• No results found

Effect of Friction Time on Microstructure and Mechanical Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel

N/A
N/A
Protected

Academic year: 2021

Share "Effect of Friction Time on Microstructure and Mechanical Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

241

PACSnumbers: 06.60.Vz,62.20.fq, 62.20.Qp, 81.20.Vj,81.40.Lm,81.40.Pq,82.80.-d

Effect

of

Friction

Time

on

Microstructure

and

Mechanical

Properties

of

Friction

Welded

AISI

304

Stainless

Steel

to

AISI

1060

Steel

HakanAtesandNihatKaya*

GaziUniversity, FacultyofTechnology, 06500Ankara,Turkey

*

GaziUniversity,

InstituteofScienceandTechnology, 06500Ankara,Turkey

Theinfluenceoffrictiontimeonthehardness,tensileproperties,and micro-structure of the welded samples is investigated. With increasing friction time,thehardnessandtensilestrengthvaluesincreasetoo.Thehardnessof theweldinginterfacesishigherthanthatofthebasealloys.Microstructures of theweldsareexamined bytheopticalandscanningelectronmicroscopy. Theresultsshowthatallweldingjointsareperfectlybondedandfreeofany cracks, pores,anddefects. Thetensilefracture of weldedjointoccurred in the AISI304 side. The chemical composition of the interfaces and defor-mationzonesaredetectedusingenergydispersivespectroscopy.Diffusionof theCrandNiisevidentontheAISI1060side.

Дослідженовпливтривалоститертянатвердість,властивостіприрозтягу та намікроструктуру зварнихзразків.Призбільшеннітривалоститертя твердість та границяміцности нарозрив такожзбільшуються.Міцність поверхні зварнихконтактіввиявляється більшою,аніж у основних сто-пів.Мікроструктурузварнихшвівбулодослідженометодамиоптичноїй електронноїмікроскопії.Показано,щозварніз’єднаннябулидосконало зваренимитанемалиніякихтріщин,порідефектів.Руйнуванняпри ро-зтягувідбувалосязбокукриціAISI304.Хемічнийскладзварних контак-тіві зондеформаціїдосліджено задопомогоюенергодисперсійної спект-роскопії.СпостерігаласядифузіяCrтаNiвбіккриціAISI1060. Исследуется влияние времени трения на твёрдость, свойствапри растя-женииинамикроструктурусварныхобразцов.Приувеличениивремени трения твёрдость и предел прочности на разрыв также увеличиваются. Прочность поверхностисварныхконтактов оказываетсявыше,чему ос-новных сплавов. Микроструктура сварных швов исследуется методами Фотокопированиеразрешенотолько всоответствиислицензией НапечатановУкраине.

(2)

оптической и электронной микроскопии. Показано, что все сварные со-единениябылиидеальносвареныинеимелиникакихтрещин,пори де-фектов. Разрушение при растяжении происходит со стороны стали AISI304. Химический состав сварных контактов и зон деформации ис-следуютсяспомощьюэнергодисперсионнойспектроскопии.Наблюдается диффузияCrиNiвсторонусталиAISI1060.

Key words: AISI304SS—AISI1060, friction welding, microstructure,

me-chanicalproperties.

(ReceivedDecember29,2011; in final version, February 12, 2013)

1.INTRODUCTION

AusteniticstainlesssteelsbasedonrelativelyhighamountofCrandNi

are excellentcandidatesto beusedas structuralmaterialsin chemical

and foodindustryas wellasin hospitalsurgical equipments.They

ex-hibithighductility,excellentdrawingandformingproperties.The

var-iousfusion andsolidstateweldingtechniquescanbeusedtojointhese

steels.Weldingofmachinerypartsisnecessaryinthemostofthe

engi-neeringapplications.Justafewdecadesago, materialswereclassified

asweldableandnon-weldable,butinnovationsintechnologyenabledthe

joining ofmajorityofmaterialsbyfusionandsolidstatewelding

tech-niques.Someofthefusiontechniquesareappliedforvariousmaterials

[1—3]. Thetypicalsolid-statejoining applicationsofdiffusion welding

for variouscontent ofthealuminium metalmatrixcomposites [4]and

FSW[5]havebeenstudiedindetail.Weldingtime,appliedload,

weld-ing temperatureandchemicalcompositionofthesteel aresomeofthe

keyparameterstocontrolsolid-statediffusionweldingprocess.

