• No results found

Sodium trirubidium metavanadate monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Sodium trirubidium metavanadate monohydrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, i151±i153 DOI: 10.1107/S1600536803024024 Dan BostroÈmet al. NaRb3(VO3)4(H2O)

i151

inorganic papers

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

Sodium trirubidium metavanadate

monohydrate

Dan BostroÈm,* Gustaf Bergquist and Lage Pettersson

Department of Chemistry, Inorganic Chemistry, UmeaÊ University, SE-901 87 UmeaÊ, Sweden

Correspondence e-mail: dan.bostrom@chem.umu.se

Key indicators Single-crystal X-ray study T= 150 K

Mean(V±O) = 0.002 AÊ Rfactor = 0.034 wRfactor = 0.077

Data-to-parameter ratio = 21.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, sodium trirubidium metavanadate

monohydrate, NaRb3(VO3)4(H2O), crystallizes in the

ortho-rhombic space groupPnma. The structure, which represents a

rare type of catena-vanadate, is built up of strongly folded

chains of corner-sharing [VO4] tetrahedra, running in the [010]

direction with a periodicity of four. A three-dimensional framework is obtained by sodium ions linking adjacent chains in the [001] direction and by rubidium ions linking adjacent chains in the [100] direction. The single water molecule binds to the sodium ion and to two rubidium ions.

Comment

As part of a continuing research project, vanadate±organic ligand systems of biomedical interest are studied. The primary aim is to determine the complete speciation by using

poten-tiometry and multinuclear NMR (with emphasis on51V). In

the ongoing study of the vanadocitrate (V-Cit) system, a series of anionic divanadocitrate species were found to be formed,

having chargesÿ4,ÿ3 andÿ2. Our goal is also to determine

the aqueous and solid structures of species formed. No X-ray structures of these species have been published and therefore extensive crystallization experiments have been performed and are still in progress. So far, we have not been able to obtain single crystals of any divanadocitrate species, but crystals of other compounds have been found. We report here the structure of a mixed cation metavanadate, NaRb3(VO3)4(H2O).

Received 13 October 2003 Accepted 20 October 2003 Online 31 October 2003

Figure 1

(2)

inorganic papers

i152

Dan BostroÈmet al. NaRb3(VO3)4(H2O) Acta Cryst.(2003). E59, i151±i153

The title compound possesses a rare type of metavanadate

chain structure, built up of corner-sharing [VO4] tetrahedra.

The chains, which are strongly folded with a periodicity of four, run in the [010] direction (Fig. 1). The folding is described by the angles V2ÐO6ÐV2, O6ÐV2ÐO4, V2Ð O4ÐV1, O4ÐV1ÐO2 and V1ÐO2ÐV1 (Fig. 2 and Table 1). A three-dimensional framework is obtained by sodium ions linking adjacent chains in the [001] direction and by rubidium ions linking adjacent chains in the [100] direction (Fig. 3).

The vanadate tetrahedra have angles and VÐO distances common for vanadate chain structures (Table 1). The sodium ion is coordinated by six vanadate O atoms and a water molecule within distances ranging from 2.282 (2) to 2.705 (3) AÊ, and with a mean distance of 2.470 (8) AÊ. There are three crystallographically different rubidium ions. If distances shorter than 3.4 AÊ are considered, Rb1 is coordin-ated by nine O atoms between 2.892 (4) and 3.382 (4) AÊ (including a water molecule), with a mean distance of 3.123 (10) AÊ, Rb2 coordinate ten O atoms within 2.837 (3)± 3.324 (2) AÊ, with a mean distance of 3.127 (9) AÊ, and Rb3 coordinate nine O atoms (including a water molecule), within 2.946 (2)±3.335 (3) AÊ, with a mean distance of 3.126 (8) AÊ (Table 1 and Fig. 2).

