hirata, K., Tsubomura, T., Iijima, S. & Bhattacharjee, A. (1998).J. Am. Chem. Soc.120, 8366±8379.
Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
supporting information
sup-1
Acta Cryst. (2004). E60, m65–m68
supporting information
Acta Cryst. (2004). E60, m65–m68 [https://doi.org/10.1107/S160053680302782X]
Bis{di-
µ
-isobutyrato-bis[
cis
-diammineplatinum(II)]} tetraperchlorate
Ken Sakai and Eri Ishigami
Bis{di-µ-isobutyrato-bis[cis-diammineplatinum(II)]} tetrakis(perchlorate)
Crystal data
[Pt2(C4H7O2)2(NH3)4]2(ClO4)4
Mr = 1662.82
Triclinic, P1 Hall symbol: -P 1
a = 10.1557 (6) Å
b = 14.5963 (8) Å
c = 15.5209 (9) Å
α = 74.354 (1)°
β = 84.621 (1)°
γ = 85.052 (1)°
V = 2201.3 (2) Å3
Z = 2
F(000) = 1552
Dx = 2.509 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5928 reflections
θ = 2.2–28.3°
µ = 13.00 mm−1
T = 296 K Prism, yellow
0.31 × 0.14 × 0.05 mm
Data collection
Bruker SMART APEX CCD-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Detector resolution: 8.366 pixels mm-1
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Tmin = 0.205, Tmax = 0.536
21380 measured reflections 10024 independent reflections 7784 reflections with I > 2σ(I)
Rint = 0.058
θmax = 27.5°, θmin = 2.2°
h = −13→13
k = −18→18
l = −20→20
Refinement
Refinement on F2 Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.043
wR(F2) = 0.102
S = 0.96
10024 reflections 497 parameters 49 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
w = 1/[σ2(F
o2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001
supporting information
sup-2
Acta Cryst. (2004). E60, m65–m68
Special details
Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Mean-plane data from final SHELXL refinement
run:-Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) -2.2992 (0.0211) x + 13.8320 (0.0099) y + 2.4412 (0.0317) z = 6.5912 (0.0180)
* -0.0026 (0.0028) N1 * 0.0026 (0.0028) N2 * 0.0026 (0.0028) O1 * -0.0026 (0.0028) O3 - 0.0813 (0.0029) Pt1 - 2.9353 (0.0030) Pt2
Rms deviation of fitted atoms = 0.0026
-3.9774 (0.0204) x + 10.7045 (0.0218) y + 10.0759 (0.0257) z = 6.1949 (0.0140) Angle to previous plane (with approximate e.s.d.) = 37.24 (0.18)
