• No results found

[4 (2,2 Di­phenyl­vin­yl)phen­yl]di­phenyl­amine n hexane 0 25 solvate

N/A
N/A
Protected

Academic year: 2020

Share "[4 (2,2 Di­phenyl­vin­yl)phen­yl]di­phenyl­amine n hexane 0 25 solvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1372

Chuet al. C

33H25N0.25C6H14 doi:10.1107/S1600536805011177 Acta Cryst.(2005). E61, o1372–o1373

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

[4-(2,2-Diphenylvinyl)phenyl]diphenylamine

n

-hexane 0.25 solvate

Ji-Cheng Chu,a* Wei Li,a Dong-Zhi Liub and Xiao-Dan Caoa

aSchool of Chemical Engineering and

Technology, Tianjin University, Tianjin 300072, People’s Republic of China, andbSchool of

Materials Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China

Correspondence e-mail: cherrycao@eyou.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.006 A˚ Disorder in solvent or counterion Rfactor = 0.069

wRfactor = 0.243

Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C33H25N0.25C6H14, was synthesizedvia the Ullmann reaction. The dihedral angles between the planes of the phenyl rings of the diphenylamine group and the plane of the central benzene ring are 109.2 (3) and 114.1 (8).

Comment

Organic photoconductive materials are new high-technology information materials which can generate electron/hole (e/h) pairs upon illumination. These materials have been exten-sively used in copier applications, laser printing and digital xerography (Yang & Geise, 1992). The title compound is a charge transfer compound that can be used in double-layered photoconductive devices. In this paper, its structure, as derived from triarylamine, is reported. The molecular struc-ture and the unit-cell contents of the crystal strucstruc-tureare illustrated in Figs. 1 and 2.

Experimental

4-(2,2-Diphenylvinyl)phenylamine (1.95 g, 0.01 mol), iodobenzene (5.34 g, 0.026 mol), CuCl (0.199 g, 0.002 mol), 1,10-phenanthroline (0.18 g, 0.001 mol) and KOH (24 g, 0.43 mol) were dissolved in toluene (30 ml). The mixture was refluxed for 6 h and filtered. The filtrate was evaporated and the residue was separated by column chromatography (silica gel, ethyl acetate/n-hexane 1:200) to give the

[image:1.610.238.426.371.469.2] [image:1.610.210.460.583.717.2]

Received 29 March 2005 Accepted 11 April 2005 Online 16 April 2005

Figure 1

(2)

product (Pautmeier et al., 1990). The structure of the product was identified by IR spectroscopy and mass spectrometry. Single crystals of the product as a hexane solvate were obtained by slow evaporation of a solution of dichloromethane/n-hexane (5:95) for 10 d; m.p 408 K. IR (cm1): 1625, 1500, 1310, 1260. MS (m/e): 423.2.

Crystal data

C33H25N0.25C6H14

Mr= 445.07

Monoclinic,P21=c

a= 13.228 (9) A˚

b= 19.640 (14) A˚

c= 11.524 (8) A˚

= 114.024 (11)

V= 2735 (3) A˚3

Z= 4

Dx= 1.081 Mg m 3

MoKradiation Cell parameters from 1010

reflections

= 2.8–22.2 = 0.06 mm1

T= 293 (2) K Plate, colorless 0.400.300.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: none 13 043 measured reflections 4814 independent reflections

2755 reflections withI> 2(I)

Rint= 0.041 max= 25.0

h=15!10

k=20!23

l=8!13

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.069

wR(F2) = 0.243

S= 1.09 4814 reflections 349 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1362P)2

+ 0.210P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.63 e A˚

3

min=0.22 e A˚ 3

H atoms were positioned geometrically, with C—H = 0.93–0.97 A˚ , and refined using a riding model, withUiso(H) = 1.2Ueq(carrier). The hexane molecules are disordered over two sites, with occupancy

factors of 0.368 (9) and 0.132 (9), and the C—C distances were fixed at 1.54 (1) A˚ in the refinement.