An isotypic structure, NaCs3(VO3)4(H2O), was brie¯y

described by Elvingson (1997). The structure of Th(VO3)2O

(Launayet al., 1992), contains similar folded chains arranged

in layers. In addition, however, this structure also contains isolated vanadate tetrahedra. In the large group of silicate chain structures, there are several examples of a periodicity of four tetrahedra. A close resemblance exists between the

present structure and that of Cu3Na2(SiO3)4 (Kawamura &

Kawahara, 1976) with respect to both the features and the packing of the chains.

Experimental

1 ml of methanol was added to 1.2 ml of an aqueous pH 7.6 solution containing [V5+]

tot= 670 mM, [Cit]tot= 420 mM, [Na+]tot= 1580 mM and [Rb+]

tot= 330 mM, and the resulting solution was allowed to evaporate at room temperature. Pale yellow crystals of appropriate dimensions formed within hours.

Crystal data

NaRb3(VO3)4(H2O)

Mr= 693.18 Orthorhombic,Pnma a= 11.1610 (5) AÊ

b= 8.3050 (11) AÊ

c= 15.8180 (8) AÊ

V= 1466.2 (2) AÊ3

Z= 4

Dx= 3.140 Mg mÿ3

MoKradiation Cell parameters from 2407

re¯ections

= 2.9±33.1

= 12.45 mmÿ1

T= 150 K Prism, light yellow 0.140.130.10 mm

Data collection

Nonius KappaCCD diffractometer

'and!scans

Absorption correction: multi-scan

(HKL SCALEPACK;

Otwinowski & Minor, 1997)

Tmin= 0.203,Tmax= 0.288

24175 measured re¯ections

2271 independent re¯ections 2175 re¯ections withI> 2(I)

Rint= 0.083 max= 30.0

h=ÿ15!15

k=ÿ11!11

l=ÿ22!22

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.034

wR(F2) = 0.077

S= 1.14 2271 re¯ections 107 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0136P)2 + 4.7048P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 1.09 e AÊÿ3 min=ÿ1.87 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0036 (5)

Figure 3

Packing diagram showing the metavanadate chains and the positions of the rubidium ions, sodium ions, water O and H atoms (green, yellow, red and blue spheres of arbitrary size, respectively).

Figure 2

(3)

Table 1

Selected geometric parameters (AÊ,).

Rb1ÐO6 2.892 (4)

Rb1ÐO1i 3.029 (2)

Rb1ÐO5i 3.046 (3)

Rb1ÐO1ii 3.194 (3)

Rb1ÐOwiii 3.299 (4)

Rb1ÐO2iv 3.382 (4)

Rb2ÐO2v 2.837 (3)

Rb2ÐO4 2.986 (3)

Rb2ÐO5vi 3.132 (3)

Rb2ÐO6 3.140 (4)

Rb2ÐO3vii 3.203 (3)

Rb2ÐO3viii 3.324 (2)

Rb3ÐO5i 2.946 (3)

Rb3ÐO4 3.033 (3)

Rb3ÐOw 3.127 (4)

Rb3ÐO3ix 3.190 (2)

Rb3ÐO7 3.335 (3)

V1ÐO3 1.632 (2)

V1ÐO1 1.648 (2)

V1ÐO2x 1.8025 (10)

V1ÐO4 1.804 (2)

V2ÐO7 1.624 (3)

V2ÐO5 1.641 (2)

V2ÐO6 1.8064 (15)

V2ÐO4 1.815 (2)

NaÐO7 2.282 (3)

NaÐOw 2.349 (4)

NaÐO1xi 2.483 (3)

NaÐO3xi 2.705 (3)

O3ÐV1ÐO1 108.47 (13) O3ÐV1ÐO2x 109.15 (14)

O1ÐV1ÐO2x 110.18 (15)

O3ÐV1ÐO4 109.36 (12) O1ÐV1ÐO4 109.47 (11) O2xÐV1ÐO4 110.19 (14)

O7ÐV2ÐO5 110.13 (15) O7ÐV2ÐO6 107.39 (16)

O5ÐV2ÐO6 110.22 (15) O7ÐV2ÐO4 108.21 (13) O5ÐV2ÐO4 113.59 (12) O6ÐV2ÐO4 107.07 (15) V2viiiÐO6ÐV2 134.5 (2)

