• No results found

1 (N Ethyl­thio­carbamo­yl) 3,5 di 2 fur­yl 2 pyrazoline

N/A
N/A
Protected

Academic year: 2020

Share "1 (N Ethyl­thio­carbamo­yl) 3,5 di 2 fur­yl 2 pyrazoline"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2205–o2206 doi:10.1107/S160053680501915X Goncaet al. C

14H15N3O2S

o2205

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-(

N

-Ethylthiocarbamoyl)-3,5-di-2-furyl-2-pyrazoline

Gonca O¨ zdemir,a* S¸amil Is¸ik,a Zuhal O¨ zdemirband Altan Bilginb

aDepartment of Physics, Ondokuz Mayıs

University, TR-55139 Samsun, Turkey, and

bDepartment of Pharmaceutical Chemistry,

Hacettepe University, TR-06100 Ankara, Turkey

Correspondence e-mail: gozdemir@omu.edu.tr

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.049

wRfactor = 0.139

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecule of the title compound, C14H15N3O2S, is non-planar; the dihedral angle between the two furyl rings is 88.4 (2). The crystal structure is stabilized by one C—H

interaction.

Comment

Pyrazoles are widely studied five-membered heterocyclic compounds and their syntheses have been extensively studied (Parmaret al., 1974; Soniet al., 1987). These studies have been stimulated by some promising pharmacological, agrochemical and analytical applications (Polevoi, 1966; Batulin, 1969; Palaskaet al., 1996). Compounds including a pyrazole nucleus are known to posses analgesic, anti-inflammatory, antipyretic, antiarrhythmic, tranquillizing, muscle relaxant, psycho-analeptic, anticonvulsant, hypotensive, monoamine oxidase inhibitor, antidiabetic and antibacterial activities (Brunoet al., 1993; Mazzoneet al., 1986).

The molecule of the title compound, (I), is non-planar, the dihedral angles between furyl rings O1/C1–C4 and O2/C8–C11 and the pyrazoline ring being 6.3 (2) and 85.59 (18),

respec-tively. The dihedral angle between the two furyl rings is 88.4 (2). The crystal structure is stabilized by one C—H

interaction (Table 1).

[image:1.610.267.397.384.470.2] [image:1.610.247.407.570.721.2]

Received 7 June 2005 Accepted 16 June 2005 Online 24 June 2005

Figure 1

(2)

Experimental

1,3-Di-2-furyl-2-propen-1-one (0.01 mol) was dissolved in ethanol (25 ml). Hydrazine hydrate (1 g, 0.02 mol) was then added. The solution was warmed in a water bath for 2 h. After cooling, the solvent was entirely removed under reduced pressure and 3,5-di-2-furyl-2-pyrazoline was obtained. The compound was dissolved in dry diethyl ether (25 ml) and then ethyl isothiocyanate (0.01 mol) and four drops of triethylamine were added. The solution was stirred for 4 h at room temperature. After removing the solvent, the residue was recrystallized from ethanol to give the compound (I) (yield 47%; m.p. 406–408 K).

Crystal data

C14H15N3O2S

Mr= 289.35

Monoclinic,P21=c

a= 7.0192 (4) A˚

b= 22.1771 (10) A˚

c= 10.5972 (7) A˚ = 119.541 (4)

V= 1435.17 (14) A˚3

Z= 4

Dx= 1.330 Mg m 3 MoKradiation Cell parameters from 9837

reflections = 1.8–27.2

= 0.23 mm1

T= 293 (2) K Prism, yellow 0.560.500.43 mm

Data collection

Stoe IPDS-2 diffractometer !scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Tmin= 0.879,Tmax= 0.879 13798 measured reflections 2808 independent reflections

2420 reflections withI> 2(I)

Rint= 0.061 max= 26.0

h=8!8

k=24!27

l=13!13

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.049

wR(F2) = 0.139

S= 1.06 2808 reflections 193 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.1115P)2 + 0.5302P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.42 e A˚3

[image:2.610.313.564.109.143.2]

min=0.36 e A˚3

Table 1

Hydrogen-bond geometry (A˚ ,).

