• No results found

1 (4 Meth­oxy­phenyl) 2 (2 nitro­phen­oxy)­propan 1 one

N/A
N/A
Protected

Academic year: 2020

Share "1 (4 Meth­oxy­phenyl) 2 (2 nitro­phen­oxy)­propan 1 one"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2498

Ivo Vencatoet al. C16H15NO5 doi:10.1107/S1600536804030260 Acta Cryst.(2004). E60, o2498±o2500

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-(4-Methoxyphenyl)-2-(2-nitrophenoxy)-propan-1-one

Ivo Vencato,a* Pedro H. Ferri,b

Suzana C. Santos,b Lourivaldo S.

Santos,cCarlito Lariucciaand

Hamilton B. Napolitanod

aInstituto de FõÂsica, UFG, Caixa Postal 131,

74001-970 GoiaÃnia, GO, Brazil,bInstituto de

QuõÂmica, UFG, Caixa Postal 131, 74001-970 GoiaÃnia, GO, Brazil,cDepartamento de

QuõÂmica, UFPA, CCEN, 66075-970 BeleÂm, PA, Brazil, anddCieÃncias Exatas e TecnoloÂgicas,

UEG, BR 153, Km 98, 75133-050 AnaÂpolis, GO, Brazil

Correspondence e-mail: vencato@if.ufg.br

Key indicators Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.042 wRfactor = 0.129

Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C16H15N1O5, is a-ketoether derivative,

closely related to natural 8.40-oxyneolignans, which are of

interest because of their antiprotozoal activity. The nitro group is not coplanar with the aromatic ring, as is shown by a torsion angle of 49.4 (3). The molecules are connected in the

crystal structure by two non-classical intermolecular hydrogen bonds with C O distances of 3.363 (3) and 3.274 (2) AÊ; repetition of these hydrogen bonds leads to the formation of sheets of molecules parallel to the (001) plane.

Comment

Neolignans, a class of widely distributed natural plant consti-tuents (Gottlieb & Yoshida, 1990), have displayed activity against the protozoal disease leishmaniasis (Costaet al., 1995, 1999), which is an important world health problem. -Keto-ether derivatives of natural 8.40-oxyneolignans, such as

compound (I), have shown signi®cant activity against intra-cellularLeishmania donovaniamastigotes in a mouse perito-neal macrophage modelin vitro, although they were not active against extracellular promastigotes. This fact may be due to biochemical or metabolic differences between the two stages of the parasite, or to variations in the intracellular concen-tration of the compound by extracellular promastigotes and the macrophages (Barata et al., 2000). In addition, the chain linking the aromatic rings in (I) constitutes a major type of structural element in lignins, although the 2-aryloxypropio-phenone skeleton seems to occur only rarely in these polymers (Lundquist & von Unge, 1986). In this paper, the crystal structure of the title compound, (II), is described.

In (II), the chain of atoms C6/O1/C7/C16/C8/O2/C9 is called an 8.O.40 linkage, and compounds (I) and (II) can be called

8.40-oxyneolignan derivatives, according to accepted

neolignan nomenclature (Moss, 2000). The present crystal structure data will enable conclusions to be drawn about the geometry of these derivatives.

(2)

Fig. 1 shows a molecule of (II) with the atomic numbering scheme, and Table 1 shows selected bond distances and angles. The displacement ellipsoids for atoms O4 and O5 are large and highly anisotropic. The nitro group is twisted out of the plane of the aromatic ring, as can be seen from the C6ÐC1Ð N1ÐO4 torsion angle of 49.4 (3). The conformation of the

nitro substituent presumably represents a compromise between the electronic preference of the nitro group to be coplanar with the aromatic ring and the need to minimize steric interaction with the neighbouring phenoxy atom O1.

A search of the November 2003 release of the Cambridge Structural Database (Allen, 2002) shows a compound similar to (II), viz. 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1-propanone methanol solvate (Stom-berg et al., 1988), with the same 8.O.40 linkage and two

aromatic rings, but with different substituents. No signi®cant differences were found in the bond distances and angles of the two molecules, except that, in the case of (II), keto atom O2 is 0.365 (3) AÊ out of the least-squares plane of the C9±C14 ring, while in the earlier structure it is essentially coplanar.