Data collection:SMART(Bruker, 1997); cell refinement:SAINT (Bruker, 1997); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

References

Bruker (1997).SADABS,SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Pautmeier, L., Bussiler, H. & Richert, R. (1990).Synth. Met.37, 271–278. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

[image:2.610.315.565.71.210.2]

Yang, Z. & Geise, H. J. (1992).Synth. Met.47, 111–112.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o1372–o1373

supporting information

Acta Cryst. (2005). E61, o1372–o1373 [https://doi.org/10.1107/S1600536805011177]

[4-(2,2-Diphenylvinyl)phenyl]diphenylamine

n

-hexane 0.25 solvate

Ji-Cheng Chu, Wei Li, Dong-Zhi Liu and Xiao-Dan Cao

[4-(2,2-Diphenyl-vinyl)-phenyl]-diphenyl- amine. n-hexane(1/0.25)

Crystal data

C33H25N·0.25C6H14

Mr = 445.07

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 13.228 (9) Å

b = 19.640 (14) Å

c = 11.524 (8) Å

β = 114.024 (11)°

V = 2735 (3) Å3

Z = 4

F(000) = 946

Dx = 1.081 Mg m−3 Melting point: 408 K

Mo radiation, λ = 0.71073 Å Cell parameters from 1010 reflections

θ = 2.8–22.2°

µ = 0.06 mm−1

T = 293 K Plate, colorless 0.40 × 0.30 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

13043 measured reflections 4814 independent reflections

2755 reflections with I > 2σ(I)

Rint = 0.041

θmax = 25.0°, θmin = 2.0°

h = −15→10

k = −20→23

l = −8→13

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.069

wR(F2) = 0.243

S = 1.09 4814 reflections 349 parameters

46 restraints

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1362P)2 + 0.210P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.63 e Å−3 Δρmin = −0.22 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

N1 0.8287 (2) 0.33317 (14) −0.0977 (2) 0.0554 (7)

C1 1.1775 (2) 0.38870 (16) 0.5088 (3) 0.0481 (8)

C2 1.1087 (2) 0.42249 (16) 0.4042 (3) 0.0500 (8)

H2 1.1059 0.4693 0.4141 0.060*

C3 1.0375 (2) 0.39653 (15) 0.2767 (3) 0.0471 (7)

C4 0.9931 (3) 0.33042 (16) 0.2518 (3) 0.0501 (8)

H4 1.0099 0.2998 0.3187 0.060*

C5 0.9251 (2) 0.30978 (16) 0.1304 (3) 0.0496 (8)

H5 0.8975 0.2656 0.1164 0.060*

C6 0.8976 (2) 0.35513 (16) 0.0280 (3) 0.0477 (7)

C7 0.9389 (3) 0.42079 (16) 0.0522 (3) 0.0541 (8)

H7 0.9204 0.4518 −0.0143 0.065*

C8 1.0071 (3) 0.44088 (16) 0.1737 (3) 0.0531 (8)

H8 1.0336 0.4853 0.1873 0.064*

C9 0.7332 (3) 0.29331 (17) −0.1190 (3) 0.0528 (8)

C10 0.6676 (3) 0.3078 (2) −0.0541 (3) 0.0674 (10)

H10 0.6869 0.3437 0.0035 0.081*

C11 0.5749 (3) 0.2702 (3) −0.0733 (4) 0.0874 (13)

H11 0.5331 0.2801 −0.0272 0.105*

C12 0.5435 (3) 0.2183 (3) −0.1595 (4) 0.0977 (16)

H12 0.4796 0.1935 −0.1741 0.117*

C13 0.6076 (4) 0.2033 (2) −0.2242 (4) 0.0941 (14)

H13 0.5866 0.1680 −0.2830 0.113*

C14 0.7032 (3) 0.2397 (2) −0.2038 (3) 0.0708 (10)

H14 0.7468 0.2281 −0.2469 0.085*

C15 0.8587 (3) 0.34941 (16) −0.1999 (3) 0.0500 (8)

C16 0.7785 (3) 0.36122 (17) −0.3222 (3) 0.0607 (9)

H16 0.7038 0.3587 −0.3382 0.073*

C17 0.8104 (4) 0.37679 (18) −0.4200 (3) 0.0698 (11)

H17 0.7564 0.3846 −0.5012 0.084*

C18 0.9200 (4) 0.38094 (18) −0.3994 (4) 0.0721 (11)