* 0.0125 (0.0030) N3 * -0.0127 (0.0030) N4 * -0.0124 (0.0030) O2 * 0.0126 (0.0030) O4 0.1024 (0.0030) Pt2 2.9081 (0.0032) Pt1
Rms deviation of fitted atoms = 0.0126
-3.0787 (0.0224) x + 13.1802 (0.0150) y + 6.2784 (0.0322) z = 2.5589 (0.0125) Angle to previous plane (with approximate e.s.d.) = 20.69 (1/4)
* -0.0121 (0.0033) N5 * 0.0120 (0.0032) N6 * 0.0119 (0.0032) O5 * -0.0119 (0.0032) O7 - 0.0880 (0.0032) Pt3 - 2.9164 (0.0037) Pt4
Rms deviation of fitted atoms = 0.0120
-2.4050 (0.0237) x + 8.0743 (0.0289) y + 13.6666 (0.0180) z = 0.3493 (0.0126) Angle to previous plane (with approximate e.s.d.) = 40.36 (0.22)
* 0.0138 (0.0032) N7 * -0.0139 (0.0033) N8 * -0.0137 (0.0032) O6 * 0.0139 (0.0033) O8 0.0841 (0.0033) Pt4 2.9313 (0.0035) Pt3
Rms deviation of fitted atoms = 0.0138
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq Occ. (<1)
supporting information
sup-3
Acta Cryst. (2004). E60, m65–m68
O9 0.8830 (10) 0.1513 (7) 0.2094 (6) 0.112 (3) O10 0.8979 (7) 0.0747 (6) 0.3568 (5) 0.077 (2) O11 0.7075 (7) 0.0637 (6) 0.2909 (7) 0.086 (3) O12 0.7473 (8) 0.2079 (5) 0.3149 (6) 0.091 (3) O13 0.2622 (7) −0.0176 (4) 0.4497 (5) 0.068 (2) O14 0.2707 (7) −0.1785 (5) 0.4596 (6) 0.076 (2) O15 0.4471 (7) −0.1144 (6) 0.5015 (6) 0.079 (2) O16 0.4078 (8) −0.0772 (5) 0.3508 (5) 0.076 (2)
O17A 0.5632 (9) 0.3129 (12) 0.6867 (10) 0.0924 (19)* 0.50 O17B 0.5628 (9) 0.3072 (14) 0.7117 (11) 0.0924 (19)* 0.50 O18A 0.3704 (14) 0.2595 (10) 0.6529 (9) 0.0924 (19)* 0.50 O18B 0.3866 (15) 0.3167 (12) 0.6238 (7) 0.0924 (19)* 0.50 O19A 0.4141 (14) 0.2374 (9) 0.8016 (7) 0.0924 (19)* 0.50 O19B 0.3904 (15) 0.2071 (8) 0.7615 (10) 0.0924 (19)* 0.50 O20A 0.3591 (16) 0.3897 (7) 0.7125 (10) 0.0924 (19)* 0.50 O20B 0.3573 (18) 0.3747 (11) 0.7474 (13) 0.0924 (19)* 0.50 O21A −0.0929 (16) 0.2304 (7) 0.7569 (10) 0.105 (2)* 0.50 O21B −0.079 (2) 0.2141 (11) 0.7944 (14) 0.105 (2)* 0.50 O22A −0.0620 (15) 0.0738 (9) 0.8456 (7) 0.105 (2)* 0.50 O22B −0.0962 (18) 0.0528 (10) 0.8099 (12) 0.105 (2)* 0.50 O23A 0.1062 (9) 0.1439 (11) 0.7393 (11) 0.105 (2)* 0.50 O23B 0.1056 (10) 0.1094 (14) 0.7748 (15) 0.105 (2)* 0.50 O24A −0.0881 (15) 0.1021 (11) 0.6930 (9) 0.105 (2)* 0.50 O24B −0.063 (2) 0.1497 (14) 0.6697 (8) 0.105 (2)* 0.50 N1 −0.1493 (7) 0.3533 (5) 0.5563 (6) 0.049 (2)