The parameters of the non-classical intermolecular CÐ H O hydrogen bonds (Guet al., 1999) in (II) are given in Table 2. The H atoms on atoms C3 and C7 are involved in two intermolecular hydrogen bonds as donors, and atom O2 is involved in two hydrogen bonds as a dual acceptor. Thus, each molecule is linked to four others. Repetition of these linkages by crystal symmetry results in the formation of sheets of molecules parallel to the (001) plane, as can be seen in Fig. 2.

Experimental

Compound (II) was obtained in quantitative yield using the method described previously by Barataet al.(1991). Prismatic crystals (m.p. 403±404 K) were obtained from a solution in EtOH. Spectroscopic

analysis: FT±IR (Perkin±Elmer, KBr,, cmÿ1): 1675 (C O), 1530

and 1365 (O NÐO), 860 (CÐN); 1H NMR (Varian Gemini,

300 MHz, CDCl3/TMS,, p.p.m.): 1.79 (d,J= 6.9 Hz, Me-2, H-C16),

3.85 (s, OMe, H-C15), 5.41 (q,J= 6.9 Hz, H-C7), 6.90 (d,J= 8.7 Hz, H-C5), 6.93 (d,J= 9.0 Hz, H-C11 and H-C13), 6.98 (dd,J= 7.7 Hz, H4-C13), 7.38 (dd,J= 8.1 and 1.8 Hz, H-C4), 7.79 (dd,J= 1.8 and 8.1 Hz, H-C2), 8.13 (d, J= 9.0 Hz, H-C10 and H-C14); 13C NMR

(Varian Gemini, 75 MHz, CDCl3/TMS,, p.p.m.): 126.1 (C9), 131.5

(C10 and C14), 114.0 (C11 and C13), 161.1 (C12), 196.3 (C8), 79.4 (C7), 19.2 (C16), 150.7 (C6), 140.1 (C1), 125.6 (C2), 120.9 (C3), 133.9 (C4), 115.2 (C5), 55.4 (C15); EI-MS [Varian MAT-311A,m/z(relative abundance)]: 302 (1) [M+], 255 (1) [M-NO

2]+, 135 (100) [Ar-CO+],

107 (16) [Ar+].

Crystal data

C16H15NO5

Mr= 301.29 Monoclinic,P21=c

a= 8.851 (2) AÊ b= 9.858 (2) AÊ c= 17.255 (3) AÊ

= 94.99 (3)

V= 1499.8 (5) AÊ3

Z= 4

Dx= 1.334 Mg mÿ3 MoKradiation Cell parameters from 25

re¯ections

= 10.4±13.6

= 0.10 mmÿ1

T= 293 (2) K Block, colourless 0.350.330.33 mm

Data collection

Enraf±Nonius CAD-4 diffractometer Non-pro®led!/2scans Absorption correction: none 2738 measured re¯ections 2643 independent re¯ections 2080 re¯ections withI> 2(I) Rint= 0.023

max= 25.0

h=ÿ10!10 k= 0!11 l= 0!20

2 standard re¯ections frequency: 120 min intensity decay: <1%

organic papers

Acta Cryst.(2004). E60, o2498±o2500 Ivo Vencatoet al. C16H15NO5

o2499

Figure 1

A view of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

A packing diagram of (II), with intermolecular CÐH O non-classical

(3)

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.042

wR(F2) = 0.129

S= 1.04 2643 re¯ections 206 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0651P)2 + 0.3965P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.25 e AÊÿ3 min=ÿ0.20 e AÊÿ3

Extinction correction:SHELXL97 (Sheldrick, 1997)

Extinction coef®cient: 0.056 (4)

Table 1

Selected geometric parameters (AÊ,).