H18 0.9403 0.3912 −0.4658 0.087*

C19 0.9997 (3) 0.36960 (17) −0.2781 (4) 0.0669 (10)

H19 1.0743 0.3729 −0.2626 0.080*

C20 0.9697 (3) 0.35348 (16) −0.1802 (3) 0.0560 (8)

H20 1.0244 0.3452 −0.0996 0.067*

C21 1.2064 (2) 0.31454 (16) 0.5091 (3) 0.0475 (8)

C22 1.2591 (3) 0.29182 (19) 0.4340 (3) 0.0613 (9)

H22 1.2755 0.3226 0.3829 0.074*

C23 1.2876 (3) 0.2242 (2) 0.4340 (4) 0.0718 (11)

H23 1.3216 0.2097 0.3820 0.086*

C24 1.2654 (3) 0.1782 (2) 0.5114 (4) 0.0742 (11)

H24 1.2852 0.1327 0.5123 0.089*

C25 1.2141 (3) 0.20020 (19) 0.5869 (3) 0.0692 (10)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o1372–o1373

C26 1.1844 (3) 0.26797 (18) 0.5860 (3) 0.0562 (8)

H26 1.1494 0.2822 0.6373 0.067*

C27 1.2363 (2) 0.42682 (16) 0.6305 (3) 0.0502 (8)

C28 1.3397 (3) 0.4054 (2) 0.7173 (3) 0.0666 (10)

H28 1.3720 0.3666 0.7007 0.080*

C29 1.3950 (3) 0.4418 (2) 0.8290 (4) 0.0887 (13)

H29 1.4652 0.4280 0.8849 0.106*

C30 1.3471 (4) 0.4984 (2) 0.8584 (4) 0.0880 (13)

H30 1.3836 0.5218 0.9342 0.106*

C31 1.2449 (3) 0.5189 (2) 0.7735 (4) 0.0763 (11)

H31 1.2123 0.5573 0.7911 0.092*

C32 1.1897 (3) 0.48355 (18) 0.6624 (3) 0.0600 (9)

H32 1.1195 0.4979 0.6071 0.072*

C33 0.6589 (9) 0.5116 (7) 0.7954 (7) 0.066 (3) 0.368 (9)

H33A 0.6108 0.5343 0.8267 0.099* 0.368 (9)

H33B 0.7337 0.5264 0.8428 0.099* 0.368 (9)

H33C 0.6543 0.4633 0.8049 0.099* 0.368 (9)

C34 0.6242 (8) 0.5287 (6) 0.6561 (7) 0.091 (4) 0.368 (9)

H34A 0.6131 0.5774 0.6447 0.110* 0.368 (9)

H34B 0.6834 0.5162 0.6311 0.110* 0.368 (9)

C35 0.5197 (9) 0.4929 (6) 0.5706 (4) 0.099 (5) 0.368 (9)

H35A 0.4611 0.5056 0.5965 0.119* 0.368 (9)

H35B 0.5312 0.4442 0.5838 0.119* 0.368 (9)

C33′ 0.6904 (17) 0.519 (2) 0.7762 (16) 0.063 (8) 0.132 (9)

H33D 0.6918 0.5033 0.8557 0.094* 0.132 (9)

H33E 0.7250 0.5630 0.7877 0.094* 0.132 (9)

H33F 0.7297 0.4874 0.7461 0.094* 0.132 (9)

C34′ 0.5706 (15) 0.5245 (15) 0.6791 (10) 0.063 (8) 0.132 (9)

H34C 0.5444 0.5707 0.6781 0.075* 0.132 (9)

H34D 0.5245 0.4943 0.7034 0.075* 0.132 (9)

C35′ 0.5609 (6) 0.505 (2) 0.5457 (13) 0.098 (14) 0.132 (9)

H35C 0.6023 0.4639 0.5504 0.117* 0.132 (9)

H35D 0.5927 0.5413 0.5134 0.117* 0.132 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.0583 (16) 0.0679 (19) 0.0379 (14) −0.0170 (13) 0.0176 (12) −0.0042 (12)

C1 0.0455 (16) 0.057 (2) 0.0447 (17) −0.0085 (14) 0.0209 (14) −0.0028 (14)