Cgis the centroid of the furyl O2/C8–C11 ring.

D—H A D—H H A D A D—H A

C2—H2 Cgi

0.93 2.86 3.763 (3) 165

Symmetry code: (i)xþ1;y;z.

All H atoms, except for H6A, H6Band H7, were treated using a riding model, with C—H = 0.93 (aromatic H), 0.97 (methylene H) or 0.96 A˚ (methyl H). TheUiso(H) values were constrained to be 1.2 (1.5 for the methyl group) timesUeq(C). Atoms H6A, H6Band H7 were refined isotropically.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP3 for Windows(Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

References

Batulin, Y. M. (1969).Farmacol. Toksicol.31, 533–536.

Bruno, O., Ranise, A., Bondavalli, F., Schenone, F., D’Amico, M., Filipelli, A., Filipelli, W. & Francesco, R. (1993).Il Farmaco,48, 949–966.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Mazzone, G., Puglisi, G., Corsaro, A., Panico, A., Bonina, F., Amico-Roxas, M., Caruso, A. & Trombadore, S. (1986).Eur. J. Med. Chem.21, 277–284. Palaska, E., Erol, D. & Demirdamar, R. (1996).Eur. J. Med. Chem.31, 43–

47.

Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D (1974).J. Pharm. Sci.63, 1152–1155.

Polevoi, L. G. (1966).Tr. Nauchn. Konf. Aspir. Ordin. 1-yi Mosk. Med. Inst. Moscow,pp. 159–161.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Soni, N., Pande, K., Kalsi, R., Gupta, T. K., Parmar, S. S. & Barthwal, J. P. (1987).Res. Commun. Chem. Path. Pharm.56, 129–132.

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o2205–o2206

supporting information

Acta Cryst. (2005). E61, o2205–o2206 [https://doi.org/10.1107/S160053680501915X]

1-(

N

-Ethylthiocarbamoyl)-3,5-di-2-furyl-2-pyrazoline

Gonca

Ö

zdemir,

Ş

amil I

ş

ik, Zuhal

Ö

zdemir and Altan Bilgin

1-(N-Ethylthiocarbamoyl)-3,5-di-2-furyl-2-pyrazoline

Crystal data

C14H15N3O2S

Mr = 289.35

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 7.0192 (4) Å b = 22.1771 (10) Å c = 10.5972 (7) Å β = 119.541 (4)° V = 1435.17 (14) Å3

Z = 4

F(000) = 608 Dx = 1.330 Mg m−3

Melting point = 408–409 K Mo radiation, λ = 0.71073 Å Cell parameters from 9837 reflections θ = 1.8–27.2°

µ = 0.23 mm−1

T = 293 K Prism, yellow

0.56 × 0.50 × 0.43 mm

Data collection

Stoe IPDS-2 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 6.67 pixels mm-1

ω scan rotation

Absorption correction: integration (X-RED; Stoe & Cie, 2002) Tmin = 0.879, Tmax = 0.879

13798 measured reflections 2808 independent reflections 2420 reflections with I > 2σ(I) Rint = 0.061

θmax = 26.0°, θmin = 1.8°

h = −8→8 k = −24→27 l = −13→13

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.049

wR(F2) = 0.139

S = 1.06 2808 reflections 193 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.1115P)2 + 0.5302P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.42 e Å−3

(4)

Special details

Experimental. In thin layer chromotography S-1, S-2 and S-4 solvent systems, Rf values were obtained 0.28, 0.56 and

0.38, respectively.

In the UV spectra of compound three absorption maxima were observed at 200, 217, 328 nm with logε values of 4.35, 4.41 and 4.63, respectively.

In the IR spectra, peaks were detected at N—H streching (3350 cm-1), aromatic C—H streching (3118 cm-1), aliphatic C

—H streching (2978 cm-1), C═N streching (1518-1), C═C streching (1420-1), pyrazoline C4—H streching (1390-1), C═S

streching (1335-1), C5—N1 streching (1179-1), furan C—O—C streching (1071-1) and C—H deformation (808.751-1).