O1ÐC6 1.358 (2) O1ÐC7 1.432 (2) O2ÐC8 1.220 (2) O4ÐN1 1.198 (2)

O5ÐN1 1.234 (2) N1ÐC1 1.460 (3) C7ÐC8 1.527 (3) C8ÐC9 1.476 (2)

C6ÐO1ÐC7 117.85 (13) O4ÐN1ÐO5 123.4 (2) O4ÐN1ÐC1 119.49 (19) O5ÐN1ÐC1 117.1 (2)

O1ÐC7ÐC8 111.22 (15) O2ÐC8ÐC9 121.82 (16) O2ÐC8ÐC7 118.95 (15) C9ÐC8ÐC7 119.14 (15)

O4ÐN1ÐC1ÐC6 49.4 (3)

C7ÐO1ÐC6ÐC5 15.1 (3) O2ÐC8ÐC9ÐC10C11ÐC12ÐO3ÐC15 164.16 (17)ÿ0.6 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C3ÐH3 O2i 0.95 (2) 2.51 (2) 3.363 (3) 149.6 (19)

C7ÐH7 O2ii 0.95 (2) 2.39 (2) 3.274 (2) 153.7 (17) Symmetry codes: (i) 1ÿx;1

2‡y;12ÿz; (ii)ÿx;12‡y;12ÿz.

Atoms H3 and H7 were located in a difference Fourier map and their positions were re®ned, withUiso(H) = 1.2Ueq(C). All other H

atoms were positioned geometrically and allowed to ride on their parent atoms, with CÐH distances in the range 0.93±0.96 AÊ, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other

atoms.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement:CAD-4 EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX(Farrugia, 1999).

This work was supported by the Conselho Nacional de Desenvolvimento Cientõ®co e TecnoloÂgic, CNPq, and the FundacËaÄo de Apoio aÁ Pesquisa, FUNAPE/UFG. The authors thank the Departamento de QuõÂmica, UFSC, for the X-ray single-crystal data collection.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Barata, L. E. S., Santos, L. S., Fernandes, A. M. A. P., Ferri, P. H., Paulo, M. Q., Neal, R. & Jourdan, M. C. (1991).Abstracts of II Brasilianisch±Deutsches Symposium fuÈr Naturstoffchemie, Hannover, 28 July±1 August, pp. 18±21. Barata, L. E. S., Santos, L. S., Ferri, P. H., Phillipson, J. D., Paine, A. & Croft,

S. L. (2000).Phytochemistry,55, 589±595.

Costa, M. C. A., Barata, L. E. S. & Takahata, Y. (1995).Theochem,340, 185± 192.

Costa, M. C. A., Barata, L. E. S. & Takahata, Y. (1999).Theochem,464, 281± 287.

Enraf±Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf±Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Gottlieb, O. R. & Yoshida, M. (1990).Lignans: Chemical, Biological and Clinical Properties. Chemistry and Pharmacology of Natural Products, edited by D. C. Ayres & J. D. Loike, pp. 150±181. Cambridge University Press.

Gu, Y., Kar, T. & Scheiner, S. (1999).J. Am. Chem. Soc.121, 9411±9422. Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Lundquist, K. & von Unge, S. (1986).Acta Chem. Scand. B,40, 791±797. Moss, G. P. (2000).Pure Appl. Chem.72, 1493±1523.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Stomberg, R., Hauteville, M. & Lundquist, K. (1988).Acta Chem. Scand. B,42, 697±707.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o2498–o2500

supporting information

Acta Cryst. (2004). E60, o2498–o2500 [https://doi.org/10.1107/S1600536804030260]

1-(4-Methoxyphenyl)-2-(2-nitrophenoxy)propan-1-one

Ivo Vencato, Pedro H. Ferri, Suzana C. Santos, Lourivaldo S. Santos, Carlito Lariucci and

Hamilton B. Napolitano

1-(4-Methoxyphenyl)-2-(2-nitrophenoxy)propan-1-one

Crystal data

C16H15NO5 Mr = 301.29

Monoclinic, P121/c1 Hall symbol: -P 2ybc a = 8.851 (2) Å b = 9.858 (2) Å c = 17.255 (3) Å β = 94.99 (3)° V = 1499.8 (5) Å3 Z = 4

F(000) = 632 Dx = 1.334 Mg m−3

Melting point = 403–404 K Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 10.4–13.6°