C2 0.0600 (19) 0.0432 (18) 0.0449 (17) −0.0074 (15) 0.0195 (15) −0.0052 (14) C3 0.0493 (17) 0.0452 (18) 0.0448 (17) −0.0024 (14) 0.0172 (13) −0.0013 (14) C4 0.0550 (18) 0.0486 (19) 0.0405 (16) −0.0047 (15) 0.0130 (14) 0.0041 (13) C5 0.0514 (17) 0.0437 (18) 0.0503 (18) −0.0073 (14) 0.0170 (14) −0.0023 (14) C6 0.0494 (17) 0.0516 (19) 0.0426 (17) −0.0020 (15) 0.0193 (14) −0.0010 (14)

C7 0.069 (2) 0.0465 (19) 0.0431 (17) −0.0045 (16) 0.0192 (15) 0.0062 (14)

C8 0.067 (2) 0.0412 (18) 0.0469 (18) −0.0084 (15) 0.0194 (15) −0.0007 (14)

C9 0.0523 (18) 0.063 (2) 0.0407 (16) −0.0063 (16) 0.0168 (14) 0.0009 (15)

(6)

C11 0.053 (2) 0.134 (4) 0.073 (3) −0.009 (2) 0.025 (2) −0.004 (3)

C12 0.064 (3) 0.146 (5) 0.079 (3) −0.040 (3) 0.024 (2) 0.000 (3)

C13 0.098 (3) 0.105 (4) 0.066 (3) −0.047 (3) 0.019 (2) −0.017 (2)

C14 0.080 (3) 0.077 (3) 0.058 (2) −0.026 (2) 0.0306 (18) −0.0149 (18)

C15 0.061 (2) 0.0463 (19) 0.0432 (17) −0.0028 (15) 0.0217 (15) −0.0028 (13)

C16 0.068 (2) 0.063 (2) 0.0484 (19) 0.0013 (18) 0.0213 (17) 0.0024 (16)

C17 0.101 (3) 0.062 (2) 0.0455 (19) 0.007 (2) 0.0291 (19) 0.0084 (16)

C18 0.112 (3) 0.053 (2) 0.075 (3) 0.001 (2) 0.063 (3) 0.0037 (18)

C19 0.083 (2) 0.052 (2) 0.084 (3) −0.0028 (19) 0.052 (2) −0.0044 (19)

C20 0.062 (2) 0.052 (2) 0.0541 (19) 0.0007 (16) 0.0238 (16) −0.0003 (15)

C21 0.0418 (16) 0.055 (2) 0.0401 (16) −0.0016 (14) 0.0114 (13) −0.0032 (14)

C22 0.056 (2) 0.072 (3) 0.062 (2) 0.0015 (17) 0.0291 (17) 0.0002 (17)

C23 0.058 (2) 0.085 (3) 0.073 (2) 0.010 (2) 0.0262 (19) −0.010 (2)

C24 0.074 (2) 0.060 (2) 0.074 (3) 0.0120 (19) 0.015 (2) −0.005 (2)

C25 0.084 (3) 0.060 (2) 0.059 (2) 0.0032 (19) 0.023 (2) 0.0036 (17)

C26 0.062 (2) 0.057 (2) 0.0481 (18) −0.0036 (17) 0.0217 (16) −0.0017 (15)

C27 0.0491 (18) 0.054 (2) 0.0431 (16) −0.0107 (15) 0.0148 (14) 0.0004 (14)

C28 0.060 (2) 0.067 (2) 0.061 (2) −0.0097 (18) 0.0133 (17) −0.0084 (18)

C29 0.071 (3) 0.096 (3) 0.067 (2) −0.017 (2) −0.005 (2) −0.011 (2)

C30 0.091 (3) 0.086 (3) 0.065 (2) −0.018 (3) 0.009 (2) −0.027 (2)

C31 0.086 (3) 0.075 (3) 0.066 (2) −0.014 (2) 0.029 (2) −0.0217 (19)

C32 0.061 (2) 0.064 (2) 0.0494 (19) −0.0084 (17) 0.0173 (16) −0.0093 (16)

C33 0.077 (6) 0.058 (6) 0.078 (6) −0.015 (5) 0.046 (5) −0.023 (5)