H1A −0.2033 0.4058 0.5456 0.073*
H1B −0.1500 0.3271 0.6152 0.073*
H1C −0.1764 0.3121 0.5297 0.073*
N2 0.0911 (7) 0.3805 (5) 0.6310 (5) 0.0404 (17)
H2A 0.1791 0.3773 0.6306 0.061*
H2B 0.0599 0.3288 0.6698 0.061*
H2C 0.0576 0.4322 0.6472 0.061*
N3 0.0287 (7) 0.1122 (5) 0.5082 (5) 0.0449 (18)
H3A −0.0227 0.1170 0.4636 0.067*
H3B −0.0206 0.1229 0.5554 0.067*
H3C 0.0685 0.0540 0.5231 0.067*
N4 0.2709 (7) 0.1395 (5) 0.5723 (5) 0.0445 (18)
H4A 0.3441 0.1694 0.5712 0.067*
H4B 0.2929 0.0803 0.5686 0.067*
H4C 0.2221 0.1378 0.6233 0.067*
N5 0.1818 (7) 0.1079 (5) 0.2683 (5) 0.0488 (19)
H5A 0.1085 0.1447 0.2531 0.073*
H5B 0.1901 0.0982 0.3267 0.073*
H5C 0.1765 0.0522 0.2561 0.073*
N6 0.4369 (7) 0.1494 (5) 0.3100 (5) 0.0424 (17)
H6A 0.5185 0.1693 0.2957 0.064*
H6B 0.4413 0.0874 0.3374 0.064*
supporting information
sup-4
Acta Cryst. (2004). E60, m65–m68
N7 0.3775 (7) −0.0855 (5) 0.1435 (5) 0.0485 (19)
H7A 0.4181 −0.1304 0.1197 0.073*
H7B 0.2927 −0.0775 0.1313 0.073*
H7C 0.3827 −0.1031 0.2027 0.073*
N8 0.6372 (7) −0.0185 (5) 0.1476 (6) 0.051 (2)
H8A 0.6216 −0.0721 0.1898 0.077*
H8B 0.6686 0.0230 0.1720 0.077*
H8C 0.6964 −0.0311 0.1056 0.077*
C1 0.0139 (8) 0.3505 (6) 0.3309 (6) 0.0383 (19) C2 −0.0205 (10) 0.3828 (7) 0.2338 (7) 0.051 (2)
H2 −0.0395 0.3259 0.2162 0.061*
C3 −0.1389 (12) 0.4510 (9) 0.2177 (8) 0.083 (4)
H3D −0.1191 0.5107 0.2266 0.124*
H3E −0.2116 0.4256 0.2589 0.124*
H3F −0.1624 0.4606 0.1573 0.124*
C4 0.0993 (12) 0.4233 (10) 0.1768 (8) 0.093 (4)
H4D 0.1294 0.4726 0.1991 0.139*
H4E 0.0767 0.4495 0.1160 0.139*
H4F 0.1685 0.3737 0.1790 0.139*
C5 0.3154 (8) 0.3832 (6) 0.4236 (6) 0.0380 (19) C6 0.4371 (8) 0.4357 (6) 0.3796 (6) 0.042 (2)
H6 0.4208 0.5023 0.3817 0.050*
C7 0.5544 (10) 0.3950 (8) 0.4313 (8) 0.074 (3)
H7D 0.5792 0.3323 0.4242 0.110*
H7E 0.5327 0.3912 0.4936 0.110*
H7F 0.6270 0.4351 0.4093 0.110*
C8 0.4589 (12) 0.4350 (10) 0.2848 (8) 0.093 (5)
H8D 0.5379 0.4666 0.2589 0.140*
H8E 0.3845 0.4676 0.2530 0.140*
H8F 0.4684 0.3703 0.2806 0.140*
C9 0.2261 (9) 0.1618 (6) 0.0313 (6) 0.043 (2) C10 0.1209 (9) 0.1938 (7) −0.0352 (7) 0.050 (2)
C11A 0.119 (3) 0.303 (2) −0.082 (2) 0.094 (6)* 0.50