In 1H NMR spectra, peaks were observed at δ (CDCl

3) 3.21ppm (1H; dd; HA,JAB: 17.41 Hz, JAX: 3.46 Hz), 3.45 p.p.m.

(1H; dd; HB,JAB: 17.43 Hz, JBX: 11.42 Hz), 6.10 p.p.m. (1H; dd; HX,JAX: 3.39 Hz, JBX: 11.41 Hz), 1.25 p.p.m. (3H; t;

CH3,JAB: 7.24 Hz), 3.62 p.p.m. (2H; m; CH2), 6.22 p.p.m. (1H; m; 5-furan H3), 6.34 p.p.m. (1H; d; 5-furan H4,JAB: 3.20

Hz), 6.47 p.p.m. (1H; m; 3-furan H3), 6.72 p.p.m. (1H; d; 3-furan H4, J

AB: 3.42 Hz), 7.15–7.55 p.p.m. (2H; m; 3- and

5-furan H5), and 7.23 p.p.m. (1H; b; NH).

In mass spectra of the compound, observed values are below: m/e 289 (M+, 100%), 260 (M—C

2H5), 202 (M—C3H5NS),

173 (M—C3H6N3S) and 94 (M—C9H11N2OS).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C12 0.1048 (3) 0.67841 (9) 0.8059 (2) 0.0563 (5) C14 −0.2853 (5) 0.79673 (16) 0.6095 (3) 0.1063 (10)

H14A −0.3788 0.8226 0.6276 0.159*

H14B −0.3732 0.7688 0.5336 0.159*

H14C −0.1994 0.8206 0.5804 0.159*

C1 0.4721 (3) 0.62884 (10) 0.5456 (2) 0.0603 (5) C2 0.6292 (4) 0.59948 (14) 0.5337 (3) 0.0854 (7)

H2 0.7250 0.5708 0.5974 0.103*

C3 0.6206 (6) 0.62073 (17) 0.4049 (4) 0.1030 (10)

H3 0.7106 0.6088 0.3681 0.124*

C4 0.4603 (5) 0.66073 (16) 0.3472 (3) 0.0965 (9)

H4 0.4187 0.6816 0.2613 0.116*

C5 0.4059 (3) 0.62576 (9) 0.6533 (2) 0.0536 (4) C6 0.5107 (3) 0.58420 (11) 0.7812 (2) 0.0607 (5) C7 0.3563 (3) 0.58929 (9) 0.8441 (2) 0.0551 (5) C8 0.2115 (3) 0.53632 (9) 0.8135 (2) 0.0549 (4) C9 0.1471 (4) 0.50390 (11) 0.8920 (3) 0.0768 (6)

H9 0.1885 0.5099 0.9891 0.092*

C10 0.0036 (5) 0.45872 (11) 0.7995 (4) 0.0871 (8)

H10 −0.0674 0.4294 0.8240 0.104*

C11 −0.0096 (4) 0.46614 (12) 0.6724 (3) 0.0851 (7)

H11 −0.0930 0.4423 0.5913 0.102*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o2205–o2206

H13A −0.2311 0.7409 0.7685 0.116*

H13B −0.0572 0.7927 0.8153 0.116*

N1 0.2314 (3) 0.64411 (7) 0.76951 (18) 0.0573 (4) N2 0.2540 (3) 0.65925 (7) 0.64996 (18) 0.0556 (4) N3 0.0037 (3) 0.72381 (8) 0.7184 (2) 0.0701 (5)