C34 0.081 (7) 0.055 (6) 0.145 (9) 0.001 (5) 0.054 (6) 0.005 (6)

C35 0.104 (8) 0.084 (8) 0.134 (9) −0.004 (6) 0.073 (7) 0.031 (6)

C33′ 0.062 (9) 0.059 (9) 0.078 (10) −0.003 (6) 0.039 (7) −0.008 (6)

C34′ 0.062 (9) 0.059 (9) 0.078 (10) −0.003 (6) 0.039 (7) −0.008 (6)

C35′ 0.097 (16) 0.097 (16) 0.102 (16) 0.002 (10) 0.044 (10) 0.015 (9)

Geometric parameters (Å, º)

N1—C9 1.421 (4) C21—C22 1.388 (4)

N1—C15 1.422 (4) C22—C23 1.379 (5)

N1—C6 1.428 (4) C22—H22 0.9300

C1—C2 1.352 (4) C23—C24 1.383 (5)

C1—C27 1.499 (4) C23—H23 0.9300

C1—C21 1.505 (5) C24—C25 1.374 (5)

C2—C3 1.476 (4) C24—H24 0.9300

C2—H2 0.9300 C25—C26 1.386 (5)

C3—C8 1.393 (4) C25—H25 0.9300

C3—C4 1.406 (4) C26—H26 0.9300

C4—C5 1.381 (4) C27—C28 1.391 (4)

C4—H4 0.9300 C27—C32 1.393 (5)

C5—C6 1.403 (4) C28—C29 1.392 (5)

C5—H5 0.9300 C28—H28 0.9300

C6—C7 1.384 (4) C29—C30 1.388 (6)

C7—C8 1.379 (4) C29—H29 0.9300

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o1372–o1373

C8—H8 0.9300 C30—H30 0.9300

C9—C14 1.380 (5) C31—C32 1.377 (5)

C9—C10 1.386 (5) C31—H31 0.9300

C10—C11 1.370 (5) C32—H32 0.9300

C10—H10 0.9300 C33—C34 1.517 (8)

C11—C12 1.364 (6) C33—H33A 0.9600

C11—H11 0.9300 C33—H33B 0.9600

C12—C13 1.370 (6) C33—H33C 0.9600

C12—H12 0.9300 C34—C35 1.506 (9)

C13—C14 1.386 (5) C34—H34A 0.9700

C13—H13 0.9300 C34—H34B 0.9700

C14—H14 0.9300 C35—C35i 1.518 (9)

C15—C20 1.394 (5) C35—H35A 0.9700

C15—C16 1.396 (4) C35—H35B 0.9700

C16—C17 1.389 (5) C33′—C34′ 1.527 (10)

C16—H16 0.9300 C33′—H33D 0.9600

C17—C18 1.372 (6) C33′—H33E 0.9600

C17—H17 0.9300 C33′—H33F 0.9600

C18—C19 1.384 (5) C34′—C35′ 1.537 (10)

C18—H18 0.9300 C34′—H34C 0.9700

C19—C20 1.378 (5) C34′—H34D 0.9700

C19—H19 0.9300 C35′—C35′i 1.539 (10)

C20—H20 0.9300 C35′—H35C 0.9700

C21—C26 1.384 (4) C35′—H35D 0.9700

C9—N1—C15 120.6 (2) C22—C21—C1 120.1 (3)

C9—N1—C6 119.8 (2) C23—C22—C21 121.0 (3)

C15—N1—C6 119.6 (3) C23—C22—H22 119.5

C2—C1—C27 119.6 (3) C21—C22—H22 119.5

C2—C1—C21 123.7 (3) C22—C23—C24 120.0 (4)

C27—C1—C21 116.5 (2) C22—C23—H23 120.0

C1—C2—C3 130.0 (3) C24—C23—H23 120.0

C1—C2—H2 115.0 C25—C24—C23 119.4 (4)

C3—C2—H2 115.0 C25—C24—H24 120.3

C8—C3—C4 116.9 (3) C23—C24—H24 120.3

C8—C3—C2 118.5 (3) C24—C25—C26 120.6 (4)

C4—C3—C2 124.5 (3) C24—C25—H25 119.7

C5—C4—C3 121.6 (3) C26—C25—H25 119.7

C5—C4—H4 119.2 C21—C26—C25 120.5 (3)