H11A 0.0689 0.3166 −0.1339 0.141* 0.50
H11B 0.2084 0.3207 −0.1001 0.141* 0.50
H11C 0.0794 0.3376 −0.0411 0.141* 0.50
C11B 0.073 (3) 0.298 (2) −0.041 (2) 0.094 (6)* 0.50
H11D 0.0211 0.3224 −0.0916 0.141* 0.50
H11E 0.1486 0.3354 −0.0476 0.141* 0.50
H11F 0.0204 0.3011 0.0130 0.141* 0.50
C12 −0.0007 (13) 0.1478 (11) 0.0083 (10) 0.107 (5)
H12A 0.0149 0.0798 0.0211 0.160*
H12B −0.0711 0.1681 −0.0311 0.160*
H12C −0.0250 0.1655 0.0631 0.160*
C13 0.5579 (9) 0.2330 (7) 0.0590 (6) 0.047 (2) C14 0.6404 (13) 0.3114 (8) 0.0047 (8) 0.076 (4) C15 0.7024 (16) 0.3597 (10) 0.0598 (10) 0.122 (6)
supporting information
sup-5
Acta Cryst. (2004). E60, m65–m68
H15B 0.7530 0.3138 0.1027 0.183*
H15C 0.6351 0.3918 0.0907 0.183*
C16A 0.661 (3) 0.325 (2) −0.070 (2) 0.114 (8)* 0.50
H16A 0.5852 0.3586 −0.0993 0.171* 0.50
H16B 0.6780 0.2649 −0.0848 0.171* 0.50
H16C 0.7367 0.3620 −0.0891 0.171* 0.50
C16B 0.540 (3) 0.380 (2) −0.057 (2) 0.114 (8)* 0.50
H16D 0.5857 0.4108 −0.1131 0.171* 0.50
H16E 0.5010 0.4272 −0.0281 0.171* 0.50
H16F 0.4716 0.3439 −0.0682 0.171* 0.50
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
supporting information
sup-6
Acta Cryst. (2004). E60, m65–m68
C3 0.083 (9) 0.100 (9) 0.056 (8) 0.036 (7) −0.025 (6) −0.013 (7) C4 0.090 (10) 0.127 (11) 0.038 (7) 0.001 (8) 0.000 (6) 0.014 (7) C5 0.033 (5) 0.039 (5) 0.042 (5) −0.001 (3) −0.002 (4) −0.011 (4) C6 0.032 (5) 0.033 (4) 0.058 (6) −0.006 (3) 0.002 (4) −0.006 (4) C7 0.047 (6) 0.080 (8) 0.079 (9) −0.019 (5) −0.015 (6) 0.013 (7) C8 0.083 (9) 0.143 (12) 0.057 (8) −0.069 (9) 0.016 (7) −0.021 (8) C9 0.053 (6) 0.043 (5) 0.030 (5) 0.005 (4) 0.001 (4) −0.006 (4) C10 0.042 (5) 0.060 (6) 0.045 (6) 0.014 (4) −0.010 (4) −0.010 (5) C12 0.087 (10) 0.155 (14) 0.080 (11) −0.012 (10) −0.041 (8) −0.022 (10) C13 0.050 (6) 0.049 (6) 0.037 (5) −0.012 (4) 0.005 (4) −0.004 (4) C14 0.111 (10) 0.064 (7) 0.056 (8) −0.038 (7) 0.024 (7) −0.019 (6) C15 0.173 (16) 0.112 (12) 0.095 (12) −0.079 (12) −0.008 (11) −0.027 (10)
Geometric parameters (Å, º)
Pt1—Pt2 2.9881 (4) N4—H4A 0.8900
Pt1—Pt1i 3.2619 (6) N4—H4B 0.8900
Pt3—Pt4 3.0246 (4) N4—H4C 0.8900
Pt4—Pt4ii 3.3049 (6) N5—H5A 0.8900
Pt2—Pt3 4.5478 (5) N5—H5B 0.8900
Pt1—N1 2.037 (7) N5—H5C 0.8900
Pt1—N2 2.023 (7) N6—H6A 0.8900
Pt1—O1 2.034 (6) N6—H6B 0.8900
Pt1—O3 2.044 (5) N6—H6C 0.8900
Pt2—N3 2.016 (6) N7—H7A 0.8900
Pt2—N4 2.002 (7) N7—H7B 0.8900
Pt2—O2 2.031 (6) N7—H7C 0.8900
Pt2—O4 2.023 (5) N8—H8A 0.8900
Pt3—N5 2.017 (7) N8—H8B 0.8900
Pt3—N6 2.011 (7) N8—H8C 0.8900
Pt3—O5 2.035 (6) C1—C2 1.517 (12)
Pt3—O7 2.027 (6) C2—C3 1.488 (13)
Pt4—N7 2.020 (7) C2—C4 1.502 (14)
Pt4—N8 2.033 (7) C2—H2 0.9800
Pt4—O6 2.055 (6) C3—H3D 0.9600
Pt4—O8 2.032 (6) C3—H3E 0.9600
Cl1—O9 1.410 (8) C3—H3F 0.9600
Cl1—O12 1.416 (7) C4—H4D 0.9600
Cl1—O10 1.421 (7) C4—H4E 0.9600
Cl1—O11 1.432 (7) C4—H4F 0.9600
Cl2—O15 1.411 (7) C5—C6 1.518 (11)
Cl2—O14 1.420 (7) C6—C8 1.470 (14)
Cl2—O16 1.424 (7) C6—C7 1.489 (13)
Cl2—O13 1.432 (6) C6—H6 0.9800
Cl3—O17B 1.404 (9) C7—H7D 0.9600
Cl3—O20A 1.408 (8) C7—H7E 0.9600
Cl3—O19A 1.421 (8) C7—H7F 0.9600
supporting information
sup-7
Acta Cryst. (2004). E60, m65–m68
Cl3—O20B 1.422 (9) C8—H8E 0.9600
Cl3—O18A 1.428 (8) C8—H8F 0.9600
Cl3—O17A 1.437 (8) C9—C10 1.513 (12)
Cl3—O18B 1.446 (9) C10—C12 1.474 (16)
Cl4—O23A 1.408 (8) C10—C11A 1.56 (3)
Cl4—O22A 1.408 (8) C10—C11B 1.54 (3)
Cl4—O22B 1.418 (9) C11A—H11A 0.9600
Cl4—O23B 1.424 (9) C11A—H11B 0.9600
Cl4—O24B 1.427 (9) C11A—H11C 0.9600
Cl4—O21B 1.432 (9) C11B—H11D 0.9600
Cl4—O24A 1.444 (8) C11B—H11E 0.9600
Cl4—O21A 1.472 (8) C11B—H11F 0.9600
O1—C1 1.265 (9) C12—H12A 0.9600
O2—C1 1.241 (10) C12—H12B 0.9600
O3—C5 1.290 (9) C12—H12C 0.9600
O4—C5 1.241 (9) C13—C14 1.494 (13)
O5—C9 1.251 (10) C14—C15 1.459 (16)
O6—C9 1.242 (10) C14—C16A 1.12 (3)
O7—C13 1.263 (10) C14—C16B 1.57 (3)
O8—C13 1.265 (10) C15—H15A 0.9600
N1—H1A 0.8900 C15—H15B 0.9600
N1—H1B 0.8900 C15—H15C 0.9600
N1—H1C 0.8900 C16A—H16A 0.9600
N2—H2A 0.8900 C16A—H16B 0.9600
N2—H2B 0.8900 C16A—H16C 0.9600
N2—H2C 0.8900 C16B—H16D 0.9600
N3—H3A 0.8900 C16B—H16E 0.9600
N3—H3B 0.8900 C16B—H16F 0.9600
N3—H3C 0.8900
Pt2—Pt1—Pt1i 161.515 (18) H3A—N3—H3C 109.5
Pt3—Pt4—Pt4ii 155.255 (19) H3B—N3—H3C 109.5
N2—Pt1—O1 175.1 (2) Pt2—N4—H4A 109.5
N2—Pt1—N1 91.1 (3) Pt2—N4—H4B 109.5
O1—Pt1—N1 90.0 (3) H4A—N4—H4B 109.5
N2—Pt1—O3 89.2 (3) Pt2—N4—H4C 109.5
O1—Pt1—O3 89.3 (2) H4A—N4—H4C 109.5
N1—Pt1—O3 175.6 (2) H4B—N4—H4C 109.5