V1xiiÐO2ÐV1xiii 150.6 (2)

V1ÐO4ÐV2 135.92 (14)

Symmetry codes: (i)xÿ1

2;y;32ÿz; (ii)32ÿx;12‡y;12‡z; (iii) 1ÿx;1ÿy;2ÿz; (iv) 3

2ÿx;ÿy;12‡z; (v) 1ÿx;ÿy;1ÿz; (vi)xÿ12;32ÿy;32ÿz; (vii) 1ÿx;1ÿy;1ÿz; (viii)

x;3

2ÿy;z; (ix) 1ÿx;yÿ21;1ÿz; (x)x;1‡y;z; (xi)32ÿx;1ÿy;21‡z; (xii)x;yÿ1;z;

(xiii)x;ÿ1 2ÿy;z.

The H atoms of the water molecule were located inm a difference Fourier map, ®xed at a distance of 0.97 AÊ and re®ned using a riding

model withU(iso)(H) = 1.2Ueq(O). The highest peak and deepest hole in the difference density map are located at distances of 1.58 and 0.73 AÊ from atoms H8 and Rb3, respectively.

Data collection:COLLECT(Nonius, 1999); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ATOMS(Dowty, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and local procedures.

This work was supported by the Swedish Research Council.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115±119.

Dowty, E. (2000).ATOMS for Windows and Macintosh. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Elvingson, K. (1997). PhD Thesis, UmeaÊ University, Sweden. Kawamura, K. & Kawahara, A. (1976).Acta Cryst.B32, 2419±2422. Launay, S., Mahe, P., Quarton, M. & Robert, F. (1992).J. Solid State Chem.97,

305±313.

Nonius (1999).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and

R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany.

Acta Cryst.(2003). E59, i151±i153 Dan BostroÈmet al. NaRb3(VO3)4(H2O)

i153

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, i151–i153

supporting information

Acta Cryst. (2003). E59, i151–i153 [https://doi.org/10.1107/S1600536803024024]

Sodium trirubidium metavanadate monohydrate

Dan Bostr

ö

m, Gustaf Bergquist and Lage Pettersson

(I)

Crystal data

NaRb3(VO3)4(H2O)

Mr = 693.18

Orthorhombic, Pnma

Hall symbol: -P 2ac 2n

a = 11.1610 (5) Å

b = 8.3050 (11) Å

c = 15.8180 (8) Å

V = 1466.2 (2) Å3

Z = 4

F(000) = 1280

Dx = 3.140 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2407 reflections

θ = 2.9–33.1°

µ = 12.45 mm−1

T = 150 K

Prism, light yellow 0.14 × 0.13 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube, KappaCCD

Graphite monochromator

φ and ω scans

Absorption correction: multi-scan

(HKL SCALEPACK; Otwinowski & Minor, 1997)

Tmin = 0.203, Tmax = 0.288

24175 measured reflections 2271 independent reflections 2175 reflections with I > 2σ(I)

Rint = 0.083

θmax = 30.0°, θmin = 3.2°

h = −15→15

k = −11→11

l = −22→22

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.034

wR(F2) = 0.077

S = 1.14 2271 reflections 107 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0136P)2 + 4.7048P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.09 e Å−3

Δρmin = −1.87 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0036 (5)