C3—C4—H4 119.2 C21—C26—H26 119.8

C4—C5—C6 120.3 (3) C25—C26—H26 119.8

C4—C5—H5 119.8 C28—C27—C32 117.6 (3)

C6—C5—H5 119.8 C28—C27—C1 120.3 (3)

C7—C6—C5 118.4 (3) C32—C27—C1 122.0 (3)

C7—C6—N1 121.5 (3) C27—C28—C29 120.1 (4)

C5—C6—N1 120.1 (3) C27—C28—H28 120.0

C8—C7—C6 120.8 (3) C29—C28—H28 120.0

(8)

C6—C7—H7 119.6 C30—C29—H29 119.4

C7—C8—C3 121.9 (3) C28—C29—H29 119.4

C7—C8—H8 119.0 C31—C30—C29 118.5 (3)

C3—C8—H8 119.0 C31—C30—H30 120.7

C14—C9—C10 118.4 (3) C29—C30—H30 120.7

C14—C9—N1 121.5 (3) C30—C31—C32 120.8 (4)

C10—C9—N1 120.1 (3) C30—C31—H31 119.6

C11—C10—C9 121.2 (4) C32—C31—H31 119.6

C11—C10—H10 119.4 C31—C32—C27 121.6 (3)

C9—C10—H10 119.4 C31—C32—H32 119.2

C12—C11—C10 120.5 (4) C27—C32—H32 119.2

C12—C11—H11 119.8 C35—C34—C33 113.1 (7)

C10—C11—H11 119.8 C35—C34—H34A 109.0

C11—C12—C13 119.0 (4) C33—C34—H34A 109.0

C11—C12—H12 120.5 C35—C34—H34B 109.0

C13—C12—H12 120.5 C33—C34—H34B 109.0

C12—C13—C14 121.3 (4) H34A—C34—H34B 107.8

C12—C13—H13 119.3 C34—C35—C35i 116.0 (9)

C14—C13—H13 119.3 C34—C35—H35A 108.3

C9—C14—C13 119.6 (4) C35i—C35—H35A 108.3

C9—C14—H14 120.2 C34—C35—H35B 108.3

C13—C14—H14 120.2 C35i—C35—H35B 108.3

C20—C15—C16 118.2 (3) H35A—C35—H35B 107.4

C20—C15—N1 120.5 (3) C34′—C33′—H33D 109.5

C16—C15—N1 121.3 (3) C34′—C33′—H33E 109.5

C17—C16—C15 119.9 (3) H33D—C33′—H33E 109.5

C17—C16—H16 120.0 C34′—C33′—H33F 109.5

C15—C16—H16 120.0 H33D—C33′—H33F 109.5

C18—C17—C16 121.4 (3) H33E—C33′—H33F 109.5

C18—C17—H17 119.3 C33′—C34′—C35′ 110.8 (10)

C16—C17—H17 119.3 C33′—C34′—H34C 109.5

C17—C18—C19 118.9 (3) C35′—C34′—H34C 109.5

C17—C18—H18 120.6 C33′—C34′—H34D 109.5

C19—C18—H18 120.6 C35′—C34′—H34D 109.5

C20—C19—C18 120.6 (4) H34C—C34′—H34D 108.1

C20—C19—H19 119.7 C34′—C35′—C35′i 110.8 (10)

C18—C19—H19 119.7 C34′—C35′—H35C 109.5

C19—C20—C15 121.1 (3) C35′i—C35′—H35C 109.5

C19—C20—H20 119.5 C34′—C35′—H35D 109.5

C15—C20—H20 119.5 C35′i—C35′—H35D 109.5

C26—C21—C22 118.5 (3) H35C—C35′—H35D 108.1

C26—C21—C1 121.5 (3)

C27—C1—C2—C3 −176.2 (3) C20—C15—C16—C17 −0.2 (5)

C21—C1—C2—C3 8.5 (5) N1—C15—C16—C17 −179.8 (3)

C1—C2—C3—C8 −156.1 (3) C15—C16—C17—C18 0.0 (5)

C1—C2—C3—C4 27.1 (5) C16—C17—C18—C19 −0.3 (5)