Rotaryfriction weldingisone ofthesolid statejoiningtechniques,

which is applied to join similar and dissimilar counterparts. In this

technique, machinery components are brought into contact with one

another. While one of them remains stationary, the other is rotated

withtheappliedpressure.Whenthetemperatureoftheinterfaces has

reached anoptimum value for the extensiveplastic deformation, the

rotation isstopped,while theforging pressure remains unchangedor

increased.Theapplicationofanaxialforcemaintainsintimatecontact

betweenthepartsandleadstoplasticdeformationinthematerialnear

theweldinterface.Ifsufficientfrictionalheathasbeenproduced

dur-ingsoftening,largerwearparticlesbegintoexpelfromtheinterfaces,

and axial shortening of the components begins as a result of the

ex-pelledupsetting.Ingeneral,heatisconductedawayfromthe

interfac-es,andplasticzonedevelops.Theplasticizedlayerisformedonthe

in-terfaces and the localstress system with the assistance ofthe rotary

(3)

shown thattheweld integrityisstrongly affectedbytherateofflash

expelledundertheappropriateconditions[6].Frictionweldinghasalot

of advantages overotherwelding processes. Among these advantages

arenomelting,highreproducibility,shortproductiontime,lowenergy

input, limited heat affected zone (HAZ), avoidance of porosity

for-mation and grain growth and the use of non-shielding gases during

weldingprocess.Inaddition,thetechniqueisnotonlyappliedtoround

specimensbutisalsousedforrectangularcomponents.Itiscalled

line-arfrictionweldingandhasrecentlybeenappliedtothesteel[7].

Although alargeamountof previous studies[4—11] insimilarand

dissimilar materials have been studied, mechanical properties of the

plain carbon steel to stainless steel joint by friction welding method

haveneverbeenreporteduptodate.Therefore,inthispaper,theAISI

1060 and AISI 404stainless steelare welded by frictionweldingand

themechanical,microstructuralpropertiesandoptimalwelding

condi-tionsoffrictionweldedsamplesareexamined.

2.MATERIALSANDMETHODS

Chemical composition of plain carbon steel and stainless steel

em-ployed is presented in Table.Cylindrical test specimens of 20 mm in

diameterand160mminthelengthwerepreparedforfrictionwelding.

Before thefriction welding, the surfaces facing each other were

ma-chined usingalathe.Before welding, thesurfaces of theworkpieces

werecleanedbyastainlesssteelbrushandacetonetoremovetheoxide

layerandstains.Joiningofthesetwodissimilaralloyswasperformed

onacontinuousdrivefriction-weldingmachineof300kNcapacityata

constant rotation speed of 2000 rpm, and constant friction pressure

(P1) of40MPa andconstant upsetting pressure(P2)of60 MPa.

Fric-tion and upsetting pressures can be observed on the screen, and the

stages ofweldingsequencearecontrolled by solenoidvalve.The

fric-tiontime(t)waschosenasthree,five,andsevenseconds.Tensiletest

specimenswerepreparedaccordingtoASTME8M-00b.Ultimate

Ten-sile Strength (UTS) and yieldstrength of thewelded specimens were

determined. Hardness values(VH1)were determinedusingShimadzu

TABLE.Chemicalcompositionoftestedmaterials.

