• No results found

O,O Di­ethyl [({1 [(2 chloro­thia­zol 5 yl)meth­yl] 5 methyl 1H 1,2,3 triazol 4 yl}carbon­yl­oxy)phenyl­meth­yl]phospho­nate

N/A
N/A
Protected

Academic year: 2020

Share "O,O Di­ethyl [({1 [(2 chloro­thia­zol 5 yl)meth­yl] 5 methyl 1H 1,2,3 triazol 4 yl}carbon­yl­oxy)phenyl­meth­yl]phospho­nate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o158

Chen and Shi C

19H22ClN4O5PS doi:10.1107/S1600536806051841 Acta Cryst.(2007). E63, o158–o160 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

O

,

O

-Diethyl

[({1-[(2-chlorothiazol-5-yl)-methyl]-5-methyl-1

H

-1,2,3-triazol-4-yl}-carbonyloxy)phenylmethyl]phosphonate

Xiao-Bao Chen and De-Qing Shi*

Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China

Correspondence e-mail: chshidq@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.005 A˚ Disorder in main residue

Rfactor = 0.067

wRfactor = 0.189

Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 21 November 2006 Accepted 30 November 2006

#2007 International Union of Crystallography All rights reserved

In the title compound, C19H22ClN4O5PS, the P atom adopts a

distorted tetrahedral configuration. Intra- and intermolecular

C—H O hydrogen bonds, together with weak C—H

hydrogen bonding and strong – stacking interactions, stabilize the crystal structure.

Comment

Neonicotinoid insecticides act as nicotinic acetylcholine receptor inhibitors and have attracted increasing attention because of their safety, low toxicity, wide range of activities and high potency (Shiokawa et al., 1986). It has been found that most biologically active nicotinic compounds contain the

3-aminomethylpyridine or aminomethylthiazole system

(Yamamotoet al., 1994). 1,2,3-Triazoles have also been widely used in pharmaceuticals, agrochemicals, dyes and photo-graphic materials, and in corrosion inhibition (Fan & Katritsky, 1996; Dehne, 1994; Abu-Orabi et al., 1989). As structure–activity relationships are very useful in the rational design of pharmaceuticals and agrochemicals, we report here the crystal structure of the title triazole derviative, (I) (Fig. 1), which was synthesized by introducing a 1-hydroxyalkyl-phosphonate into a 1,2,3-triazole molecular framework.

In compound (I), the C5—N2 and C6—N4 bonds (Table 1) are significantly shorter than a normal single C—N bond [1.47 A˚ ; Sasada, 1984] and are close to the value for a C N bond [1.28 A˚ ; Wang et al., 1998]. This indicates significant electron delocalization in the triazolyl system. The O5—P1— O4, O5—P1—O3 and O5—P1—C9 bond angles are larger than the O4—P1—O3, O4—P1—C9 and O3—P1—C9 bond angles (Table 1), indicating a distorted tetrahedral configura-tion for the P atom.

Intra- and intermolecular C—H O hydrogen bonds

(2)

methylene groups are involved in C—H interactions with the C10–C15 phenyl ring (centroidCg1) [C170 Cg1 = 3.65 A˚ ,

H17E Cg1 =2.98 A˚ , C170—H17E Cg1 = 128; C180 Cg1

= 3.66 A˚ , H18D Cg1 =2.89 A˚ , C180—H18D Cg1 = 166].

Strong – stacking interactions are also found between adjacent S1/C1/N1/C2–C3 rings, parallel by symmetry, with a centroid-to-centroid distance of 3.641 (1) A˚ and a shortest interplanar distance of 3.393 (1) A˚ .