N2—Pt1—Pt2 103.81 (18) Pt3—N5—H5A 109.5
O1—Pt1—Pt2 80.52 (15) Pt3—N5—H5B 109.5
N1—Pt1—Pt2 104.57 (19) H5A—N5—H5B 109.5
O3—Pt1—Pt2 79.64 (14) Pt3—N5—H5C 109.5
N2—Pt1—Pt1i 85.16 (18) H5A—N5—H5C 109.5
O1—Pt1—Pt1i 90.03 (15) H5B—N5—H5C 109.5
N1—Pt1—Pt1i 91.18 (19) Pt3—N6—H6A 109.5
O3—Pt1—Pt1i 84.42 (14) Pt3—N6—H6B 109.5
N4—Pt2—N3 89.8 (3) H6A—N6—H6B 109.5
supporting information
sup-8
Acta Cryst. (2004). E60, m65–m68
N3—Pt2—O4 174.8 (2) H6A—N6—H6C 109.5
N4—Pt2—O2 173.4 (2) H6B—N6—H6C 109.5
N3—Pt2—O2 90.5 (3) Pt4—N7—H7A 109.5
O4—Pt2—O2 90.0 (2) Pt4—N7—H7B 109.5
N4—Pt2—Pt1 108.4 (2) H7A—N7—H7B 109.5
N3—Pt2—Pt1 105.3 (2) Pt4—N7—H7C 109.5
O4—Pt2—Pt1 79.79 (14) H7A—N7—H7C 109.5
O2—Pt2—Pt1 77.82 (14) H7B—N7—H7C 109.5
N4—Pt2—Pt3 114.6 (2) Pt4—N8—H8A 109.5
N3—Pt2—Pt3 104.5 (2) Pt4—N8—H8B 109.5
O4—Pt2—Pt3 71.47 (16) H8A—N8—H8B 109.5
O2—Pt2—Pt3 59.04 (16) Pt4—N8—H8C 109.5
Pt1—Pt2—Pt3 126.901 (12) H8A—N8—H8C 109.5
N6—Pt3—N5 91.4 (3) H8B—N8—H8C 109.5
N6—Pt3—O7 88.9 (3) O2—C1—O1 125.3 (8)
N5—Pt3—O7 175.7 (3) O2—C1—C2 116.3 (8)
N6—Pt3—O5 174.3 (3) O1—C1—C2 118.3 (8)
N5—Pt3—O5 87.8 (3) C3—C2—C4 111.4 (10)
O7—Pt3—O5 91.5 (3) C3—C2—C1 114.3 (9)
N6—Pt3—Pt4 108.14 (19) C4—C2—C1 108.5 (8)
N5—Pt3—Pt4 105.3 (2) C3—C2—H2 107.5
O7—Pt3—Pt4 78.73 (16) C4—C2—H2 107.5
O5—Pt3—Pt4 77.52 (16) C1—C2—H2 107.5
N6—Pt3—Pt2 53.38 (19) C2—C3—H3D 109.5
N5—Pt3—Pt2 55.0 (2) C2—C3—H3E 109.5
O7—Pt3—Pt2 122.30 (17) H3D—C3—H3E 109.5
O5—Pt3—Pt2 122.07 (17) C2—C3—H3F 109.5
Pt4—Pt3—Pt2 147.371 (13) H3D—C3—H3F 109.5
N7—Pt4—O8 176.0 (3) H3E—C3—H3F 109.5
N7—Pt4—N8 91.5 (3) C2—C4—H4D 109.5
O8—Pt4—N8 88.1 (3) C2—C4—H4E 109.5
N7—Pt4—O6 88.8 (3) H4D—C4—H4E 109.5
O8—Pt4—O6 91.2 (3) C2—C4—H4F 109.5
N8—Pt4—O6 174.5 (3) H4D—C4—H4F 109.5
N7—Pt4—Pt3 105.4 (2) H4E—C4—H4F 109.5
O8—Pt4—Pt3 78.47 (15) O4—C5—O3 126.8 (7)
N8—Pt4—Pt3 106.4 (2) O4—C5—C6 117.1 (7)
O6—Pt4—Pt3 78.81 (16) O3—C5—C6 116.1 (7)
N7—Pt4—Pt4ii 85.8 (2) C8—C6—C7 112.5 (9)
O8—Pt4—Pt4ii 90.33 (16) C8—C6—C5 111.0 (8)
N8—Pt4—Pt4ii 95.1 (2) C7—C6—C5 110.0 (8)
O6—Pt4—Pt4ii 79.45 (16) C8—C6—H6 107.7
O9—Cl1—O12 110.2 (5) C7—C6—H6 107.7
O9—Cl1—O10 106.8 (5) C5—C6—H6 107.7
O12—Cl1—O10 112.2 (5) C6—C7—H7D 109.5
O9—Cl1—O11 111.3 (6) C6—C7—H7E 109.5
