• No results found

5 (p Tolylsulfon­yl) 3 oxa 5 aza­tri­cyclo­[5 2 1 04,8]deca­ne

N/A
N/A
Protected

Academic year: 2020

Share "5 (p Tolylsulfon­yl) 3 oxa 5 aza­tri­cyclo­[5 2 1 04,8]deca­ne"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1923–o1924 doi:10.1107/S1600536806013432 Arıcıet al. C

15H19NO3S

o1923

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(

p

-Tolylsulfonyl)-3-oxa-5-azatricyclo[5.2.1.0

4,8

]-decane

Cengiz Arıcı,a* Dinc¸er U¨ lku¨,a

H. U¨ mit Kanıskanb and O¨ zdemir

Dog˘anb

aDepartment of Engineering Physics, Hacettepe

University, Beytepe 06800, Ankara, Turkey, and

bDepartment of Chemistry, Middle East

Technical University, Ankara, Turkey

Correspondence e-mail: arici@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.045 wRfactor = 0.132

Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 5 April 2006 Accepted 13 April 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C15H19NO3S, the tricyclodecane part of

the molecule can be described in terms of three rings. The C4N

ring is in an envelope conformation, as is the C5ring. The C5O

ring adopts a boat conformation. There are no inter- or intramolecular hydrogen-bonding interactions.

Comment

Nitrogen heterocycles, especially pyrrolidine derivatives, are widespread among both natural products and medicinally important synthetic compounds (Dogan & Garner, 2000). Bicyclo derivatives of these compounds, such as those based on the 3-azabicyclo[3.3.0]octane framework, are, however, quite rare. They are only known in a few synthetic analogues, such as prostocyclin (Malleronet al.,1995) (PGI2), antidiabetic gliclazide (Bergmeier et al., 1999) and some antibacterial quinolonecarboxylic acid derivatives (Ogata et al., 1991). Besides their physiological activity (Franzky et al., 2000), bicyclopyrrolidine derivatives also serve as chiral auxiliaries (Martens & Wallbaum, 1993) in asymmetric transformations. There is also considerable interest in the development of new methods for preparing cage-like oxaheterocycles (Marchand

et al., 2001) and rigid amine-containing heterocycles (Beckeret al., 1997) (azacycles). Our studies of the synthesis of the 3-azabicyclo[3.3.0]octane framework resulted in the formation of a new tricycloaminoether, the title compound, (I). We report here the X-ray crystal structure of this interesting compound.

The tricyclodecane part of (I) can be described in terms of three rings, A (N/C8/C9/C13/C14), B (C9–C13) and C (O3/ C11–C15). Ring Ais in an envelope conformation, with the flap atom, C9, displaced by 0.503 (3) A˚ from the plane of the other four atoms. RingBis also in an envelope conformation, with the flap atom, C12, lying 0.715 (3) A˚ from the plane of the other four atoms. RingCadopts a boat conformation, in which atoms C12 and O3 are displaced from the plane through the other four atoms by 0.866 (3) and 0.515 (2) A˚ , respectively.

(2)

Experimental

5-(Toluene-4-sulfonyl)-3-oxa-5-azatricyclo[5.2.1.04,8]decan-2-one (100 mg, 0.326 mmol) was dissolved in tetrahydrofuran (THF; 1 ml) and added to a round-bottomed flask equipped with a magnetic stirrer, containing a 1Msolution of LiAlH4(10 mg, 0.261 mmol) in

THF (0.2 ml) at 273 K. The reaction mixture was then stirred at room temperature for 2 h (monitored by thin-layer chromatography). A 1 N HCl solution (5 ml) and diethyl ether (5 ml) were then added and the layers were separated. The aqueous layer was extracted with diethyl ether (25 ml) and the combined organic layers were dried over Na2SO4and then concentrated under reduced pressure. The

crude product was purified by flash column chromatography (silica gel; hexane–EtOAc 1:5 v/v) to give 55.6 mg (58%) of the title compound, which was recrystallized from EtOH for X-ray analysis. The elemental analysis and IR and NMR spectroscopic data of (I) have already been published (Kaniskan & Dogan, 2003).