Experimental

A solution of 1-((2-chlorothiazol-5-yl)methyl)-5-methyl-1H -1,2,3-triazole-4-carboxyl chloride (0.022 mol) in chloroform (10 ml) was added dropwise to a stirred mixture of O,O-diethyl 1-hydroxy-phenylmethylphosphonate (0.020 mol) and triethylamine (0.022 mol) in chloroform (25 ml) at 275–278 K. The resultant mixture was stirred at room temperature for 6 h until the reaction was complete (moni-tored by thin-layer chromatography). The solution was then washed with dilute hydrochloric acid, followed by saturated sodium bicar-bonate and brine, dried, and evaporated. The product was purified by flash column chromatography on silica gel using acetone and petro-leum ether (1:1 v/v) as eluent, to give a white solid (yield 78%).

Colourless crystals of (I) suitable for X-ray structure analysis were grown from a solution in a mixture of acetone and petroleum ether (1:2v/v).

Crystal data

C19H22ClN4O5PS

Mr= 484.89 Triclinic,P1

a= 8.7691 (12) A˚

b= 9.3196 (13) A˚

c= 14.389 (2) A˚

= 97.715 (2)

= 94.826 (2)

= 92.492 (2)

V= 1159.4 (3) A˚3

Z= 2

Dx= 1.389 Mg m

3

MoKradiation

= 0.36 mm1

T= 298 (2) K Block, colourless 0.360.300.30 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2001)

Tmin= 0.881,Tmax= 0.899

8265 measured reflections 4709 independent reflections 3943 reflections withI> 2(I)

Rint= 0.020 max= 26.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.067

wR(F2) = 0.189

S= 1.09 4709 reflections 323 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1034P)2

+ 0.3921P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.43 e A˚

3

min=0.29 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

C5—N2 1.343 (4) C6—N4 1.367 (4)

O5—P1—O4 115.69 (16)

O5—P1—O3 116.12 (17)

O4—P1—O3 104.09 (17)

O5—P1—C9 113.34 (16)

O4—P1—C9 105.89 (14)

O3—P1—C9 99.98 (14)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C7—H7B O1 0.96 2.48 3.145 (4) 126

C7—H7A O5i

0.96 2.58 3.311 (5) 133

Symmetry code: (i)x1;y;z.

H atoms were placed in calculated positions, with C—H = 0.93– 0.97 A˚ , and included in the final cycles of refinement using a riding-model approximation, with Uiso(H) = 1.2–1.5Ueq(carrier atom). A

rotating-group model was used for the methyl groups. It was apparent at an early stage that the structure contained a small proportion of molecules adopting an alternative orientation. Refinement of the site-occupancy factors for the two components, constrained to sum to unity, give the most satisfactory outcome of 0.64/0.36 and 0.70/0.30 for the major and minor components of C16/C17 and C18/C19 groups, respectively, and accordingly the occupancies were thereafter fixed at these values.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic papers

Acta Cryst.(2007). E63, o158–o160 Chen and Shi C

19H22ClN4O5PS

o159

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.

Figure 2

(3)

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors are grateful to the Natural Science Foundation of China (grant No. 20302002) for financial support.

References

Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari’i, F. M. & Ali, A. A. S. (1989).J. Heterocycl. Chem.26, 1461–1468.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000).SMART,SAINTandSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dehne, H. (1994).Methodender Organischen Chemie (Houben–Weyl), Vol. E8d, edited by E. Schumann, pp. 305–405. Stuttgart: Thieme.

Desiraju, G. R. (2002).Acc. Chem. Res.35, 565–573.

Fan, W.-Q. & Katritsky, A. R. (1996).Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katrisky, C. W. Rees & E. F. V. Scriven, pp. 1–126. London, Oxford: Pergamon.

Sasada, Y. (1984).Molecular and Crystal Structures in Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (2001).SADABS. University of Go¨ttingen, Germany. Shiokawa, K., Tsubo, S. & Moriya, K. (1986). EP Patent 192060.

Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998).Acta Cryst.C54, 1927– 1929.

Yamamoto, I., Yabita, G., Tomizawa, M. & Hissasomi, A. (1994).J. Pestic. Sci.