O12—Cl1—O11 108.4 (5) H7D—C7—H7E 109.5
supporting information
sup-9
Acta Cryst. (2004). E60, m65–m68
O15—Cl2—O14 109.5 (5) H7D—C7—H7F 109.5
O15—Cl2—O16 109.7 (5) H7E—C7—H7F 109.5
O14—Cl2—O16 111.8 (5) C6—C8—H8D 109.5
O15—Cl2—O13 109.3 (5) C6—C8—H8E 109.5
O14—Cl2—O13 108.0 (4) H8D—C8—H8E 109.5
O16—Cl2—O13 108.5 (5) C6—C8—H8F 109.5
O20A—Cl3—O19A 111.2 (6) H8D—C8—H8F 109.5
O17B—Cl3—O19B 110.3 (7) H8E—C8—H8F 109.5
O17B—Cl3—O20B 110.0 (11) O6—C9—O5 125.8 (9)
O19B—Cl3—O20B 114.7 (11) O6—C9—C10 115.6 (8)
O20A—Cl3—O18A 109.6 (6) O5—C9—C10 118.6 (8)
O19A—Cl3—O18A 109.3 (6) C12—C10—C9 106.8 (9)
O20A—Cl3—O17A 109.5 (6) C12—C10—C11B 98.7 (14)
O19A—Cl3—O17A 109.0 (6) C9—C10—C11B 109.5 (14)
O18A—Cl3—O17A 108.3 (6) C12—C10—C11A 121.5 (14)
O17B—Cl3—O18B 109.2 (7) C9—C10—C11A 112.5 (14)
O19B—Cl3—O18B 106.7 (7) C10—C11A—H11A 109.5
O20B—Cl3—O18B 105.6 (11) C10—C11A—H11B 109.5
O23A—Cl4—O22A 113.6 (6) C10—C11A—H11C 109.5
O22B—Cl4—O23B 104.0 (12) C10—C11B—H11D 109.5
O22B—Cl4—O24B 105.6 (11) C10—C11B—H11E 109.5
O23B—Cl4—O24B 114.8 (12) H11D—C11B—H11E 109.5
O22B—Cl4—O21B 109.1 (12) C10—C11B—H11F 109.5
O23B—Cl4—O21B 111.8 (12) H11D—C11B—H11F 109.5
O24B—Cl4—O21B 111.0 (12) H11E—C11B—H11F 109.5
O23A—Cl4—O24A 110.6 (6) C10—C12—H12A 109.5
O22A—Cl4—O24A 109.4 (6) C10—C12—H12B 109.5
O23A—Cl4—O21A 107.6 (6) H12A—C12—H12B 109.5
O22A—Cl4—O21A 108.7 (6) C10—C12—H12C 109.5
O24A—Cl4—O21A 106.6 (6) H12A—C12—H12C 109.5
C1—O1—Pt1 125.9 (6) H12B—C12—H12C 109.5
C1—O2—Pt2 130.0 (5) O7—C13—O8 126.6 (8)
C5—O3—Pt1 125.8 (5) O7—C13—C14 116.6 (9)
C5—O4—Pt2 127.8 (5) O8—C13—C14 116.8 (8)
C9—O5—Pt3 128.6 (6) C16A—C14—C15 124 (2)
C9—O6—Pt4 126.4 (6) C16A—C14—C13 122 (2)
C13—O7—Pt3 126.0 (6) C15—C14—C13 112.9 (11)
C13—O8—Pt4 126.9 (5) C15—C14—C16B 112.0 (15)
Pt1—N1—H1A 109.5 C13—C14—C16B 103.6 (15)
Pt1—N1—H1B 109.5 C14—C15—H15A 109.5
H1A—N1—H1B 109.5 C14—C15—H15B 109.5
Pt1—N1—H1C 109.5 H15A—C15—H15B 109.5
H1A—N1—H1C 109.5 C14—C15—H15C 109.5
H1B—N1—H1C 109.5 H15A—C15—H15C 109.5
Pt1—N2—H2A 109.5 H15B—C15—H15C 109.5
Pt1—N2—H2B 109.5 C14—C16A—H16A 109.5
H2A—N2—H2B 109.5 C14—C16A—H16B 109.5
supporting information
sup-10
Acta Cryst. (2004). E60, m65–m68
H2A—N2—H2C 109.5 C14—C16B—H16D 109.5
H2B—N2—H2C 109.5 C14—C16B—H16E 109.5
Pt2—N3—H3A 109.5 H16D—C16B—H16E 109.5
Pt2—N3—H3B 109.5 C14—C16B—H16F 109.5
H3A—N3—H3B 109.5 H16D—C16B—H16F 109.5
Pt2—N3—H3C 109.5 H16E—C16B—H16F 109.5
N2—Pt1—Pt2—N4 −2.2 (3) O1—C1—C2—C4 95.7 (10)
N1—Pt1—Pt2—N3 −2.1 (3) O4—C5—C6—C8 59.4 (12)
O3—Pt1—Pt2—O4 −1.2 (3) O3—C5—C6—C8 −119.1 (10)
O1—Pt1—Pt2—O2 −2.5 (2) O4—C5—C6—C7 −65.8 (11)
N5—Pt3—Pt4—N7 −12.4 (3) O3—C5—C6—C7 115.8 (9)
O7—Pt3—Pt4—O8 −11.4 (3) O6—C9—C10—C12 94.8 (11)
N6—Pt3—Pt4—N8 −12.0 (3) O5—C9—C10—C12 −86.4 (12)
O5—Pt3—Pt4—O6 −10.9 (3) O6—C9—C10—C11B −159.2 (14)
O2—C1—C2—C3 153.2 (9) O5—C9—C10—C11B 19.6 (17)
O1—C1—C2—C3 −29.3 (12) O6—C9—C10—C11A −129.5 (14)
O2—C1—C2—C4 −81.8 (11) O5—C9—C10—C11A 49.4 (16)
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z.
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
N1—H1B···O21A 0.89 2.36 3.222 (17) 162
N1—H1B···O24B 0.89 2.60 3.117 (19) 118
N2—H2A···O18B 0.89 2.22 3.065 (17) 159
N2—H2A···O20A 0.89 2.37 3.135 (18) 144
N2—H2B···O21A 0.89 2.29 3.135 (18) 158
N3—H3C···O13 0.89 2.47 3.128 (9) 131
N3—H3B···O24A 0.89 2.13 2.970 (16) 157
N3—H3B···O24B 0.89 1.92 2.768 (16) 159
N4—H4A···O18A 0.89 2.11 2.716 (11) 125
N4—H4C···O23A 0.89 2.07 2.963 (16) 176
N5—H5A···O2 0.89 2.71 3.110 (8) 108
N5—H5B···O13 0.89 2.31 3.057 (11) 141
N6—H6C···O4 0.89 2.38 3.248 (8) 165
N6—H6A···O11 0.89 2.36 2.943 (10) 123
N6—H6A···O12 0.89 2.50 3.348 (11) 160
N6—H6B···O16 0.89 2.41 3.231 (10) 154
N8—H8B···O11 0.89 2.16 2.963 (11) 149
N1—H1C···O14iii 0.89 2.21 3.005 (9) 149
N1—H1A···O3i 0.89 2.34 3.105 (8) 144
N2—H2C···O1i 0.89 2.28 3.093 (8) 152
N3—H3C···O10iv 0.89 2.29 3.041 (11) 142
N3—H3A···O10v 0.89 2.16 2.998 (11) 157
N4—H4B···O11iv 0.89 2.59 3.151 (11) 122
supporting information
sup-11
Acta Cryst. (2004). E60, m65–m68
N5—H5C···O22Biii 0.89 2.30 3.133 (19) 156
N5—H5C···O24Aiii 0.89 2.40 3.172 (16) 145
N5—H5A···O9v 0.89 2.44 3.213 (13) 146
N7—H7B···O22Aiii 0.89 2.34 3.185 (17) 160
N7—H7B···O22Biii 0.89 2.16 2.91 (2) 142
N7—H7A···O8ii 0.89 2.47 3.167 (9) 135
N7—H7A···O19Aiv 0.89 2.39 2.938 (15) 120
N8—H8C···O6ii 0.89 2.39 3.109 (9) 138
N8—H8A···O19Aiv 0.89 2.44 3.155 (14) 138
N8—H8A···O19Biv 0.89 1.92 2.759 (12) 156