Material C Cr Ni Si Mn P

AISI 1060 0.42 — — 0.21 0.45 0.02

Elements,wt.%

Material C Cr Ni Si Mn P

(4)

HMVdevice.Measurementsweretakenintheweldingcentrethrough

base metal witha distance of1 mm oneither sideof horizontal line.

Hardness valuesweremeasuredintheweldingcentre throughthe

di-ameterwithadistanceof2.5mmonverticalline.Fortensilestrength

and hardnesstest values,atleast, threespecimenswere prepared for

each parameter. The microstructure was investigated with the SEM

and optical microscopy.The AISI1060 steelspecimens werepolished

andetchedwithasolutionconsistingof4%Nital.AISI304SSetched

with asolutionof95%HCland5%OH—C6H2(NO2)3.Thegrainshave

various shapes ranging from10 μm to300 μm indimension. Typical

microstructuresofmaterialscanbeseeninFig.1.

3.RESULTSANDDISCUSSIONS 3.1.HardnessDistribution

Figure2,ashowstheeffectoffrictiontimeonthehardness

distribu-tion in the direction perpendicular to the weld interface of the

as-welded specimen. The maximum hardness values of joints were

ob-tained on the welding centre line. The hardness values generally

in-creased with friction time.Increasing hardness inthe welding

inter-facecanberelatedtothemicrostructureformedinthejointsurfaceas

aresultoftheheatinputandextensiveplasticdeformation.The

hard-nessofAISI304SSis129HVandthehardnessvalueoftheAISI1060

steelis254HV,butmeasuredhardnessofweldinginterfaceisaround

300HV.Wecansupposethatmicrostructuralevaluationsaroundthe

interface,diffusionofelementsonthesides,workhardening,

disloca-tion density, grain refinement, and formation of precipitations may

causethisincrease.AlthoughtheworkhardeningiseffectiveontheSS

side, phasetransformation, finegrainsand formationofprecipitates

(5)

and rapidcoolingfromtheweldingtemperatureresultedinthe

hard-ening in the AISI1060 steel. Similar hardness profile was also

ob-servedfordissimilar materialscouples[11].One cansupposethat the

hardnesspropertiesareinfluencedbyaninteractiveeffectoffriction

time,whichiscombinationsofheatinput,rangeofplasticdeformation

and degreeof strainhardening.The influenceofthe frictiontimeon

theverticalhardnessdistributionisalsoshowninFig.2,b.Bothsides

of materials are hardened duetothe austenitetransformation to the

martensite formation,whichis stronglyaffected by thecooling rate.

Allhardnessvaluesarehigherthanthoseinthebasemetalare.Itwas

observed that hardnessvalues increasedfrom thecentre through the

thicknessofthespecimen.Thephasetransformationandcoolingrates

weretheoptimumaround5mmawayfromthecentre.

3.2.TensileProperties

TheinfluenceoffrictiontimeonthetensiletestresultisshowninFig.3.

It can be seen that the yield strength slightly increased with the

in-Fig. 3.Theeffectof friction time on the tensile properties.

Fig.2.Theeffectoffrictiontimeonhorizontal(a)andvertical(b)hardness distribution.

(6)

crease offriction time.The UTSvalue forthe AISI1060 is 814MPa

and forthe AISI304SS it is 505 MPa [12]. The UTSstrength

corre-spondstoabout130%ofthatforAISI304SSpartand81%ofthatfor

AISI1060structuralsteelpart.AlthoughtheUTSvalueswerenot

in-fluenced by friction time,thehighest yieldstrength is obtained with

thehighestfrictiontime.

Fabricatedjointswerequiteductileinnatureand3sand5ssamples

failed in the AISI1060 side due tothe low elongation, which is only

17%comparedto70%fortheSS.However,whenthefrictiontime

in-creasedtothe7s,failureoccurredontheSSside(seeFig.4)duetothe

extended deformation and heat affected zone. Almost all specimens

failed on the base metals, showing that perfect joint interfaces were

obtainedunderthevariousfrictiontimes.Itisreportedthatthechoice

ofweldingparametersaffectsthemicrostructure[13—15].Ifthe

fric-tiontimeisheldlong,abroaddiffusionzonewithintermetallicphases

maybegenerated.Suchparametersasshortfrictiontime,lowfriction

and low upsetting pressures will result in a weakly bonded joint.