H3A 0.0250 0.7299 0.6461 0.084*

O1 0.3645 (3) 0.66708 (8) 0.43141 (18) 0.0802 (5) O2 0.1167 (3) 0.51387 (7) 0.67627 (16) 0.0700 (4) S1 0.08539 (10) 0.66235 (3) 0.95363 (7) 0.0732 (2) H6A 0.520 (4) 0.5444 (11) 0.751 (3) 0.072 (7)* H6B 0.658 (4) 0.5979 (11) 0.849 (3) 0.076 (7)* H7 0.429 (3) 0.5961 (9) 0.941 (2) 0.060 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C12 0.0535 (10) 0.0602 (11) 0.0604 (11) −0.0059 (8) 0.0320 (9) −0.0092 (9) C14 0.109 (2) 0.122 (3) 0.109 (2) 0.051 (2) 0.0697 (19) 0.0250 (19) C1 0.0563 (10) 0.0677 (12) 0.0637 (11) −0.0046 (9) 0.0347 (9) −0.0012 (9) C2 0.0747 (15) 0.1003 (19) 0.1016 (19) 0.0132 (13) 0.0591 (15) 0.0071 (15) C3 0.106 (2) 0.133 (3) 0.111 (2) −0.003 (2) 0.085 (2) −0.011 (2) C4 0.105 (2) 0.133 (3) 0.0795 (17) −0.0064 (19) 0.0669 (17) 0.0034 (16) C5 0.0492 (9) 0.0562 (10) 0.0586 (10) −0.0035 (8) 0.0290 (8) −0.0004 (8) C6 0.0491 (10) 0.0671 (13) 0.0671 (12) 0.0029 (9) 0.0294 (9) 0.0092 (10) C7 0.0523 (10) 0.0621 (11) 0.0498 (10) −0.0012 (8) 0.0243 (8) 0.0052 (8) C8 0.0551 (10) 0.0552 (10) 0.0555 (10) 0.0039 (8) 0.0281 (8) 0.0086 (8) C9 0.0925 (16) 0.0709 (14) 0.0777 (14) −0.0014 (12) 0.0501 (13) 0.0175 (11) C10 0.0962 (18) 0.0587 (13) 0.125 (2) −0.0109 (12) 0.0689 (18) 0.0093 (14) C11 0.0840 (16) 0.0677 (14) 0.106 (2) −0.0227 (12) 0.0491 (15) −0.0129 (14) C13 0.100 (2) 0.104 (2) 0.0917 (18) 0.0385 (17) 0.0516 (16) −0.0034 (16) N1 0.0672 (10) 0.0550 (9) 0.0631 (9) 0.0045 (8) 0.0425 (8) 0.0072 (7) N2 0.0628 (9) 0.0552 (9) 0.0597 (9) 0.0015 (7) 0.0386 (8) 0.0047 (7) N3 0.0772 (11) 0.0722 (11) 0.0686 (11) 0.0178 (9) 0.0418 (9) 0.0008 (9) O1 0.0847 (11) 0.1012 (12) 0.0716 (10) 0.0113 (9) 0.0515 (9) 0.0159 (9) O2 0.0762 (9) 0.0689 (9) 0.0674 (9) −0.0146 (7) 0.0373 (8) −0.0060 (7) S1 0.0769 (4) 0.0893 (4) 0.0702 (4) −0.0088 (3) 0.0493 (3) −0.0077 (3)

Geometric parameters (Å, º)

C12—N3 1.315 (3) C6—H6A 0.95 (2)

C12—N1 1.362 (2) C6—H6B 0.97 (2)

C12—S1 1.676 (2) C7—N1 1.479 (3)

C14—C13 1.427 (4) C7—C8 1.481 (3)

C14—H14A 0.9600 C7—H7 0.90 (2)

C14—H14B 0.9600 C8—C9 1.336 (3)

C14—H14C 0.9600 C8—O2 1.361 (2)

C1—C2 1.339 (3) C9—C10 1.416 (4)

(6)

C1—C5 1.431 (3) C10—C11 1.314 (4)

C2—C3 1.416 (4) C10—H10 0.9300

C2—H2 0.9300 C11—O2 1.368 (3)

C3—C4 1.323 (4) C11—H11 0.9300

C3—H3 0.9300 C13—N3 1.461 (3)

C4—O1 1.364 (3) C13—H13A 0.9700

C4—H4 0.9300 C13—H13B 0.9700

C5—N2 1.285 (2) N1—N2 1.393 (2)

C5—C6 1.498 (3) N3—H3A 0.8600

C6—C7 1.531 (3)

N3—C12—N1 115.41 (18) C8—C7—C6 113.76 (18)

N3—C12—S1 123.87 (16) N1—C7—H7 108.8 (14)

N1—C12—S1 120.71 (16) C8—C7—H7 109.0 (14)