Special details

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, i151–i153

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Rb1 0.52769 (4) 0.7500 0.89948 (3) 0.02539 (14) Rb2 0.48559 (4) 0.7500 0.62101 (3) 0.01808 (12) Rb3 0.48232 (5) 0.2500 0.69433 (4) 0.02690 (14) V1 0.71486 (4) 0.45993 (6) 0.52643 (3) 0.01183 (13) V2 0.74207 (5) 0.54938 (7) 0.73235 (3) 0.01450 (14) Na 0.68488 (18) 0.2500 0.91556 (11) 0.0189 (4) O1 0.8537 (2) 0.5234 (3) 0.51424 (14) 0.0216 (5) O2 0.7038 (3) −0.7500 0.4986 (2) 0.0218 (7) O3 0.6281 (2) 0.5647 (3) 0.46424 (15) 0.0218 (5) O4 0.6691 (2) 0.4897 (3) 0.63472 (13) 0.0203 (5) O5 0.8889 (2) 0.5460 (3) 0.72709 (16) 0.0260 (6) O6 0.6904 (3) 0.7500 0.7572 (2) 0.0227 (7) O7 0.6958 (3) 0.4309 (4) 0.80725 (17) 0.0349 (7) Ow 0.4771 (3) 0.2500 0.8920 (2) 0.0251 (8) H8 0.4333 0.3413 0.9146 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Rb1 0.0199 (2) 0.0300 (3) 0.0263 (3) 0.000 0.00265 (17) 0.000 Rb2 0.0153 (2) 0.0185 (2) 0.0205 (2) 0.000 −0.00518 (15) 0.000 Rb3 0.0239 (3) 0.0157 (2) 0.0411 (3) 0.000 0.00626 (19) 0.000 V1 0.0129 (2) 0.0109 (3) 0.0117 (2) −0.00049 (17) 0.00012 (17) 0.00071 (18) V2 0.0165 (3) 0.0146 (3) 0.0124 (2) −0.00063 (19) −0.00209 (18) 0.00365 (19) Na 0.0260 (10) 0.0164 (9) 0.0143 (8) 0.000 0.0009 (7) 0.000 O1 0.0162 (11) 0.0292 (13) 0.0194 (11) −0.0075 (10) 0.0018 (8) −0.0008 (10) O2 0.0298 (18) 0.0129 (16) 0.0226 (17) 0.000 −0.0080 (14) 0.000 O3 0.0254 (12) 0.0211 (12) 0.0190 (11) 0.0049 (10) −0.0029 (9) 0.0041 (9) O4 0.0165 (11) 0.0310 (14) 0.0134 (10) −0.0005 (9) 0.0005 (8) −0.0022 (10) O5 0.0187 (12) 0.0296 (14) 0.0298 (13) 0.0043 (10) −0.0049 (10) 0.0028 (11) O6 0.0213 (17) 0.0166 (16) 0.0302 (18) 0.000 0.0033 (14) 0.000 O7 0.0488 (18) 0.0349 (16) 0.0211 (13) −0.0178 (14) −0.0072 (12) 0.0135 (12) Ow 0.0216 (18) 0.025 (2) 0.0287 (19) 0.000 0.0025 (14) 0.000

Geometric parameters (Å, º)

Rb1—O6 2.892 (4) V1—O3 1.632 (2)

Rb1—O1i 3.029 (2) V1—O1 1.648 (2)

Rb1—O1ii 3.029 (2) V1—O2xiv 1.8025 (10)

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, i151–i153

Rb1—O5ii 3.046 (3) V2—O7 1.624 (3)

Rb1—O1iii 3.194 (3) V2—O5 1.641 (2)

Rb1—O1iv 3.194 (3) V2—O6 1.8064 (15)

Rb1—Owv 3.299 (4) V2—O4 1.815 (2)

Rb1—O2vi 3.382 (4) Na—O7 2.282 (3)

Rb1—O7 3.560 (3) Na—O7xii 2.282 (3)

Rb1—O7vii 3.560 (4) Na—Ow 2.349 (4)

Rb2—O2viii 2.837 (3) Na—O1iv 2.483 (3)

Rb2—O4 2.986 (3) Na—O1xv 2.483 (3)

Rb2—O4vii 2.986 (3) Na—O3iv 2.705 (3)

Rb2—O5ii 3.132 (3) Na—O3xv 2.705 (3)

Rb2—O5i 3.132 (3) O6—V2vii 1.8064 (15)

Rb2—O6 3.140 (4) O5—Rb3xvi 2.946 (3)

Rb2—O3ix 3.203 (3) O5—Rb1xvi 3.046 (3)

Rb2—O3x 3.203 (3) O5—Rb2xvi 3.132 (3)