Crystal data

C15H19NO3S

Mr= 293.39

Monoclinic,P21=n

a= 6.0285 (12) A˚ b= 16.4319 (11) A˚ c= 14.7046 (14) A˚

= 99.258 (3)

V= 1437.7 (3) A˚3

Z= 4

Dx= 1.355 Mg m 3

MoKradiation

= 0.23 mm 1

T= 100 (2) K Block, colourless 0.250.200.15 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!/2scans

Absorption correction: -scan (MolEN; Fair, 1990) Tmin= 0.946,Tmax= 0.966

3026 measured reflections

2928 independent reflections 1739 reflections withI> 2(I) Rint= 0.022

max= 26.3

3 standard reflections frequency: 120 min intensity decay: 0.8%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.046

wR(F2) = 0.132

S= 1.02 2776 reflections 181 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0643P)2

+ 0.2195P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.22 e A˚ 3

min= 0.26 e A˚ 3

H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.98 A˚ andUeq(H) = 1.2Ueq(C).

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction:CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997);

molecular graphics:PLATON(Spek, 2003) andORTEP-3(Farrugia, 1997); software used to prepare material for publication: WinGX

(Farrugia, 1999).

The authors acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

Becker, D. P., Zabrowski, D. L., Nosal, R. & Flynn, D. L. (1997).Tetrahedron,

53, 1–20.

Bergmeier, S. C., Fundy, S. L. & Punit, P. S. (1999).Tetrahedron,55, 8025–8038. Dogan, O. & Garner, P. (2000).Turk. J. Chem.24, 59–66.

Enraf–Nonius (1993).CAD-4 EXPRESS. Version 1.1. Enraf–Nonius, Delft, The Netherlands.

Fair, C. K. (1990).MolEN. Enraf-Nonius, Delft, The Netherlands. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Franzky, H., Fredricksen, S. M. & Jensen, S. R. (2000).J. Nat. Prod.63, 592– 595.

Kaniskan, H. U. & Dogan, O. (2003).Synth. Commun.21, 3833–3841. Malleron, J. L., Peyronel, J. F., Desmazeau, P., M’Haumadi, C. & Planiol, C.

(1995).Tetrahedron Lett.36, 543–546.

Marchand, A. P., Kumar, V. S. & Hariprakasha, H. K. (2001).J. Org. Chem.66, 2072–2077.

Martens, J. & Wallbaum, S. (1993).Tetrahedron Asymmetry,4, 637–640. Ogata, M., Matsumoto, H., Shimatzu, S., Kida, S., Nakai, H., Motokawa, K.,

Kriwa, H., Matsuura, S. & Yoshida, T. (1991).Eur. J. Med. Chem.26, 889– 906.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.

[image:2.610.317.565.71.241.2]

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o1923–o1924

supporting information

Acta Cryst. (2006). E62, o1923–o1924 [https://doi.org/10.1107/S1600536806013432]

5-(

p

-Tolylsulfonyl)-3-oxa-5-azatricyclo[5.2.1.0

4,8

]decane

Cengiz Arıcı, Dinçer Ülkü, H. Ümit Kanıskan and Özdemir Doğan

5-(Tolyl-4-sulfonyl)-3-oxa-5-azatricyclo[5.2.1.04,8]decane

Crystal data C15H19NO3S Mr = 293.39

Monoclinic, P21/n Hall symbol: -P 2yn

a = 6.0285 (12) Å

b = 16.4319 (11) Å

c = 14.7046 (14) Å

β = 99.258 (3)°

V = 1437.7 (3) Å3

Z = 4

F(000) = 624

Dx = 1.355 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 3026 reflections

θ = 10.0–18.1°

µ = 0.23 mm−1

T = 100 K

Block, colourless 0.25 × 0.20 × 0.15 mm

Data collection Enraf–Nonius CAD-4

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 9 pixels mm-1

ω/2θ scans

Absorption correction: multi-scan (MolEN; Fair, 1990)

Tmin = 0.946, Tmax = 0.966

3026 measured reflections 2928 independent reflections 1739 reflections with I > 2σ(I) Rint = 0.022

θmax = 26.3°, θmin = 2.5°

h = 0→7

k = 0→20

l = −18→17

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.132

S = 1.02

2776 reflections 181 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0643P)2 + 0.2195P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.22 e Å−3 Δρmin = −0.26 e Å−3

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.2573 (4) 0.43806 (17) 0.77735 (17) 0.0419 (6)

C2 0.4335 (6) 0.41035 (19) 0.8411 (2) 0.0665 (9)