(9)

supporting information

sup-7

Acta Cryst. (2005). E61, o1372–o1373

C2—C3—C4—C5 178.7 (3) C18—C19—C20—C15 −1.2 (5)

C3—C4—C5—C6 −0.7 (5) C16—C15—C20—C19 0.9 (5)

C4—C5—C6—C7 −0.8 (5) N1—C15—C20—C19 −179.6 (3)

C4—C5—C6—N1 179.0 (3) C2—C1—C21—C26 −120.9 (3)

C9—N1—C6—C7 −136.8 (3) C27—C1—C21—C26 63.7 (4)

C15—N1—C6—C7 45.4 (4) C2—C1—C21—C22 61.0 (4)

C9—N1—C6—C5 43.4 (4) C27—C1—C21—C22 −114.4 (3)

C15—N1—C6—C5 −134.4 (3) C26—C21—C22—C23 1.0 (5)

C5—C6—C7—C8 1.1 (5) C1—C21—C22—C23 179.2 (3)

N1—C6—C7—C8 −178.7 (3) C21—C22—C23—C24 −1.2 (5)

C6—C7—C8—C3 0.1 (5) C22—C23—C24—C25 0.7 (5)

C4—C3—C8—C7 −1.6 (5) C23—C24—C25—C26 0.0 (5)

C2—C3—C8—C7 −178.6 (3) C22—C21—C26—C25 −0.3 (4)

C15—N1—C9—C14 37.4 (5) C1—C21—C26—C25 −178.5 (3)

C6—N1—C9—C14 −140.4 (3) C24—C25—C26—C21 −0.2 (5)

C15—N1—C9—C10 −142.6 (3) C2—C1—C27—C28 −149.7 (3)

C6—N1—C9—C10 39.7 (5) C21—C1—C27—C28 25.9 (4)

C14—C9—C10—C11 −0.2 (5) C2—C1—C27—C32 31.5 (4)

N1—C9—C10—C11 179.8 (3) C21—C1—C27—C32 −152.9 (3)

C9—C10—C11—C12 −1.6 (6) C32—C27—C28—C29 −2.5 (5)

C10—C11—C12—C13 1.6 (7) C1—C27—C28—C29 178.6 (3)

C11—C12—C13—C14 0.0 (7) C27—C28—C29—C30 2.4 (6)

C10—C9—C14—C13 1.7 (6) C28—C29—C30—C31 −1.7 (7)

N1—C9—C14—C13 −178.2 (4) C29—C30—C31—C32 1.3 (6)

C12—C13—C14—C9 −1.7 (7) C30—C31—C32—C27 −1.6 (6)

C9—N1—C15—C20 −144.7 (3) C28—C27—C32—C31 2.2 (5)

C6—N1—C15—C20 33.0 (4) C1—C27—C32—C31 −179.0 (3)

C9—N1—C15—C16 34.8 (4) C33—C34—C35—C35i −179.6 (15)

C6—N1—C15—C16 −147.4 (3) C33′—C34′—C35′—C35′i 167 (4)

Figure

Figure 1The molecular structure of (I), drawn with 30% probability displacementellipsoids.
Figure 2

References

Related documents

Under the Third Lomé Convention, the EIB is being called upon to de- ploy a total of ECU 1.7 billion in loans for projects in the ACP coun- tries: firstly a ceiling of ECU 1.1

We show that the larger country is more specialized in the industry with heterogeneous (homogeneous) firms when trade costs are low (high) and that an increase in the

The second step is the estimation of the principal flows - or more exsctly~ the coefficients.. corresponding to the principal flows - at this level of classification in 1970. No

The golden proportion was also known to the ancient Greeks. This awareness prejudiced their art and architecture. The primary application of this proportion perhaps can

Whether these differences in the financial structure and development across African countries exert any significant influence on the effects of monetary policy on output growth

For multi-task learning, they used shared slots by associating each slot type with ag- gregate active feature weight vector based on an existing domain specific slot tagger..

Keywords: Merger enforcement; Critical loss analysis; Upward pricing pressure; Vertical.. arithmetic; Horizontal mergers; Vertical mergers;

1691.. Moreover, the experiments in this paper show that even while strictly trying to replicate a pre- vious experiment, results may vary up to a point where they lead to