19, 335–339.

organic papers

o160

Chen and Shi C

(4)

supporting information

sup-1

Acta Cryst. (2007). E63, o158–o160

supporting information

Acta Cryst. (2007). E63, o158–o160 [https://doi.org/10.1107/S1600536806051841]

O

,

O

-Diethyl [({1-[(2-chlorothiazol-5-yl)methyl]-5-methyl-1

H

-1,2,3-triazol-4-yl}carbonyloxy)phenylmethyl]phosphonate

Xiao-Bao Chen and De-Qing Shi

O,O-Diethyl [({1-[(2-chlorothiazol-5-yl)methyl]-5-methyl-1H-1,2,3-triazol-4-

yl}carbonyloxy)phenylmethyl]phosphonate

Crystal data

C19H22ClN4O5PS

Mr = 484.89 Triclinic, P1 Hall symbol: -P 1

a = 8.7691 (12) Å

b = 9.3196 (13) Å

c = 14.389 (2) Å

α = 97.715 (2)°

β = 94.826 (2)°

γ = 92.492 (2)°

V = 1159.4 (3) Å3

Z = 2

F(000) = 504

Dx = 1.389 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 4452 reflections

θ = 2.3–27.1°

µ = 0.36 mm−1

T = 298 K

Block, colourless 0.36 × 0.30 × 0.30 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2001)

Tmin = 0.881, Tmax = 0.899

8265 measured reflections 4709 independent reflections 3943 reflections with I > 2σ(I)

Rint = 0.020

θmax = 26.5°, θmin = 2.3°

h = −10→10

k = −11→11

l = −18→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.067

wR(F2) = 0.189

S = 1.09

4709 reflections 323 parameters 58 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1034P)2 + 0.3921P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.43 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2007). E63, o158–o160

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

C1 0.2465 (4) 1.0292 (3) −0.0667 (2) 0.0602 (7)

C2 0.0964 (4) 0.8478 (3) −0.0493 (2) 0.0627 (7)

H2 0.0223 0.7729 −0.0685 0.075*

C3 0.1614 (3) 0.8730 (3) 0.0397 (2) 0.0545 (6)

C4 0.1264 (3) 0.7954 (4) 0.1201 (2) 0.0631 (7)

H4A 0.0948 0.8646 0.1703 0.076*

H4B 0.0414 0.7250 0.0998 0.076*

C5 0.3113 (3) 0.5944 (3) 0.12169 (19) 0.0519 (6)

C6 0.4326 (3) 0.5785 (3) 0.18518 (18) 0.0513 (6)

C7 0.2436 (4) 0.5034 (4) 0.0355 (2) 0.0750 (9)

H7A 0.1383 0.4777 0.0422 0.112*

H7B 0.2989 0.4170 0.0250 0.112*

H7C 0.2492 0.5562 −0.0171 0.112*

C8 0.5313 (3) 0.4560 (3) 0.18441 (19) 0.0530 (6)

C9 0.7462 (3) 0.3646 (3) 0.2658 (2) 0.0561 (7)

H9 0.7306 0.2905 0.2102 0.067*

C10 0.7039 (3) 0.2983 (3) 0.3499 (2) 0.0587 (7)

C11 0.6981 (4) 0.1508 (4) 0.3473 (3) 0.0795 (10)

H11 0.7214 0.0920 0.2934 0.095*

C12 0.6577 (5) 0.0886 (5) 0.4247 (4) 0.1008 (13)

H12 0.6548 −0.0117 0.4226 0.121*

C13 0.6223 (5) 0.1728 (6) 0.5035 (3) 0.1001 (13)

H13 0.5954 0.1303 0.5551 0.120*

C14 0.6263 (6) 0.3183 (6) 0.5068 (3) 0.1027 (14)

H14 0.6021 0.3759 0.5610 0.123*

C15 0.6661 (5) 0.3824 (4) 0.4302 (3) 0.0841 (11)

H15 0.6673 0.4827 0.4328 0.101*

C16 1.1942 (8) 0.3268 (11) 0.3267 (8) 0.113 (3) 0.64

H16A 1.2216 0.3708 0.3913 0.136* 0.64

H16B 1.2450 0.3834 0.2852 0.136* 0.64

C17 1.240 (2) 0.1724 (13) 0.3125 (9) 0.125 (4) 0.64

H17A 1.1953 0.1197 0.3572 0.187* 0.64

H17B 1.3501 0.1708 0.3216 0.187* 0.64

H17C 1.2056 0.1282 0.2498 0.187* 0.64

(6)

supporting information

sup-3

Acta Cryst. (2007). E63, o158–o160

H16C 1.2425 0.3818 0.2806 0.106* 0.36

H16D 1.1775 0.2367 0.2179 0.106* 0.36

C17′ 1.252 (4) 0.206 (3) 0.3527 (14) 0.135 (9) 0.36

H17D 1.2718 0.2675 0.4120 0.202* 0.36

H17E 1.3461 0.1691 0.3329 0.202* 0.36

H17F 1.1820 0.1267 0.3595 0.202* 0.36

C18 0.9272 (14) 0.7132 (7) 0.3448 (6) 0.128 (3) 0.70

H18A 0.8252 0.7201 0.3144 0.153* 0.70

H18B 1.0021 0.7490 0.3064 0.153* 0.70

C19 0.9433 (17) 0.7937 (11) 0.4389 (7) 0.187 (5) 0.70

H19A 0.8486 0.8368 0.4520 0.281* 0.70

H19B 1.0234 0.8685 0.4431 0.281* 0.70

H19C 0.9687 0.7292 0.4839 0.281* 0.70

C19′ 0.976 (2) 0.8624 (14) 0.3869 (15) 0.133 (7) 0.30

H19D 0.8670 0.8692 0.3869 0.200* 0.30

H19E 1.0118 0.9094 0.3368 0.200* 0.30

H19F 1.0252 0.9088 0.4461 0.200* 0.30

C18′ 1.0125 (18) 0.7086 (10) 0.3730 (13) 0.092 (4) 0.30

H18C 1.0738 0.7074 0.3198 0.110* 0.30

H18D 1.0869 0.7067 0.4266 0.110* 0.30

Cl1 0.33443 (12) 1.15961 (11) −0.11998 (8) 0.0897 (3)

N1 0.1444 (3) 0.9374 (3) −0.11069 (18) 0.0671 (7)

N2 0.2566 (3) 0.7208 (3) 0.15670 (17) 0.0551 (6)

N3 0.3394 (3) 0.7806 (3) 0.23785 (18) 0.0661 (7)

N4 0.4462 (3) 0.6944 (3) 0.25507 (17) 0.0618 (6)

O1 0.5118 (3) 0.3454 (3) 0.13098 (19) 0.0850 (7)

O2 0.6488 (2) 0.4833 (2) 0.25108 (15) 0.0643 (5)

O3 1.0331 (3) 0.3211 (3) 0.3053 (2) 0.1000 (9)

O4 0.9536 (3) 0.5655 (3) 0.35945 (18) 0.0884 (7)

O5 0.9768 (3) 0.4945 (3) 0.18466 (19) 0.0911 (8)

P1 0.93898 (10) 0.44675 (9) 0.27217 (6) 0.0657 (3)

S1 0.29328 (9) 1.01822 (9) 0.05014 (6) 0.0677 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0645 (17) 0.0557 (16) 0.0673 (18) 0.0104 (14) 0.0244 (14) 0.0197 (14)

C2 0.0650 (18) 0.0561 (16) 0.0688 (18) 0.0034 (13) 0.0134 (14) 0.0100 (14)

C3 0.0479 (14) 0.0540 (15) 0.0667 (17) 0.0111 (11) 0.0152 (12) 0.0182 (13)

C4 0.0539 (16) 0.0692 (18) 0.0739 (19) 0.0133 (13) 0.0196 (14) 0.0261 (15)

C5 0.0495 (14) 0.0557 (15) 0.0544 (14) 0.0004 (11) 0.0134 (11) 0.0173 (12)

C6 0.0548 (15) 0.0528 (15) 0.0493 (14) −0.0008 (11) 0.0105 (11) 0.0161 (11)

C7 0.069 (2) 0.080 (2) 0.072 (2) 0.0074 (16) −0.0043 (16) 0.0040 (17)

C8 0.0551 (15) 0.0537 (15) 0.0522 (14) −0.0008 (12) 0.0083 (12) 0.0139 (12)

C9 0.0543 (15) 0.0564 (16) 0.0579 (15) 0.0069 (12) 0.0060 (12) 0.0073 (12)

C10 0.0473 (14) 0.0666 (18) 0.0632 (17) 0.0022 (12) 0.0084 (12) 0.0107 (13)

C11 0.083 (2) 0.068 (2) 0.094 (3) 0.0100 (17) 0.030 (2) 0.0204 (18)

(7)

supporting information

sup-4

Acta Cryst. (2007). E63, o158–o160

C13 0.092 (3) 0.124 (4) 0.093 (3) −0.015 (3) 0.021 (2) 0.046 (3)

C14 0.121 (4) 0.113 (4) 0.074 (2) −0.019 (3) 0.035 (2) 0.006 (2)

C15 0.106 (3) 0.072 (2) 0.073 (2) −0.010 (2) 0.021 (2) 0.0055 (17)

C16 0.092 (5) 0.125 (6) 0.119 (6) −0.006 (4) −0.016 (4) 0.027 (5)

C17 0.112 (8) 0.140 (9) 0.123 (8) 0.053 (7) 0.001 (8) 0.010 (7)

C16′ 0.071 (6) 0.105 (8) 0.088 (7) 0.026 (5) 0.011 (5) 0.007 (6)

C17′ 0.098 (10) 0.161 (16) 0.137 (16) 0.042 (11) −0.022 (13) −0.001 (12)

C18 0.167 (7) 0.092 (5) 0.116 (6) −0.028 (5) −0.006 (5) 0.009 (4)

C19 0.247 (12) 0.112 (7) 0.193 (11) 0.053 (8) 0.013 (9) −0.025 (7)

C19′ 0.145 (14) 0.139 (14) 0.111 (12) −0.051 (12) 0.009 (10) 0.018 (10)

C18′ 0.082 (7) 0.086 (8) 0.100 (8) −0.019 (6) 0.016 (6) −0.016 (6)

Cl1 0.1005 (7) 0.0797 (6) 0.1012 (7) 0.0016 (5) 0.0355 (5) 0.0419 (5)

N1 0.0768 (17) 0.0677 (16) 0.0597 (15) 0.0071 (13) 0.0157 (13) 0.0125 (12)

N2 0.0533 (13) 0.0597 (14) 0.0582 (13) 0.0049 (10) 0.0162 (10) 0.0215 (11)

N3 0.0769 (17) 0.0630 (15) 0.0614 (15) 0.0102 (13) 0.0148 (13) 0.0126 (12)

N4 0.0707 (16) 0.0615 (15) 0.0554 (13) 0.0076 (12) 0.0097 (11) 0.0118 (11)

O1 0.0872 (16) 0.0670 (14) 0.0920 (17) 0.0166 (12) −0.0205 (13) −0.0063 (13)

O2 0.0679 (13) 0.0559 (11) 0.0674 (12) 0.0119 (10) −0.0047 (10) 0.0064 (9)

O3 0.0575 (14) 0.099 (2) 0.151 (3) 0.0096 (13) 0.0118 (15) 0.0411 (18)

O4 0.0985 (19) 0.0842 (17) 0.0785 (16) −0.0138 (14) 0.0004 (13) 0.0081 (13)

O5 0.0979 (19) 0.0955 (18) 0.0845 (17) −0.0115 (15) 0.0288 (14) 0.0219 (14)

P1 0.0600 (5) 0.0680 (5) 0.0710 (5) 0.0000 (4) 0.0104 (4) 0.0149 (4)

S1 0.0623 (5) 0.0719 (5) 0.0713 (5) −0.0050 (4) 0.0062 (4) 0.0219 (4)

Geometric parameters (Å, º)

C1—N1 1.275 (4) C15—H15 0.9300

C1—Cl1 1.711 (3) C16—O3 1.418 (7)

C1—S1 1.714 (3) C16—C17 1.504 (8)

C2—C3 1.343 (4) C16—H16A 0.9700

C2—N1 1.372 (4) C16—H16B 0.9700

C2—H2 0.9300 C17—H17A 0.9600

C3—C4 1.490 (4) C17—H17B 0.9600

C3—S1 1.724 (3) C17—H17C 0.9600

C4—N2 1.459 (4) C16′—O3 1.411 (7)

C4—H4A 0.9700 C16′—C17′ 1.504 (9)

C4—H4B 0.9700 C16′—H16C 0.9700

C5—N2 1.343 (4) C16′—H16D 0.9700

C5—C6 1.369 (4) C17′—H17D 0.9600

C5—C7 1.470 (4) C17′—H17E 0.9600

C6—N4 1.367 (4) C17′—H17F 0.9600

C6—C8 1.462 (4) C18—O4 1.445 (7)

C7—H7A 0.9600 C18—C19 1.450 (8)

C7—H7B 0.9600 C18—H18A 0.9700

C7—H7C 0.9600 C18—H18B 0.9700

C8—O1 1.196 (4) C19—H19A 0.9600

C8—O2 1.338 (3) C19—H19B 0.9600

(8)

supporting information

sup-5

Acta Cryst. (2007). E63, o158–o160

C9—C10 1.497 (4) C19′—C18′ 1.473 (9)

C9—P1 1.815 (3) C19′—H19D 0.9600

C9—H9 0.9800 C19′—H19E 0.9600

C10—C11 1.369 (5) C19′—H19F 0.9600

C10—C15 1.380 (5) C18′—O4 1.392 (8)

C11—C12 1.387 (5) C18′—H18C 0.9700

C11—H11 0.9300 C18′—H18D 0.9700

C12—C13 1.356 (7) N2—N3 1.360 (4)

C12—H12 0.9300 N3—N4 1.290 (4)

C13—C14 1.349 (7) O3—P1 1.564 (3)

C13—H13 0.9300 O4—P1 1.551 (3)

C14—C15 1.386 (5) O5—P1 1.450 (3)

C14—H14 0.9300

N1—C1—Cl1 122.4 (2) O3—C16—H16A 110.5

N1—C1—S1 117.2 (2) C17—C16—H16A 110.5

Cl1—C1—S1 120.4 (2) O3—C16—H16B 110.5

C3—C2—N1 117.1 (3) C17—C16—H16B 110.5

C3—C2—H2 121.5 H16A—C16—H16B 108.7

N1—C2—H2 121.5 O3—C16′—C17′ 106.3 (15)

C2—C3—C4 127.7 (3) O3—C16′—H16C 110.5

C2—C3—S1 109.0 (2) C17′—C16′—H16C 110.5

C4—C3—S1 123.3 (2) O3—C16′—H16D 110.5

N2—C4—C3 113.0 (2) C17′—C16′—H16D 110.5

N2—C4—H4A 109.0 H16C—C16′—H16D 108.7

C3—C4—H4A 109.0 C16′—C17′—H17D 109.5

N2—C4—H4B 109.0 C16′—C17′—H17E 109.5

C3—C4—H4B 109.0 H17D—C17′—H17E 109.5

H4A—C4—H4B 107.8 C16′—C17′—H17F 109.5

N2—C5—C6 103.3 (2) H17D—C17′—H17F 109.5

N2—C5—C7 123.8 (3) H17E—C17′—H17F 109.5

C6—C5—C7 132.9 (3) O4—C18—C19 104.2 (7)

N4—C6—C5 109.5 (2) O4—C18—H18A 110.9

N4—C6—C8 123.2 (2) C19—C18—H18A 110.9

C5—C6—C8 127.3 (3) O4—C18—H18B 110.9

C5—C7—H7A 109.5 C19—C18—H18B 110.9

C5—C7—H7B 109.5 H18A—C18—H18B 108.9

H7A—C7—H7B 109.5 C18′—C19′—H19D 109.5

C5—C7—H7C 109.5 C18′—C19′—H19E 109.5

H7A—C7—H7C 109.5 H19D—C19′—H19E 109.5

H7B—C7—H7C 109.5 C18′—C19′—H19F 109.5

O1—C8—O2 123.7 (3) H19D—C19′—H19F 109.5

O1—C8—C6 125.0 (3) H19E—C19′—H19F 109.5

O2—C8—C6 111.3 (2) O4—C18′—C19′ 145.7 (14)

O2—C9—C10 110.0 (2) O4—C18′—H18C 100.4

O2—C9—P1 103.69 (19) C19′—C18′—H18C 100.4

C10—C9—P1 116.6 (2) O4—C18′—H18D 100.4

(9)

supporting information

sup-6

Acta Cryst. (2007). E63, o158–o160

C10—C9—H9 108.7 H18C—C18′—H18D 104.3

P1—C9—H9 108.7 C1—N1—C2 108.6 (3)

C11—C10—C15 118.5 (3) C5—N2—N3 111.3 (2)

C11—C10—C9 120.0 (3) C5—N2—C4 129.1 (3)

C15—C10—C9 121.5 (3) N3—N2—C4 119.5 (2)

C10—C11—C12 120.3 (4) N4—N3—N2 107.4 (2)

C10—C11—H11 119.9 N3—N4—C6 108.4 (2)

C12—C11—H11 119.9 C8—O2—C9 117.2 (2)

C13—C12—C11 120.6 (4) C16′—O3—C16 28.6 (6)

C13—C12—H12 119.7 C16′—O3—P1 124.0 (7)

C11—C12—H12 119.7 C16—O3—P1 125.5 (5)

C14—C13—C12 119.9 (4) C18′—O4—C18 33.8 (7)

C14—C13—H13 120.1 C18′—O4—P1 132.0 (8)

C12—C13—H13 120.1 C18—O4—P1 118.2 (4)

C13—C14—C15 120.4 (4) O5—P1—O4 115.69 (16)

C13—C14—H14 119.8 O5—P1—O3 116.12 (17)

C15—C14—H14 119.8 O4—P1—O3 104.09 (17)

C10—C15—C14 120.4 (4) O5—P1—C9 113.34 (16)

C10—C15—H15 119.8 O4—P1—C9 105.89 (14)

C14—C15—H15 119.8 O3—P1—C9 99.98 (14)

O3—C16—C17 106.2 (9) C1—S1—C3 88.10 (15)

N1—C2—C3—C4 177.9 (3) C5—C6—N4—N3 0.0 (3)

N1—C2—C3—S1 −0.2 (3) C8—C6—N4—N3 −177.3 (2)

C2—C3—C4—N2 117.2 (3) O1—C8—O2—C9 −7.7 (4)

S1—C3—C4—N2 −64.9 (3) C6—C8—O2—C9 173.0 (2)

N2—C5—C6—N4 0.0 (3) C10—C9—O2—C8 −100.4 (3)

C7—C5—C6—N4 −178.8 (3) P1—C9—O2—C8 134.1 (2)

N2—C5—C6—C8 177.2 (2) C17′—C16′—O3—C16 55.9 (19)

C7—C5—C6—C8 −1.6 (5) C17′—C16′—O3—P1 159.0 (12)

N4—C6—C8—O1 170.7 (3) C17—C16—O3—C16′ −58.1 (18)