H2 0.4471 0.3552 0.8549 0.080*

C3 0.5904 (6) 0.4651 (2) 0.8845 (2) 0.0805 (11)

H3 0.7093 0.4459 0.9273 0.097*

C4 0.5754 (6) 0.5472 (2) 0.8660 (2) 0.0623 (9)

C5 0.7505 (7) 0.6064 (3) 0.9117 (3) 0.1051 (15)

H5A 0.8621 0.5774 0.9534 0.158*

H5B 0.6801 0.6463 0.9453 0.158*

H5C 0.8206 0.6330 0.8656 0.158*

C6 0.3964 (6) 0.57351 (19) 0.8028 (2) 0.0615 (9)

H6 0.3820 0.6288 0.7895 0.074*

C7 0.2380 (5) 0.52039 (18) 0.7585 (2) 0.0551 (8)

H7 0.1186 0.5398 0.7160 0.066*

C8 0.3855 (4) 0.29602 (17) 0.63535 (19) 0.0455 (7)

H8A 0.3556 0.2393 0.6472 0.055*

H8B 0.4940 0.3170 0.6858 0.055*

C9 0.4687 (4) 0.30583 (16) 0.54487 (17) 0.0393 (6)

H9 0.6329 0.3018 0.5537 0.047*

C10 0.3624 (5) 0.24895 (18) 0.46695 (19) 0.0515 (7)

H10A 0.4775 0.2229 0.4380 0.062*

H10B 0.2729 0.2072 0.4904 0.062*

C11 0.2144 (4) 0.30408 (19) 0.39830 (18) 0.0498 (7)

H11 0.1990 0.2823 0.3356 0.060*

C12 0.3456 (5) 0.3839 (2) 0.4069 (2) 0.0546 (8)

H12A 0.4830 0.3799 0.3807 0.066*

H12B 0.2558 0.4289 0.3786 0.066*

C13 0.3926 (4) 0.39107 (16) 0.51121 (18) 0.0419 (7)

H13 0.5043 0.4331 0.5326 0.050*

C15 −0.0166 (4) 0.31978 (19) 0.42630 (19) 0.0475 (7)

H15A −0.1288 0.3233 0.3712 0.057*

H15 −0.0554 0.2741 0.4625 0.057*

C14 0.1687 (4) 0.40415 (16) 0.54707 (17) 0.0405 (6)

H14 0.1655 0.4594 0.5720 0.049*

N 0.1745 (3) 0.34489 (13) 0.62286 (14) 0.0392 (5)

O1 0.0693 (4) 0.29603 (13) 0.76723 (14) 0.0717 (7)

O2 −0.1370 (3) 0.41168 (15) 0.68347 (16) 0.0711 (7)

O3 −0.0217 (3) 0.39261 (12) 0.47838 (12) 0.0465 (5)

S1 0.06803 (12) 0.36894 (5) 0.71418 (5) 0.0497 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0429 (15) 0.0455 (16) 0.0373 (14) −0.0031 (12) 0.0061 (12) −0.0055 (12)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o1923–o1924

C3 0.084 (3) 0.071 (3) 0.071 (2) 0.001 (2) −0.033 (2) −0.011 (2)

C4 0.064 (2) 0.061 (2) 0.061 (2) −0.0143 (17) 0.0058 (17) −0.0163 (17)

C5 0.094 (3) 0.103 (3) 0.111 (3) −0.039 (3) −0.003 (3) −0.039 (3)

C6 0.083 (2) 0.0408 (17) 0.061 (2) −0.0058 (16) 0.0114 (18) −0.0115 (15)

C7 0.0582 (19) 0.0506 (18) 0.0531 (18) 0.0086 (15) −0.0015 (14) −0.0073 (15)

C8 0.0457 (16) 0.0428 (16) 0.0471 (16) 0.0026 (13) 0.0044 (13) 0.0060 (13)

C9 0.0279 (13) 0.0449 (15) 0.0454 (15) 0.0019 (11) 0.0071 (11) 0.0044 (12)

C10 0.0476 (17) 0.0565 (18) 0.0513 (17) 0.0084 (15) 0.0109 (14) −0.0089 (14)

C11 0.0435 (16) 0.071 (2) 0.0351 (15) 0.0060 (15) 0.0055 (13) −0.0083 (14)

C12 0.0382 (15) 0.077 (2) 0.0505 (17) −0.0005 (15) 0.0121 (13) 0.0174 (16)