Rb2—O3vii 3.324 (2) O2—V1xvii 1.8025 (10)

Rb2—O3 3.324 (2) O2—V1xviii 1.8025 (10)

Rb3—O5i 2.946 (3) O2—Rb2viii 2.837 (3)

Rb3—O5xi 2.946 (3) O2—Rb1xix 3.382 (4)

Rb3—O4 3.033 (3) O1—Naxx 2.483 (3)

Rb3—O4xii 3.033 (2) O1—Rb1xvi 3.029 (2)

Rb3—Ow 3.127 (4) O1—Rb1xx 3.194 (3)

Rb3—O3xiii 3.190 (2) O3—Naxx 2.705 (3)

Rb3—O3ix 3.190 (2) O3—Rb3ix 3.190 (2)

Rb3—O7 3.335 (3) O3—Rb2ix 3.203 (3)

Rb3—O7xii 3.335 (3) Ow—Rb1v 3.299 (4)

Rb3—O7xi 3.533 (3) Ow—H8 0.9704

Rb3—O7i 3.533 (3) O7—Rb3xvi 3.533 (3)

O6—Rb1—O1i 138.87 (5) O3ix—Rb2—O3 59.85 (8)

O6—Rb1—O1ii 138.87 (5) O3x—Rb2—O3 104.67 (4)

O1i—Rb1—O1ii 76.82 (10) O3vii—Rb2—O3 55.16 (9)

O6—Rb1—O5i 78.90 (8) O5i—Rb3—O5xi 113.16 (10)

O1i—Rb1—O5i 67.96 (7) O5i—Rb3—O4 80.02 (7)

O1ii—Rb1—O5i 108.40 (7) O5xi—Rb3—O4 157.27 (7)

O6—Rb1—O5ii 78.90 (8) O5i—Rb3—O4xii 157.26 (7)

O1i—Rb1—O5ii 108.40 (7) O5xi—Rb3—O4xii 80.02 (7)

O1ii—Rb1—O5ii 67.96 (7) O4—Rb3—O4xii 82.04 (10)

O5i—Rb1—O5ii 67.58 (10) O5i—Rb3—Ow 64.63 (6)

O6—Rb1—O1iii 100.50 (7) O5xi—Rb3—Ow 64.63 (6)

O1i—Rb1—O1iii 116.82 (3) O4—Rb3—Ow 108.89 (6)

O1ii—Rb1—O1iii 64.40 (7) O4xii—Rb3—Ow 108.89 (6)

O5i—Rb1—O1iii 168.42 (7) O5i—Rb3—O3xiii 126.70 (7)

O5ii—Rb1—O1iii 100.89 (7) O5xi—Rb3—O3xiii 78.02 (7)

O6—Rb1—O1iv 100.50 (7) O4—Rb3—O3xiii 109.73 (6)

O1i—Rb1—O1iv 64.40 (7) O4xii—Rb3—O3xiii 72.82 (6)

O1ii—Rb1—O1iv 116.82 (3) Ow—Rb3—O3xiii 141.16 (6)

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, i151–i153

O5ii—Rb1—O1iv 168.42 (7) O5xi—Rb3—O3ix 126.70 (7)

O1iii—Rb1—O1iv 90.61 (9) O4—Rb3—O3ix 72.82 (6)

O6—Rb1—Owv 142.04 (10) O4xii—Rb3—O3ix 109.73 (6)

O1i—Rb1—Owv 62.55 (6) Ow—Rb3—O3ix 141.16 (6)

O1ii—Rb1—Owv 62.55 (6) O3xiii—Rb3—O3ix 57.68 (9)

O5i—Rb1—Owv 130.47 (7) O5i—Rb3—O7 69.57 (8)

O5ii—Rb1—Owv 130.47 (7) O5xi—Rb3—O7 113.75 (7)

O1iii—Rb1—Owv 55.84 (5) O4—Rb3—O7 51.67 (6)

O1iv—Rb1—Owv 55.84 (5) O4xii—Rb3—O7 88.34 (8)