C5—C6—C8—O1 −6.1 (5) C17—C16—O3—P1 −155.3 (7)

N4—C6—C8—O2 −10.0 (4) C19′—C18′—O4—C18 30 (2)

C5—C6—C8—O2 173.3 (2) C19′—C18′—O4—P1 108 (3)

O2—C9—C10—C11 138.6 (3) C19—C18—O4—C18′ −57.9 (15)

P1—C9—C10—C11 −103.7 (3) C19—C18—O4—P1 177.8 (7)

O2—C9—C10—C15 −39.6 (4) C18′—O4—P1—O5 −8.1 (10)

P1—C9—C10—C15 78.1 (3) C18—O4—P1—O5 30.1 (6)

C15—C10—C11—C12 −1.2 (6) C18′—O4—P1—O3 120.6 (10)

C9—C10—C11—C12 −179.4 (3) C18—O4—P1—O3 158.7 (6)

C10—C11—C12—C13 0.5 (7) C18′—O4—P1—C9 −134.5 (10)

C11—C12—C13—C14 0.0 (8) C18—O4—P1—C9 −96.4 (6)

C12—C13—C14—C15 0.1 (8) C16′—O3—P1—O5 25.8 (8)

C11—C10—C15—C14 1.3 (6) C16—O3—P1—O5 60.8 (6)

C9—C10—C15—C14 179.5 (4) C16′—O3—P1—O4 −102.6 (8)

C13—C14—C15—C10 −0.8 (7) C16—O3—P1—O4 −67.6 (6)

Cl1—C1—N1—C2 179.9 (2) C16′—O3—P1—C9 148.1 (8)

(10)

supporting information

sup-7

Acta Cryst. (2007). E63, o158–o160

C3—C2—N1—C1 0.4 (4) O2—C9—P1—O5 −65.2 (2)

C6—C5—N2—N3 −0.1 (3) C10—C9—P1—O5 173.7 (2)

C7—C5—N2—N3 178.9 (3) O2—C9—P1—O4 62.7 (2)

C6—C5—N2—C4 −179.6 (2) C10—C9—P1—O4 −58.4 (2)

C7—C5—N2—C4 −0.7 (4) O2—C9—P1—O3 170.5 (2)

C3—C4—N2—C5 −78.0 (4) C10—C9—P1—O3 49.5 (3)

C3—C4—N2—N3 102.5 (3) N1—C1—S1—C3 0.2 (2)

C5—N2—N3—N4 0.1 (3) Cl1—C1—S1—C3 179.94 (19)

C4—N2—N3—N4 179.7 (2) C2—C3—S1—C1 0.0 (2)

N2—N3—N4—C6 −0.1 (3) C4—C3—S1—C1 −178.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C7—H7B···O1 0.96 2.48 3.145 (4) 126

C7—H7A···O5i 0.96 2.58 3.311 (5) 133

References

Related documents

How- ever, most NER tools are designed to capture flat mention structure over coarse entity type schemas, reflecting the available annotated datasets.. Focusing on flat

We call the poem generated by the generation module in one pass the draft, since the user may revise it for several times to collaboratively cre- ate a satisfying poem together with

Our analysis provides some idea about the distinct compartmentalization of the Indian credit market with respect to the disbursement of loan from various credit

In effect, we hypothesized that the unproductive expenditures depend on real, financial and demand variables which we captured in the movement of the economy- wide

We recast their tasks so that they only require a sentence embedding as input (two of their tasks also require word embeddings, polluting sentence- level evaluation), we extend

In this paper, we introduce a Low-rank Multi- modal Fusion method that performs multimodal fu- sion with modality-specific low-rank factors.. LMF scales linearly in the number

Based on the lag length, it could be suggested that the changes in world oil price and output of trade industries have immediate effect on currency appreciation,

In his most recent blog, Aaker still uses the same definition for brand equity but identifies only three elements or assets as the major dimensions of brand