C13 0.0311 (14) 0.0454 (16) 0.0490 (16) −0.0069 (12) 0.0061 (12) 0.0070 (13)

C15 0.0374 (15) 0.0599 (19) 0.0431 (15) −0.0007 (13) 0.0001 (12) −0.0067 (14)

C14 0.0408 (15) 0.0360 (14) 0.0437 (16) 0.0008 (12) 0.0037 (12) −0.0007 (12)

N 0.0378 (12) 0.0427 (13) 0.0373 (12) −0.0014 (10) 0.0064 (9) −0.0034 (10)

O1 0.1001 (18) 0.0647 (14) 0.0572 (13) −0.0372 (13) 0.0331 (13) −0.0042 (11)

O2 0.0329 (11) 0.1042 (18) 0.0779 (15) −0.0028 (11) 0.0136 (10) −0.0302 (13)

O3 0.0335 (10) 0.0548 (12) 0.0489 (11) 0.0104 (8) −0.0002 (8) −0.0009 (9)

S1 0.0444 (4) 0.0598 (5) 0.0480 (4) −0.0168 (4) 0.0168 (3) −0.0120 (4)

Geometric parameters (Å, º)

C1—C2 1.376 (4) C9—H9 0.9800

C1—C7 1.382 (4) C10—C11 1.532 (4)

C1—S1 1.765 (3) C10—H10A 0.9700

C2—C3 1.385 (4) C10—H10B 0.9700

C2—H2 0.9300 C11—C12 1.527 (4)

C3—C4 1.376 (5) C11—C15 1.536 (4)

C3—H3 0.9300 C11—H11 0.9800

C4—C6 1.375 (4) C12—C13 1.519 (4)

C4—C5 1.511 (5) C12—H12A 0.9700

C5—H5A 0.9600 C12—H12B 0.9700

C5—H5B 0.9600 C13—C14 1.541 (4)

C5—H5C 0.9600 C13—H13 0.9800

C6—C7 1.378 (4) C15—O3 1.424 (3)

C6—H6 0.9300 C15—H15A 0.9700

C7—H7 0.9300 C15—H15 0.9700

C8—N 1.491 (3) C14—O3 1.415 (3)

C8—C9 1.504 (4) C14—N 1.476 (3)

C8—H8A 0.9700 C14—H14 0.9800

C8—H8B 0.9700 N—S1 1.627 (2)

C9—C13 1.531 (4) O1—S1 1.429 (2)

C9—C10 1.536 (4) O2—S1 1.430 (2)

C2—C1—C7 119.4 (3) H10A—C10—H10B 108.8

C2—C1—S1 120.6 (2) C12—C11—C15 108.3 (2)

C7—C1—S1 119.8 (2) C12—C11—C10 102.4 (2)

C1—C2—C3 119.6 (3) C15—C11—C10 112.3 (2)

(6)

C3—C2—H2 120.2 C15—C11—H11 111.2

C4—C3—C2 121.8 (3) C10—C11—H11 111.2

C4—C3—H3 119.1 C13—C12—C11 99.2 (2)

C2—C3—H3 119.1 C13—C12—H12A 111.9

C6—C4—C3 117.5 (3) C11—C12—H12A 111.9

C6—C4—C5 121.0 (3) C13—C12—H12B 111.9

C3—C4—C5 121.6 (3) C11—C12—H12B 111.9

C4—C5—H5A 109.5 H12A—C12—H12B 109.6

C4—C5—H5B 109.5 C12—C13—C9 104.7 (2)

H5A—C5—H5B 109.5 C12—C13—C14 109.0 (2)

C4—C5—H5C 109.5 C9—C13—C14 104.5 (2)

H5A—C5—H5C 109.5 C12—C13—H13 112.7

H5B—C5—H5C 109.5 C9—C13—H13 112.7

C4—C6—C7 122.0 (3) C14—C13—H13 112.7

C4—C6—H6 119.0 O3—C15—C11 112.6 (2)

C7—C6—H6 119.0 O3—C15—H15A 109.1

C6—C7—C1 119.7 (3) C11—C15—H15A 109.1

C6—C7—H7 120.1 O3—C15—H15 109.1

C1—C7—H7 120.1 C11—C15—H15 109.1

N—C8—C9 103.4 (2) H15A—C15—H15 107.8

N—C8—H8A 111.1 O3—C14—N 111.6 (2)