Hence, the quality ofthe welds stronglydepends onthe temperature

attainedbyeachsubstrateduringweldingprocess.Therefore,theflow

stress—temperaturerelationshipforeachmetalwillhaveanimportant

influence onthe friction welding parameters.However, it is also

re-ported that a good strength can be obtainedby a sufficientdiffusion

andmechanicallocking[11].Ifoptimumweldingparametersareused

infrictionwelding,aperfectbondingcanbeachieved.Ingeneral,high

friction andupsettingpressuresresultedinhightoughnessand

hard-ness in steel alloys [8]. It is also well known that for achievinghigh

strength at welding interface the brittle phases such as σ-phase,

δ-ferriteandoxideformationsshouldbepushedawayfromthejoint

sur-face. In thiscase, toachieve higherstrength, the frictionand

upset-ting pressures should beas high as possible forthe constant friction

time.Asthefrictionandwearhelptogetridofcontaminantslike

ox-ideontheinterface,anewfaceshouldbesurfaced.Atthesametime,

theupsettingandfrictionpressureandfrictiontimesetintobringthe

newfacewithinthescopeofattractionrange[14,15].

(7)

3.3.Microstructure

Figure5showsthetypicalmicrostructuralfeaturesofthewelded

sam-ples.Asseenfromthemacrographs,flashformationwasobservedinall

weldedsamplesbecauseofplasticdeformationduringwelding.Friction

Fig.5.Typicalmacro-andmicrostructureofthefrictionweldingparts;P1 = =40MPa,P2 =60MPa,t=3 s (a), 5 s (b), 7 s (c).

(8)

timeplaysanimportantroleinflashformation,whichgetsbiggerwith

increasingfrictiontimeonbothsidesofmaterialsduetothehigherheat

input and extensive plastic deformation. Thus, the burn-off (axial

shortening) increases with the increase of plastic deformation (see

Figs5,a,c).Allofthe weldedjointswereperfectlybondedandfreeof

anycrack,poreanddefect.

Twomainregionsareobservedontheweldedsamples:adynamically

recrystallizedzonewithextremelyfinegrainsandplasticallydeformed

heataffectedzone(seeFigs.6,a—c).Thewidthofbothzoneschangesdue

tothematerialsproperties,i.e.yieldstrength,coefficientofthermal

ex-pansion(CTE),andductility.Lowyieldstrength,highheatconductivity

andhighductilityatelevatedtemperaturescausesmoredeformationof

theAISI1060sidecomparedwithAISI304side.Thus,deformation that

is more plastic,extendedHAZandmoreaxialshorteningwereobserved

onAISI1060sideandthesepropertiesexpandedwithincreasedfriction

time. Figures 6, a—c also show the grain orientation inside the HAZ

zones. The intensityoforientation dependson the welding parameters

[11].Itisclearlyseenthatsufficientfrictiontimeonthejoiningsurface

resultedinanadequatelockingofthe surfaces,whereextensiveplastic

deformation and microstructural changes occurred, and these facts

(9)

caused better tensile response of the joint, where recrystallization

oc-curredontheAISI1060side(higherdeformation)andgrainrefinement

and strain hardening occurredon the AISI304 steelside (lower

defor-mation).Thewidthofrecrystallizedzoneismainlyaffectedbythe

fric-tion time.Anincreasein the frictiontime resultsin widersizeoffine

grainregion.Thechangeofmicrostructureandhigheraxialshortening

isalsoobservedintheAISI1060side.