C13—C14—H14A 109.5 C6—C7—H7 112.2 (14)

C13—C14—H14B 109.5 C9—C8—O2 109.4 (2)

H14A—C14—H14B 109.5 C9—C8—C7 134.2 (2)

C13—C14—H14C 109.5 O2—C8—C7 116.44 (16)

H14A—C14—H14C 109.5 C8—C9—C10 107.0 (2)

H14B—C14—H14C 109.5 C8—C9—H9 126.5

C2—C1—O1 109.9 (2) C10—C9—H9 126.5

C2—C1—C5 131.2 (2) C11—C10—C9 106.7 (2)

O1—C1—C5 118.87 (18) C11—C10—H10 126.6

C1—C2—C3 106.4 (3) C9—C10—H10 126.6

C1—C2—H2 126.8 C10—C11—O2 110.4 (2)

C3—C2—H2 126.8 C10—C11—H11 124.8

C4—C3—C2 106.9 (2) O2—C11—H11 124.8

C4—C3—H3 126.5 C14—C13—N3 112.3 (2)

C2—C3—H3 126.5 C14—C13—H13A 109.1

C3—C4—O1 110.3 (3) N3—C13—H13A 109.1

C3—C4—H4 124.8 C14—C13—H13B 109.1

O1—C4—H4 124.8 N3—C13—H13B 109.1

N2—C5—C1 122.78 (18) H13A—C13—H13B 107.9

N2—C5—C6 114.28 (17) C12—N1—N2 120.34 (16)

C1—C5—C6 122.92 (18) C12—N1—C7 127.25 (16)

C5—C6—C7 102.21 (16) N2—N1—C7 112.40 (15)

C5—C6—H6A 110.7 (15) C5—N2—N1 107.46 (16)

C7—C6—H6A 113.0 (15) C12—N3—C13 122.8 (2)

C5—C6—H6B 110.1 (14) C12—N3—H3A 118.6

C7—C6—H6B 112.3 (14) C13—N3—H3A 118.6

H6A—C6—H6B 108 (2) C1—O1—C4 106.3 (2)

N1—C7—C8 111.89 (16) C8—O2—C11 106.43 (19)

N1—C7—C6 100.83 (15)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o2205–o2206

C2—C1—C5—N2 177.6 (3) C6—C7—N1—C12 −163.95 (19) O1—C1—C5—N2 −2.7 (3) C8—C7—N1—N2 −105.10 (19) C2—C1—C5—C6 −1.1 (4) C6—C7—N1—N2 16.2 (2) O1—C1—C5—C6 178.66 (19) C1—C5—N2—N1 179.55 (17) N2—C5—C6—C7 11.5 (2) C6—C5—N2—N1 −1.7 (2) C1—C5—C6—C7 −169.68 (18) C12—N1—N2—C5 170.28 (17) C5—C6—C7—N1 −15.3 (2) C7—N1—N2—C5 −9.8 (2) C5—C6—C7—C8 104.69 (19) N1—C12—N3—C13 178.3 (2) N1—C7—C8—C9 −109.5 (3) S1—C12—N3—C13 −2.1 (3) C6—C7—C8—C9 137.0 (3) C14—C13—N3—C12 −161.1 (3) N1—C7—C8—O2 69.9 (2) C2—C1—O1—C4 −0.1 (3) C6—C7—C8—O2 −43.6 (2) C5—C1—O1—C4 −179.9 (2) O2—C8—C9—C10 −0.2 (3) C3—C4—O1—C1 −0.2 (3) C7—C8—C9—C10 179.3 (2) C9—C8—O2—C11 0.0 (2) C8—C9—C10—C11 0.2 (3) C7—C8—O2—C11 −179.50 (19) C9—C10—C11—O2 −0.2 (3) C10—C11—O2—C8 0.1 (3) N3—C12—N1—N2 2.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C2—H2···Cgi 0.93 2.86 3.763 (3) 165

Figure

Figure 1An ORTEP-3 view (Farrugia, 1997) of the title compound, showing theatom-numbering scheme and 50% probability displacement ellipsoids.
Table 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical