• No results found

(OC 6 32) Di­aqua­bis­­(glycolato)­cobalt(II)

N/A
N/A
Protected

Academic year: 2020

Share "(OC 6 32) Di­aqua­bis­­(glycolato)­cobalt(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m588

Rosa Carballoet al. [Co(C2H3O3)2(H2O)2] DOI: 10.1107/S1600536803015083 Acta Cryst.(2003). E59, m588±m590 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

OC

-6-32)-Diaquabis(glycolato)cobalt(II)

Rosa Carballo,a* Alfonso CastinÄeiras,b Berta Covelo,a Emilia GarcõÂa-MartõÂnezaand Ezequiel M. VaÂzquez-LoÂpeza

aDepartamento de QuõÂmica InorgaÂnica,

Facul-tade de Ciencias-QuõÂmica, Universidade de Vigo, 36200 Vigo, Galicia, Spain, andb

Depart-amento de QuõÂmica InorgaÂnica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain

Correspondence e-mail: rcrial@uvigo.es

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.023

wRfactor = 0.052

Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title neutral complex, [Co(HG)2(H2O)2] or

[Co-(C2H3O3)2(H2O)2], contains monoanionic O,O0-bidentate

glycolate ligands that chelate the cobalt(II) ion through the carboxylate and hydroxyl O atoms to form ®ve-membered chelate rings. The con®guration around the cobalt ion can be described as all-cis. The nature of the ligands permits the formation of a supramolecular architecture based on hydrogen bonding.

Comment

Hydrogen bonds play a key role in many molecular recogni-tion and self-assembly processes in solurecogni-tion and in the solid state, and can change the properties of many materials that are of importance in biology, crystal engineering and materials science (Beatty, 2001; Bragaet al., 1998). As part of our studies of the supramolecular organization of cobalt(II) carboxylate complexes (Carballoet al., 2001, 2002, 2003), in this work we report the three-dimensional hydrogen-bonded structure of the mononuclear complex [Co(HG)2(H2O)2], (1) (H2G is

glycolic acid). The structure of another glycolate±cobalt(II) complex was previously reported by Medinaet al.(2000) and, like the copper(II)±glycolate complex (Proutet al., 1968), it is a bidimensional coordination polymer, [Co(HG)2]n(2). The glycolate group forms the same chelate ring as in (1), by coordination of O1 and O2 atoms, but two Co atoms are

bridged by the carboxylate group (O1and O10). However, (1)

is isostructural with the manganese(II) (Lis, 1979; Melikyanet al., 2000) and zinc(II) (Fischinger & Webb, 1969) complexes.

In (1), the Co atom is attached to two chelating glycolate ligands and two water molecules; the coordination polyhedron is a distorted octahedron with the main deviations from regularity affecting the bite angles OhydroxylÐCoÐ

Ocarboxy[77.61 (5) and 76.46 (5)], which are similar to those

observed in other-hydroxycarboxylate±cobalt(II) complexes (Carballo et al., 2002; Karipides, 1981; Matzapetakis et al., 2000; Medinaet al., 2000). The con®guration around the cobalt center is all-cis[OC-6-32 in the CPI system (von Zelewsky, 1996) with the priority order O1(1) > O2(2) > O

water(3)], which

is the same as that in the lactate±cobalt(II) complex (Carballo

et al., 2002), whereas (2) is all-trans[OC-6-12, priority order O1(1) > O10(2) > O2(3); Medinaet al., 2000].

(2)

The -hydroxycarboxylate ligands usually form ®ve-membered chelate rings in which the metal±Ocarboxydistances

are shorter than the metal±Ohydroxy distances (see, for

example, Karipides, 1981; Matzapetakiset al., 2000; Medinaet al., 2000). However, as we previously observed in the lactate± cobalt(II) complex (Carballo et al., 2002), one of the HGÿ

ligands shows a different behavior [CoÐO23 = 2.0877 (13) AÊ and CoÐO21 = 2.1051 (13) AÊ].

In the carboxylate groups the CÐO lengths for the coor-dinated O atoms [1.256 (2) and 1.261 (2) AÊ] are only slightly longer than those for the uncoordinated O atoms [1.252 (2) and 1.247 (2) AÊ], which suggests that there is signi®cant electron delocalization in the carboxylate groups, although the effect of the strong hydrogen bond established by non-coor-dinating carboxylate oxygen (see below) cannot be ruled out. In (1), the molecules are linked by hydrogen bonds (Table 2), giving a supramolecular architecture; the hydrogen bonds between the O atoms of the carboxylate group and the hydroxyl groups of an adjacent molecule (O13ÐH13 O12iii

and O23ÐH23 O11iii; symmetry code as in Table 2) form

polymeric chains along the crystallographic b axis (Fig. 2). These chains are linked by additional hydrogen bonds invol-ving the coordinated water molecules and carboxylate O atoms, resulting in an in®nite three-dimensional network (Fig. 3).

Experimental

Compound (1) was obtained by the reaction of cobalt(II) acetate (1.0 mmol) and glycolic acid (2.0 mmol) in water. The resulting pink solution was heated for 10 min and stirred at room temperature for several days. A pink crystalline product was obtained (95% yield) by slow concentration of the solution (m.p. > 523 K). Analysis found: C 19.6, H 4.1%; C4H10CoO8requires: C 19.6, H 4.1%.effat 298 K:

4.78 M. B. IR (KBr, cmÿ1): 3244 (s, br)(OH), 1593 (vs)

asym(COO),

1428 (s)sym(COO) [=asym(COO)ÿasym(COO) = 165].

Crystal data

[Co(C2H3O3)2(H2O)2]

Mr= 245.05

Monoclinic,P21=c

a= 11.5388 (9) AÊ

b= 5.8330 (4) AÊ

c= 12.4477 (9) AÊ

= 91.4537 (14)

V= 837.53 (11) AÊ3

Z= 4

Dx= 1.943 Mg mÿ3

MoKradiation Cell parameters from 2202

re¯ections

= 1.8±28.0

= 2.06 mmÿ1

T= 293 (2) K Prism, pink

0.360.130.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.611,Tmax= 0.797

5031 measured re¯ections

1964 independent re¯ections 1602 re¯ections withI> 2(I)

Rint= 0.023

max= 28.0

h=ÿ13!14

k=ÿ7!7

l=ÿ16!15

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.024

wR(F2) = 0.053

S= 0.94 1964 re¯ections 142 parameters H atoms: see below

w= 1/[2(F2

o) + (0.0247P)2

+ 0.4285P] whereP= (F2

o+ 2F2c)/3

(/)max= 0.001 max= 0.28 e AÊÿ3 min=ÿ0.25 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,). CoÐO1 2.0439 (15) CoÐO21 2.0696 (12) CoÐO13 2.0870 (13)

CoÐO2 2.0891 (14) CoÐO11 2.1050 (12) CoÐO23 2.1213 (14)

O1ÐCoÐO21 93.32 (6) O1ÐCoÐO13 99.04 (6) O21ÐCoÐO13 164.37 (5) O1ÐCoÐO2 89.40 (6) O21ÐCoÐO2 94.53 (5) O13ÐCoÐO2 95.14 (5) O1ÐCoÐO11 89.04 (6) O21ÐCoÐO11 93.16 (5)

O13ÐCoÐO11 77.60 (5) O2ÐCoÐO11 172.23 (5) O1ÐCoÐO23 168.92 (6) O21ÐCoÐO23 76.45 (5) O13ÐCoÐO23 91.78 (6) O2ÐCoÐO23 87.21 (6) O11ÐCoÐO23 95.68 (5)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1ÐH11 O12i 0.86 (3) 1.84 (3) 2.686 (2) 167 (2)

O1ÐH12 O12ii 0.81 (2) 1.92 (3) 2.716 (2) 166 (2)

O23ÐH23 O22iii 0.88 (2) 1.77 (2) 2.6517 (18) 175 (2)

O13ÐH13 O21iii 0.840 (17) 1.964 (19) 2.7547 (19) 156 (3)

O2ÐH21 O22iv 0.86 (2) 1.86 (2) 2.7180 (19) 174 (2)

O2ÐH22 O11ii 0.822 (16) 1.991 (17) 2.8016 (18) 169 (2)

Symmetry codes: (i) 1ÿx;ÿy;ÿz; (ii) x;1

2ÿy;12‡z; (iii) x;yÿ1;z; (iv) ÿx;yÿ1

2;12ÿz.

Acta Cryst.(2003). E59, m588±m590 Rosa Carballoet al. [Co(C2H3O3)2(H2O)2]

m589

metal-organic papers

Figure 1

SHELXTL(Bruker, 2000) diagram of [Co(HG)2(H2O)2], showing the

atom-numbering system. Non-H atoms are represented as displacement ellipsoids drawn at the 30% probability level.

Figure 2

SCHAKAL(Keller, 1999) diagram showing the polymeric chain along

(3)

metal-organic papers

m590

Rosa Carballoet al. [Co(C2H3O3)2(H2O)2] Acta Cryst.(2003). E59, m588±m590

Hydroxyl and water H atoms were located and re®ned, subject to the following restraints: OÐH = 0.90 (2) AÊ for the O1ÐH12 and O23ÐH23 bonds. All other H atoms were placed geometrically and were allowed to ride on their parent C atoms [CÐH = 0.97 AÊ and

Uiso(H) = 1.2Ueq(C)].

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL(Bruker, 2000) andSCHAKAL(Keller, 1999); software used to prepare material for publication:SHELXTL.

We thank the DGESIC (Spain) and DGRP (ERDF programs, EU) for ®nancial support (Ref. BQU2002-03543 and BQU2002-04523-C02).

References

Beatty, A. M. (2001).Cryst. Eng. Commun.51, 1±13.

Braga, D., Grepioni, F. & Desiraju, G. R. (1998).Chem. Rev.98, 1375±1405. Bruker (1998).SMARTandSAINT. Bruker AXS Inc., Madison, Wisconsin,

USA.

Bruker (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Carballo, R., CastinÄeiras, A., Covelo, B., NicloÂs, J. & VaÂzquez-LoÂpez, E. M. (2002).Z. Anorg. Allg. Chem.628, 468±472.

Carballo, R., Covelo, B., GarcõÂa-MartõÂnez, E. & VaÂzquez-LoÂpez, E. M. (2001).

Acta Cryst.E57, m597±m599.

Carballo, R., Covelo, B., GarcõÂa-MartõÂnez, E. & VaÂzquez-LoÂpez, E. M. (2003).

Z. Anorg. Allg. Chem.629, 244±248.

Fischinger, A. J. & Webb, L. E. (1969).J. Chem. Soc. Chem. Commun.pp. 407± 408.

Karipides, A. (1981).Acta Cryst.B37, 1115±1117.

Keller, E. (1999).SCHAKAL.University of Freiburg, Germany. Lis, T. (1979).Acta Cryst.B36, 701±703.

Matzapetakis, M., Dakanali, M., Raptopoulou, C. P., Tangoulis, V., Terzis, A., Moon, N., Giapintzakis, J. & Salifoglou, A. (2000).J. Biol. Inorg. Chem.5, 469±474.

Medina, G., Gasque, L. & BerneÁs, S. (2000).Acta Cryst.C56, 637±638. Melikyan, G. G., Amiryam, F., Visi, M., Hardcastle, K. I., Bales, B. L.,

Aslanyam, G. & Badanyam, S. H. (2000).Inorg. Chim. Acta,308, 45±50. Prout, C. K., Armstrong, R. A., Carruthers, J. R., Forrest, J. G., Murray-Rust, P.

& Rossotti, F. J. C. (1968).J. Chem. Soc. A, pp. 2791±2813. Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

GoÈttingen, Germany.

Zelewsky, A. von (1996).Stereochemistry of Coordination Compounds, 1st ed., edited by G. Meyer, A. Nakamura & J. D. Woolins. Chichester: Willey.

Figure 3

SCHAKAL (Keller, 1999) diagram showing the three-dimensional

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, m588–m590

supporting information

Acta Cryst. (2003). E59, m588–m590 [https://doi.org/10.1107/S1600536803015083]

(

OC

-6-32)-Diaquabis(glycolato)cobalt(II)

Rosa Carballo, Alfonso Casti

ñ

eiras, Berta Covelo, Emilia Garc

í

a-Mart

í

nez and Ezequiel M.

V

á

zquez-L

ó

pez

(I)

Crystal data

[Co(C2H3O3)2(H2O)2] Mr = 245.05

Monoclinic, P21/c

Hall symbol: -P2ybc

a = 11.5388 (9) Å

b = 5.8330 (4) Å

c = 12.4477 (9) Å

β = 91.4537 (14)°

V = 837.53 (11) Å3 Z = 4

F(000) = 500

Dx = 1.943 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2202 reflections

θ = 1.8–28.0°

µ = 2.06 mm−1 T = 293 K Prism, pink

0.36 × 0.13 × 0.11 mm

Data collection

CCD area detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan SADABS (Sheldrick, 1996)

Tmin = 0.611, Tmax = 0.797

5031 measured reflections 1964 independent reflections 1602 reflections with I > 2σ(I)

Rint = 0.023

θmax = 28.0°, θmin = 1.8° h = −13→14

k = −7→7

l = −16→15

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.024 wR(F2) = 0.053 S = 0.94 1964 reflections 142 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0247P)2 + 0.4285P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.28 e Å−3

Δρmin = −0.25 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, m588–m590

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co 0.25965 (2) 0.13328 (4) 0.160112 (18) 0.02436 (8) O1 0.41268 (13) 0.2949 (3) 0.19709 (14) 0.0380 (4) O2 0.22921 (13) 0.0993 (3) 0.32407 (11) 0.0337 (3) O11 0.30574 (11) 0.1296 (2) −0.00242 (9) 0.0320 (3) O12 0.40474 (12) −0.0613 (2) −0.12429 (10) 0.0380 (3) O13 0.32193 (13) −0.1998 (2) 0.14107 (10) 0.0328 (3) C11 0.35881 (16) −0.0448 (3) −0.03494 (14) 0.0271 (4) C12 0.36884 (17) −0.2502 (3) 0.03888 (14) 0.0306 (4) H12A 0.3276 −0.3789 0.0068 0.037* H12B 0.4497 −0.2929 0.0481 0.037* O21 0.16890 (11) 0.4379 (2) 0.14399 (10) 0.0319 (3) O22 −0.00246 (11) 0.60591 (19) 0.12195 (9) 0.0270 (3) O23 0.08599 (12) 0.0252 (2) 0.13200 (11) 0.0345 (3) C21 0.06093 (16) 0.4321 (3) 0.12972 (13) 0.0226 (4) C22 0.00151 (15) 0.2011 (3) 0.12315 (14) 0.0245 (4) H22A −0.0531 0.1868 0.1807 0.029* H22B −0.0410 0.1874 0.0552 0.029* H11 0.477 (2) 0.236 (4) 0.1780 (18) 0.060 (8)* H12 0.418 (2) 0.360 (4) 0.254 (2) 0.060 (8)* H23 0.053 (2) −0.111 (4) 0.1269 (17) 0.051 (7)* H13 0.278 (2) −0.305 (4) 0.161 (2) 0.087 (10)* H21 0.1576 (19) 0.091 (4) 0.3427 (16) 0.042 (6)* H22 0.260 (2) 0.180 (4) 0.3706 (17) 0.065 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, m588–m590

Geometric parameters (Å, º)