Heat flow is observedpreferentially in the material with the higher

thermal conductivity. Due to the different thermal conductivities of

AISI304 (16.2 W⋅m−1⋅K−1) and AISI1060 (49.8 W⋅m−1⋅K−1), the specific

heatwassolarge,andhencemostofthefrictionalheatgeneratedinthe

AISI1060 side.Thedifferencein thermalconductivityexplainsthe

mi-crostructuralchanges,whichoccurpreferentiallyintheAISI1060side.

SimilarmicrostructuralobservationsfortheCu—Ticoupleswerealso

re-portedin[16].Mostofthechangestookplaceinthecopper,noevidenceof

microstructural variationwas seenin the vicinityofthe interface,and

neithergraingrowthnorgrainboundaryprecipitationwasobserved.This

behaviourcanbeattributedtothedifferenceofthermalconductivity[16].

Figures 5and6alsoshowthemicrostructural changesof AISI304

sideand AISI1060 sideofweld. Duringthefriction weldingprocess,

thetemperatureneartheweldinginterfacereachesjustaboveA1

tem-perature, which is almost equal to the recrystallization temperature

forthe steel.Therefore,extremely fineequiaxedgrainsformed from

ferriteandpearlite.Martensiticstructurecouldalsobeseeninthis

re-gion,when theweldinginterfacereachesA3 temperaturewiththe

oc-currenceofrapidcooling. Therefore,themicrostructureofAISI1060

steelturnedintoaustenite.Whenausteniticstructurewasexposedto

top cooling from evaluated temperatures, the microstructure turned

into martensite duetothe diffusion of carbonto thegrain boundary

and rapid coolingrate.These results meanthat the weld experienced

different thermal histories. The relatively quick cooling rate

influ-encedthemicrostructureoftheweld.

Figures 7 (1) and (2) show energy dispersive spectroscopy (EDS)

analysis points observedon theAISI304 side, while(4)and (5) show

EDS analysispointsobservedontheAISI1060 side.Itisseenthat

al-loyingelementconcentrationsignificantlychangedatthejointsurface

(Point3)andadjacenttothePoint3duetothemechanicallockingand

atomicdiffusion.InthejointsurfaceCr(1.53%)wasmeasuredfor3s

friction time.However,the increase ofthe friction timecaused high

densityofCrinthesurface,wheremoreheatgeneratedasaresultof

highfrictionpressure.ItisobviousthatCratomswithsmaller

diame-teraremoremobileanddiffusiveinsidethisregion.Significantlyhigh

amounts of Crand Niare detectedonthe AISI1060 sideinPoint(4)

and (5) under all conditions. Çelikyürek etal. [17] have reported the

(10)

Fig.7.JointsurfacesandlocationoftheEDSanalysissites.Theeffectof fric-tiontimeontheelementaldistribution.

(11)

High amount ofAl, Cr, and Niatoms were diffused into interface

andHAZregionduetothelongperiodoffrictiontime.

4.CONCLUSIONS

Based ontheresultsobtained inthisstudy,thefollowingconclusions

couldbedrawn.

1.Frictionweldingcanbeusedsuccessfullytojoinausteniticstainless

steel(AISI304)toAISI1060structuralsteel.Theprocessedjoints

ex-hibitedbettermechanicalandmetallurgicalcharacteristics.

2.Thehighesthardnessvalueswereobservedintheinterface,butthey

significantly varied with increasing distance and friction time. The

increaseinthehardnessatthejointzonemaybeattributedtothe

mi-crostructuralevaluation.

3. The tensile strength of friction-welded joints was not affected by

friction time.Thetensile strength ofobtained weld joints canexceed

AISI304SS strength by 30%. Fracture usuallyoccurs intheHAZ of

AISI1060steelside.

4.AnextensivedeformationoccurredmostlytotheAISI1060sidedue

toitsflowstressandhighthermalconductivity.