O6—Rb1—O2vi 78.73 (9) Ow—Rb3—O7 58.53 (7)

O1i—Rb1—O2vi 111.05 (6) O3xiii—Rb3—O7 156.10 (7)

O1ii—Rb1—O2vi 111.05 (6) O3ix—Rb3—O7 118.67 (7)

O5i—Rb1—O2vi 139.05 (6) O5i—Rb3—O7xii 113.75 (7)

O5ii—Rb1—O2vi 139.05 (6) O5xi—Rb3—O7xii 69.57 (8)

O1iii—Rb1—O2vi 50.91 (5) O4—Rb3—O7xii 88.34 (8)

O1iv—Rb1—O2vi 50.91 (5) O4xii—Rb3—O7xii 51.67 (6)

Owv—Rb1—O2vi 63.31 (8) Ow—Rb3—O7xii 58.53 (7)

O6—Rb1—O7 49.47 (5) O3xiii—Rb3—O7xii 118.67 (7)

O1i—Rb1—O7 93.44 (7) O3ix—Rb3—O7xii 156.10 (7)

O1ii—Rb1—O7 170.09 (7) O7—Rb3—O7xii 53.53 (11)

O5i—Rb1—O7 65.46 (7) O5i—Rb3—O7xi 92.15 (7)

O5ii—Rb1—O7 114.37 (7) O5xi—Rb3—O7xi 47.76 (7)

O1iii—Rb1—O7 122.94 (6) O4—Rb3—O7xi 154.03 (6)

O1iv—Rb1—O7 59.02 (6) O4xii—Rb3—O7xi 109.94 (7)

Owv—Rb1—O7 114.72 (6) Ow—Rb3—O7xi 89.44 (7)

O2vi—Rb1—O7 73.91 (6) O3xiii—Rb3—O7xi 55.93 (6)

O6—Rb1—O7vii 49.47 (5) O3ix—Rb3—O7xi 81.37 (6)

O1i—Rb1—O7vii 170.09 (7) O7—Rb3—O7xi 147.34 (4)

O1ii—Rb1—O7vii 93.44 (7) O7xii—Rb3—O7xi 117.32 (8)

O5i—Rb1—O7vii 114.37 (7) O5i—Rb3—O7i 47.76 (7)

O5ii—Rb1—O7vii 65.46 (7) O5xi—Rb3—O7i 92.15 (7)

O1iii—Rb1—O7vii 59.02 (6) O4—Rb3—O7i 109.94 (7)

O1iv—Rb1—O7vii 122.94 (7) O4xii—Rb3—O7i 154.03 (6)

Owv—Rb1—O7vii 114.72 (6) Ow—Rb3—O7i 89.44 (7)

O2vi—Rb1—O7vii 73.91 (6) O3xiii—Rb3—O7i 81.37 (6)

O7—Rb1—O7vii 96.23 (9) O3ix—Rb3—O7i 55.93 (6)

O2viii—Rb2—O4 124.03 (6) O7—Rb3—O7i 117.32 (8)

O2viii—Rb2—O4vii 124.03 (6) O7xii—Rb3—O7i 147.34 (4)

O4—Rb2—O4vii 92.77 (10) O7xi—Rb3—O7i 50.32 (10)

O2viii—Rb2—O5ii 104.76 (8) O3—V1—O1 108.47 (13)

O4—Rb2—O5ii 124.91 (6) O3—V1—O2xiv 109.15 (14)

O4vii—Rb2—O5ii 77.82 (6) O1—V1—O2xiv 110.18 (15)

O2viii—Rb2—O5i 104.76 (8) O3—V1—O4 109.36 (12)

O4—Rb2—O5i 77.82 (6) O1—V1—O4 109.47 (11)

O4vii—Rb2—O5i 124.91 (6) O2xiv—V1—O4 110.19 (14)

O5ii—Rb2—O5i 65.49 (10) O7—V2—O5 110.13 (15)

O2viii—Rb2—O6 178.52 (10) O7—V2—O6 107.39 (16)