Co—O1 2.0439 (15) O13—C12 1.426 (2) Co—O21 2.0696 (12) O13—H13 0.840 (17) Co—O13 2.0870 (13) C11—C12 1.512 (2) Co—O2 2.0891 (14) C12—H12A 0.9700 Co—O11 2.1050 (12) C12—H12B 0.9700 Co—O23 2.1213 (14) O21—C21 1.254 (2) O1—H11 0.86 (3) O22—C21 1.253 (2) O1—H12 0.81 (2) O23—C22 1.418 (2) O2—H21 0.86 (2) O23—H23 0.88 (2) O2—H22 0.822 (16) C21—C22 1.513 (2) O11—C11 1.260 (2) C22—H22A 0.9700 O12—C11 1.248 (2) C22—H22B 0.9700

O1—Co—O21 93.32 (6) Co—O13—H13 115.9 (19) O1—Co—O13 99.04 (6) O12—C11—O11 124.72 (17) O21—Co—O13 164.37 (5) O12—C11—C12 116.93 (16) O1—Co—O2 89.40 (6) O11—C11—C12 118.35 (15) O21—Co—O2 94.53 (5) O13—C12—C11 110.73 (14) O13—Co—O2 95.14 (5) O13—C12—H12A 109.5 O1—Co—O11 89.04 (6) C11—C12—H12A 109.5 O21—Co—O11 93.16 (5) O13—C12—H12B 109.5 O13—Co—O11 77.60 (5) C11—C12—H12B 109.5 O2—Co—O11 172.23 (5) H12A—C12—H12B 108.1 O1—Co—O23 168.92 (6) C21—O21—Co 119.26 (11) O21—Co—O23 76.45 (5) C22—O23—Co 116.25 (11) O13—Co—O23 91.78 (6) C22—O23—H23 110.4 (15) O2—Co—O23 87.21 (6) Co—O23—H23 133.3 (15) O11—Co—O23 95.68 (5) O22—C21—O21 124.41 (16) Co—O1—H11 120.4 (16) O22—C21—C22 116.98 (15) Co—O1—H12 117.8 (18) O21—C21—C22 118.61 (15) H11—O1—H12 112 (2) O23—C22—C21 109.31 (14) Co—O2—H21 116.9 (14) O23—C22—H22A 109.8 Co—O2—H22 123.6 (18) C21—C22—H22A 109.8 H21—O2—H22 104 (2) O23—C22—H22B 109.8 C11—O11—Co 116.99 (11) C21—C22—H22B 109.8 C12—O13—Co 115.65 (11) H22A—C22—H22B 108.3 C12—O13—H13 111.1 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H11···O12i 0.86 (3) 1.84 (3) 2.686 (2) 167 (2)

O1—H12···O12ii 0.81 (2) 1.92 (3) 2.716 (2) 166 (2)

O23—H23···O22iii 0.88 (2) 1.77 (2) 2.6517 (18) 175 (2)

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, m588–m590

O2—H21···O22iv 0.86 (2) 1.86 (2) 2.7180 (19) 174 (2)

O2—H22···O11ii 0.82 (2) 1.99 (2) 2.8016 (18) 169 (2)

References

Related documents

Therefore, in this work we try to switch the viewpoint from the spatial expansion of the Universe to the shrinkage of the size of matter during the evolution of the Universe,

(2014), the development of “common goods” (in this case those aimed as alternatives to plastic for promotion of waste reduction), may contribute to increased awareness in

This step was intended to evaluate the accuracy of the produced malaria risk map compared to morbidity data and identify to what extent the produced ma- laria risk reflects

As the diffusion coefficient, the short-circuit photocurrent density and the open-circuit photovoltage are symmetrical compared with θ = π/2 rad, conse- quently the modelling of

The psychological process of self-awareness is helpful for control of individual behaviors and emotions (Chen, 2003). To sum up, the four strategies mentioned above could

Using this multi-sector, multi-household computable general equilibrium model, we analyze the impact of an energy price increase and direct cash subsidy transfer on purchasing

One can conclude from the findings of this study that the three constructs of social capital (relational capital, cognitive capital and structural capital) have

More specifically, we first estimate, using 2007 data, total labor productivity (TLP) in the 27 EU member states, and show that in all but a few sectors, new member states clearly