µ = 0.10 mm−1 T = 293 K Block, colourless 0.35 × 0.33 × 0.33 mm

Data collection

Enraf-Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

non–profiled ω/2θ scans 2738 measured reflections 2643 independent reflections 2080 reflections with I > 2σ(I)

Rint = 0.023

θmax = 25.0°, θmin = 2.3° h = −10→10

k = 0→11 l = 0→20

2 standard reflections every 120 min intensity decay: <1%

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.042 wR(F2) = 0.129 S = 1.04 2643 reflections 206 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0651P)2 + 0.3965P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.25 e Å−3 Δρmin = −0.20 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o2498–o2500 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o2498–o2500

H16C −0.1061 0.8103 0.1484 0.105* O3 −0.29809 (17) 0.97659 (15) 0.54685 (8) 0.0679 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0607 (8) 0.0597 (8) 0.0553 (8) −0.0129 (6) 0.0217 (6) −0.0150 (6) O2 0.0638 (8) 0.0514 (8) 0.0682 (9) 0.0117 (7) 0.0131 (6) −0.0022 (6) O4 0.1121 (14) 0.1365 (18) 0.0531 (10) 0.0006 (13) 0.0083 (10) −0.0090 (10) O5 0.1354 (16) 0.0846 (12) 0.0927 (13) 0.0260 (11) 0.0506 (11) −0.0079 (10) N1 0.0863 (13) 0.0687 (12) 0.0510 (10) 0.0004 (10) 0.0280 (9) 0.0063 (8) C1 0.0604 (11) 0.0493 (10) 0.0466 (9) 0.0049 (8) 0.0167 (8) 0.0073 (8) C2 0.0570 (12) 0.0714 (13) 0.0728 (14) −0.0013 (10) 0.0231 (10) 0.0127 (11) C3 0.0550 (12) 0.0798 (15) 0.0811 (15) −0.0143 (11) 0.0045 (10) 0.0046 (12) C4 0.0672 (12) 0.0693 (13) 0.0612 (12) −0.0105 (10) 0.0028 (10) −0.0051 (10) C5 0.0582 (11) 0.0590 (11) 0.0502 (10) −0.0052 (9) 0.0152 (8) −0.0036 (8) C6 0.0510 (9) 0.0412 (9) 0.0481 (9) −0.0005 (8) 0.0119 (7) 0.0033 (7) C7 0.0501 (10) 0.0481 (10) 0.0506 (10) −0.0036 (8) 0.0130 (8) −0.0024 (8) C8 0.0424 (9) 0.0409 (9) 0.0532 (10) −0.0044 (7) 0.0044 (7) −0.0060 (8) C9 0.0459 (9) 0.0429 (9) 0.0460 (9) −0.0023 (7) 0.0031 (7) −0.0014 (7) C10 0.0607 (11) 0.0471 (10) 0.0534 (11) 0.0046 (8) 0.0134 (8) 0.0070 (8) C11 0.0655 (12) 0.0490 (10) 0.0562 (11) 0.0092 (9) 0.0134 (9) 0.0007 (8) C12 0.0563 (10) 0.0581 (11) 0.0420 (9) 0.0014 (8) 0.0058 (8) −0.0014 (8) C13 0.0856 (14) 0.0525 (11) 0.0487 (10) 0.0043 (10) 0.0128 (10) 0.0105 (8) C14 0.0725 (12) 0.0439 (10) 0.0513 (10) 0.0070 (9) 0.0071 (9) 0.0020 (8) C15 0.0748 (13) 0.0816 (15) 0.0580 (12) 0.0149 (12) 0.0158 (10) −0.0087 (11) C16 0.0625 (12) 0.0887 (16) 0.0584 (12) −0.0087 (11) −0.0020 (9) 0.0081 (11) O3 0.0864 (10) 0.0724 (9) 0.0473 (8) 0.0108 (8) 0.0201 (7) 0.0009 (6)

Geometric parameters (Å, º)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o2498–o2500