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, i151–i153

O4vii—Rb2—O6 56.70 (6) O7—V2—O4 108.21 (13)

O5ii—Rb2—O6 74.01 (7) O5—V2—O4 113.59 (12)

O5i—Rb2—O6 74.01 (7) O6—V2—O4 107.07 (15)

O2viii—Rb2—O3ix 54.83 (4) O7—Na—O7xii 82.34 (17)

O4—Rb2—O3ix 73.23 (6) O7—Na—Ow 86.20 (12)

O4vii—Rb2—O3ix 153.26 (6) O7xii—Na—Ow 86.20 (12)

O5ii—Rb2—O3ix 128.90 (7) O7—Na—O1iv 88.99 (10)

O5i—Rb2—O3ix 75.24 (6) O7xii—Na—O1iv 168.63 (12)

O6—Rb2—O3ix 125.24 (4) Ow—Na—O1iv 85.90 (10)

O2viii—Rb2—O3x 54.83 (4) O7—Na—O1xv 168.63 (12)

O4—Rb2—O3x 153.26 (6) O7xii—Na—O1xv 88.99 (10)

O4vii—Rb2—O3x 73.23 (6) Ow—Na—O1xv 85.90 (10)

O5ii—Rb2—O3x 75.24 (6) O1iv—Na—O1xv 98.58 (13)

O5i—Rb2—O3x 128.90 (7) O7—Na—O3iv 78.35 (10)

O6—Rb2—O3x 125.24 (4) O7xii—Na—O3iv 123.16 (12)

O3ix—Rb2—O3x 109.37 (8) Ow—Na—O3iv 143.80 (7)

O2viii—Rb2—O3vii 81.90 (8) O1iv—Na—O3iv 61.56 (8)

O4—Rb2—O3vii 93.50 (6) O1xv—Na—O3iv 112.71 (10)

O4vii—Rb2—O3vii 52.46 (6) O7—Na—O3xv 123.16 (12)

O5ii—Rb2—O3vii 119.14 (7) O7xii—Na—O3xv 78.35 (10)

O5i—Rb2—O3vii 171.03 (6) Ow—Na—O3xv 143.80 (7)

O6—Rb2—O3vii 99.40 (7) O1iv—Na—O3xv 112.71 (10)

O3ix—Rb2—O3vii 104.67 (4) O1xv—Na—O3xv 61.56 (8)

O3x—Rb2—O3vii 59.85 (8) O3iv—Na—O3xv 69.34 (12)

O2viii—Rb2—O3 81.90 (8) V2vii—O6—V2 134.5 (2)

O4—Rb2—O3 52.46 (6) V1xvii—O2—V1xviii 150.6 (2)

O4vii—Rb2—O3 93.50 (6) V1—O4—V2 135.92 (14)

O5ii—Rb2—O3 171.03 (6) Na—Ow—H8 116.0

O5i—Rb2—O3 119.14 (7) Rb3—Ow—H8 112.2

O6—Rb2—O3 99.40 (7) Rb1v—Ow—H8 67.9

References

Related documents

When we focus on different types of absences, we find that being ranked 1 percent higher in your class increases the estimated effect of a relaxed class attendance policy on your

(2014b): "The Impact of Public Spending on the Financial Performance of Microfinance Institutions." In Lucie Sedmihradska (ed.), Proceedings of the 19th International

Nevertheless, it is worthwhile establishing the robustness of the results, given the focus of this study on preferences for equality: stakeholders who allocate in a

Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory

Figure 7 jointly considers how the probability of observing a price increase (decrease) i ) varies during the season; ii ) is affected by a positive exogenous demand

Lactobacillus jensenii, Lactobacillus johnsonii, Lactobacillus crispatus and Lactobacillus acidophilus were recovered from Algerian pregnant women with intermediate

The model was able to resolve the fact that they and need had to be aligned to 2 different cepts, rather than eg a larger cept corresponding to a 2-4 alignment, and to produce

A more accurate estimate of the value of expected outcomes is provided by Monte Carlo analysis, which is based on the full distribution of possible values of highly