C9—C8—H8A 111.1 O3—C14—C13 113.1 (2)

N—C8—H8B 111.1 N—C14—C13 104.5 (2)

C9—C8—H8B 111.1 O3—C14—H14 109.2

H8A—C8—H8B 109.0 N—C14—H14 109.2

C8—C9—C13 105.0 (2) C13—C14—H14 109.2

C8—C9—C10 115.9 (2) C14—N—C8 111.36 (19)

C13—C9—C10 104.4 (2) C14—N—S1 119.89 (17)

C8—C9—H9 110.4 C8—N—S1 118.12 (17)

C13—C9—H9 110.4 C14—O3—C15 114.28 (19)

C10—C9—H9 110.4 O2—S1—O1 120.83 (14)

C11—C10—C9 105.1 (2) O2—S1—N 107.12 (12)

C11—C10—H10A 110.7 O1—S1—N 106.17 (12)

C9—C10—H10A 110.7 O2—S1—C1 107.65 (13)

C11—C10—H10B 110.7 O1—S1—C1 107.81 (14)

C9—C10—H10B 110.7 N—S1—C1 106.45 (12)

C7—C1—C2—C3 −0.8 (5) C12—C13—C14—O3 10.0 (3)

S1—C1—C2—C3 174.8 (3) C9—C13—C14—O3 −101.4 (2)

C1—C2—C3—C4 0.2 (6) C12—C13—C14—N 131.6 (2)

C2—C3—C4—C6 0.5 (5) C9—C13—C14—N 20.2 (2)

C2—C3—C4—C5 −178.4 (4) O3—C14—N—C8 122.1 (2)

C3—C4—C6—C7 −0.6 (5) C13—C14—N—C8 −0.4 (3)

C5—C4—C6—C7 178.3 (3) O3—C14—N—S1 −94.0 (2)

C4—C6—C7—C1 0.0 (5) C13—C14—N—S1 143.48 (18)

C2—C1—C7—C6 0.8 (4) C9—C8—N—C14 −19.7 (3)

S1—C1—C7—C6 −174.9 (2) C9—C8—N—S1 −164.36 (17)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o1923–o1924

N—C8—C9—C10 −82.7 (3) C13—C14—O3—C15 48.2 (3)

C8—C9—C10—C11 109.6 (3) C11—C15—O3—C14 −43.5 (3)

C13—C9—C10—C11 −5.4 (3) C14—N—S1—O2 41.3 (2)

C9—C10—C11—C12 33.3 (3) C8—N—S1—O2 −177.18 (19)

C9—C10—C11—C15 −82.7 (3) C14—N—S1—O1 171.62 (18)

C15—C11—C12—C13 71.1 (3) C8—N—S1—O1 −46.8 (2)

C10—C11—C12—C13 −47.8 (2) C14—N—S1—C1 −73.7 (2)

C11—C12—C13—C9 45.0 (2) C8—N—S1—C1 67.9 (2)

C11—C12—C13—C14 −66.3 (3) C2—C1—S1—O2 157.2 (3)

C8—C9—C13—C12 −147.2 (2) C7—C1—S1—O2 −27.1 (3)

C10—C9—C13—C12 −24.8 (3) C2—C1—S1—O1 25.4 (3)

C8—C9—C13—C14 −32.6 (3) C7—C1—S1—O1 −159.0 (2)

C10—C9—C13—C14 89.7 (2) C2—C1—S1—N −88.2 (3)

C12—C11—C15—O3 −18.5 (3) C7—C1—S1—N 87.4 (2)

Figure

Figure 1

References

Related documents

The companies Berlin Partner GmbH and ZukunftsAgentur Branden- burg GmbH (Brandenburg Economic Development Board) support with a large range of services, from recruiting

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

Although MyPHRMachines cannot ensure that genome data is used ethically by the organization performing the initial DNA sequencing, it can be used to protect patient privacy in

Resume recovery feature of Stellar Phoenix Photo Recovery allows you to recover photos, audio and video files using saved scan information file or image file.. You can use the

Electron micrographs of mannonamide aggregates from water (a-e) or xylene (f): (a and b) details of aged fiber aggregates of D-mannonamide 2 negatively stained

18 th Sunday in Ordinary Time Saint Rose of Lima Parish Parroquia Santa Rosa de Lima.. August