C7—C8 1.527 (3) C16—H16B 0.9600 C7—H7 0.95 (2) C16—H16C 0.9600

C6—O1—C7 117.85 (13) C10—C9—C14 117.70 (16) O4—N1—O5 123.4 (2) C10—C9—C8 123.39 (16) O4—N1—C1 119.49 (19) C14—C9—C8 118.90 (16) O5—N1—C1 117.1 (2) C11—C10—C9 121.36 (17) C2—C1—C6 122.16 (18) C11—C10—H10 119.3 C2—C1—N1 117.83 (17) C9—C10—H10 119.3 C6—C1—N1 120.00 (17) C12—C11—C10 120.04 (17) C1—C2—C3 119.60 (19) C12—C11—H11 120.0 C1—C2—H2 120.2 C10—C11—H11 120.0 C3—C2—H2 120.2 O3—C12—C11 125.09 (17) C4—C3—C2 119.0 (2) O3—C12—C13 115.72 (16) C4—C3—H3 122.0 (14) C11—C12—C13 119.18 (17) C2—C3—H3 119.0 (14) C14—C13—C12 120.44 (18) C5—C4—C3 121.4 (2) C14—C13—H13 119.8 C5—C4—H4 119.3 C12—C13—H13 119.8 C3—C4—H4 119.3 C13—C14—C9 121.22 (17) C4—C5—C6 120.60 (17) C13—C14—H14 119.4 C4—C5—H5 119.7 C9—C14—H14 119.4 C6—C5—H5 119.7 O3—C15—H15A 109.5 O1—C6—C5 125.31 (15) O3—C15—H15B 109.5 O1—C6—C1 117.36 (16) H15A—C15—H15B 109.5 C5—C6—C1 117.29 (16) O3—C15—H15C 109.5 O1—C7—C16 105.98 (15) H15A—C15—H15C 109.5 O1—C7—C8 111.22 (15) H15B—C15—H15C 109.5 C16—C7—C8 109.36 (15) C7—C16—H16A 109.5 O1—C7—H7 109.4 (12) C7—C16—H16B 109.5 C16—C7—H7 110.4 (12) H16A—C16—H16B 109.5 C8—C7—H7 110.4 (12) C7—C16—H16C 109.5 O2—C8—C9 121.82 (16) H16A—C16—H16C 109.5 O2—C8—C7 118.95 (15) H16B—C16—H16C 109.5 C9—C8—C7 119.14 (15) C12—O3—C15 117.77 (16)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o2498–o2500

C2—C1—C6—O1 −178.91 (17) C11—C12—C13—C14 1.9 (3) N1—C1—C6—O1 0.0 (3) C12—C13—C14—C9 −1.5 (3) C2—C1—C6—C5 −1.1 (3) C10—C9—C14—C13 −0.5 (3) N1—C1—C6—C5 177.84 (17) C8—C9—C14—C13 178.28 (17) C6—O1—C7—C16 158.16 (16) C11—C12—O3—C15 −0.6 (3) C6—O1—C7—C8 −83.09 (19) C13—C12—O3—C15 179.58 (18) O1—C7—C8—O2 −24.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3···O2i 0.95 (2) 2.51 (2) 3.363 (3) 149.6 (19) C7—H7···O2ii 0.95 (2) 2.39 (2) 3.274 (2) 153.7 (17)

References

Related documents

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain

We are now using the second part of our test database (see Figure 4 ) ; the boxpoints table which contains 3000 customer points, and the box table with 51 dierent sized bounding

2 Percentage endorsement rates for items from the DISCO PDA measure stratified by group ( “substantial” PDA features, “some” PDA features and the rest of the sample).. N

Using maximum likelihood methods for estimating both the null and the full model, we calculate the FIC for our two focus measures of choice, η K pE and η L pE , the

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

This section outlines the method to find the best allocation of n distinguishable processors to m dis- tinguishable blocks so as to minimize the execution time.. Therefore,

public class XorSocket extends Socket { private final byte pattern;}. private InputStream in

In a surprise move, the Central Bank of Peru (BCRP) reduced its benchmark interest rate by 25 basis points (bps) to 3.25% in mid-January following disappointing economic growth data