5. Typical microstructural features were observed in thewelding

re-gion. Recrystallizedfineandelongatedgrainswereobservednearthe

jointsurface.Thewidthofrecrystallizedregionismainlyaffectedby

thefrictiontime.

6.Thevarianceinweightofalloyingelementsisseenfromanalysisof

elements spectra. EDS measurements clearly show that steel joints

consistofdifferentcrystalstructure, carbidesandintermetallic

com-pounds.DiffusionoftheCrandNiisobservedintheAISI1060side.

ACKNOWLEDGEMENTS

Theauthors wishtothankProf.Dr.A.Kurt,Prof.Dr.N.Kahraman

and Prof.Dr.I.Uygurfortheirinvaluable contribution.Alsospecial

thankstoTurkishTrackFactoryfortheirsupportandguidanceduring

theexperimentalstage.

REFERENCES

1. I.UygurandB.Gulenc, Metallurgiya, 43,No.1:35(2004).

2. I.Uygur,IndustrialLubricationandTribology,58,No.6:303(2006). 3. I.UygurandI.Dogan, Metallurgiya, 44,No.2:119(2005).

4. I.Uygur,Mater.Sci.Forum,546—549:671(2007).

5. A.Kurt,I.Uygur,andH.Ates, Mater.Sci.Forum, 534—536:789(2007). 6. A.VairisandM.Frost,Mater.Sci.Eng.A,271:477(1999).

(12)

7. W.Y.Li,T.J.Ma,S.Q.Yang,Q.Z.Xu,Y.Zhang,J.L.Li,andH.L.Liao, Ma-ter.Lett.,62:293(2008).

8. P.Sathiya,S.Aravidan,andA.NoorulHaq, Int.J.Adv.Manufac.Technol., 31:1076(2007).

9. S.D.Meshram,T.Mohandas,andG.M.Reddy, J.Mater. Proces.Techn., 184:

330(2007).

10. K.Jayabharath,M.Ashfaq,P.Veugopal,andD.R.G.Achar, Mater.Sci.Eng. A,454:114(2007).

11. N.Ozdemir,F.Sarsilmaz,andA.Hascalik, Mater.Design, 28:301(2007). 12. www.matweb.com

13. A.Kurt,I.Uygur,andU.Paylasan, WeldingJournal, 90:102(2011). 14. H.Ates,M.Turker,andA.Kurt,Mater.Design,28:948(2007).

15. M.Sahin,H.E.Akata,andK.Ozel, Mater.Design, 29,No.1:265(2008). 16. S.Y.Kim,S.B.Jung,andC.C.Shur,J.Mater.Sci.,38:1281(2003). 17. I.Çelikyürek,O.Torun,andB.Baksan, Mater.Sci.Eng.A, 528:8530(2011).

References

Related documents

The views of ordoliberal economics as to the enforcement of competition law, and the role to be played by antitrust authorities, have had a crucial impact on the shape of

First Experience in Management of Coronavirus Disease 2019 (COVID-19) in Kidney Transplant Patient – Case Report.. Galina Severova 1 *, Igor Nikolov 1 , Lada Trajceska 1 ,

In many SDN deploy- ments, the controllers run distributed protocols (e.g., dis- tributed consensus protocols such as Paxos [14]) to en- sure they have a consistent view of

The following models are studied: (1) geographically weighted regression (GWR) with a fixed distance or (2) an adaptive distance bandwidth (GWRa); (3) flexible bandwidth GWR

S., (2016) "Visible light communication for V2V intelligent transport system," in 2016 International Conference on Broadband Communications for Next Generation Networks and

Rusty Nuts is the Monthly Newsletter of the Automotive/Restoration Club of Sun City West, AZ LARC Breakfast Thursday, January 21 9:00 A.M.. Memo’s in the

The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018)

Several sensitivity simulations were performed to disentangle the impact of changes in precipitation, precip- itation formation and evaporation and subsequent mass re- suspension